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Abstract
Cachexia is a severe complication of cancer that adversely affects the course of the disease, with currently no effective
treatments. It is characterized by a progressive atrophy of skeletal muscle and adipose tissue, resulting in weight loss, a
reduced quality of life, and a shortened life expectancy. Although the cachectic condition primarily affects the skeletal
muscle, a tissue that accounts for ~40% of total body weight, cachexia is considered a multi-organ disease that
involves different tissues and organs, among which the cardiac muscle stands out for its relevance. Patients with
cancer often experience severe cardiac abnormalities and manifest symptoms that are indicative of chronic heart
failure, including fatigue, shortness of breath, and impaired exercise tolerance. Furthermore, cardiovascular
complications are among the major causes of death in cancer patients who experienced cachexia. The lack of effective
treatments for cancer cachexia underscores the need to improve our understanding of the underlying mechanisms.
Increasing evidence links the wasting of the cardiac and skeletal muscles to metabolic alterations, primarily increased
energy expenditure, and to increased proteolysis, ensuing from activation of the major proteolytic machineries of the
cell, including ubiquitin-dependent proteolysis and autophagy. This review aims at providing an overview of the key
mechanisms of cancer cachexia, with a major focus on those that are shared by the skeletal and cardiac muscles.

Introduction
Cachexia is a devastating syndrome, often announcing

the onset of the terminal phase of several diseases,
including respiratory and cardiac failure, AIDS, sepsis as
well as cancer. It is defined as an unstoppable weight loss
of at least 5% of body mass in 6 months, mostly affecting
lean mass, while fat tissue wasting occurs at a variable
penetrance. In some cases, cachexia might be masked by
concomitant obesity, in which loss of lean mass is coun-
teracted by fat deposition1. Cachexia occurs in at least
80% of metastatic cancer patients, thus representing a
highly penetrant complication and the primary cause of
death in at least one-third of cancer patients. To date,
cachexia still represents an unmet medical need, because

a substantial portion of patients suffering from chronic
diseases succumb to this complication, due to the lack of
therapeutic options.
Despite its major burden on life quality and healthcare

systems, our knowledge of the disease is still limited.
Cachexia is indeed a complex syndrome affecting several
organs, promoting systemic metabolic rewiring, and a
diffuse inflammatory condition. Cachectic patients pre-
sent increased resting energy expenditure, mostly due to
systemic lipolysis and mitochondrial dysfunction, while
systemic inflammation contributes to local tissue dys-
functions such as anorexia and fat tissue browning. Fur-
thermore, cachexia is often associated with gut dysbiosis
and intestinal membrane permeabilization, resulting in
elevated levels of circulating proinflammatory molecules
that further worsen systemic inflammation2 (Fig. 1).
Nevertheless, the major manifestation of cachexia is

skeletal muscle wasting, which results in lean mass loss
and frailty. Importantly, muscle wasting results in a severe
drop in quality of life, causing respiratory distress and
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fatigue3. Moreover, muscle mass loss is an important sign
of suffering, hence many pharmacological regimens are
normally interrupted once systemic weight loss occurs.
During cachexia, cardiac wasting can also occur, pri-

marily as a consequence of cardiac proteins loss2. This is
for example the case of cancer patients where cardiac
wasting is often secondary to therapy with cardiotoxic
anti-cancer drugs or the presence of the tumor that, by
producing circulating mediators, promotes atrophy of
cardiomyocytes and negatively impacts on cardiac con-
tractility4. Vice versa, cardiac dysfunction itself promotes
skeletal muscle wasting, a complication known as cardiac
cachexia. Furthermore, cardiac cachexia is an indepen-
dent predictor of survival in chronic heart failure patients5

in experimental models6–9 and in up to 19.5% of heart
failure patients, particularly those with reduced ejection
fraction10.
Understanding the complex crosstalk between the

heart, the skeletal muscle, and the host in chronic disease
conditions, particularly in cancer, is of utmost importance
for the identification of novel potential targets for ther-
apeutic approaches. Here, we will discuss the current
knowledge of the common biological basis of muscle and
heart wasting, with particular reference to cancer-induced
cachexia.

Inter- and intracellular mediators of skeletal and
heart muscle cachexia
Skeletal muscle and cardiac wasting has been demon-

strated in some cancer types, including lung, pancreatic,
and gastrointestinal tumors11. Although cancer cells

rarely metastasize to skeletal and cardiac muscle, factors
secreted by either the primary tumor, metastases, or
activated immune cells can induce extensive muscle
wasting. Different from other types of muscle atrophy, like
those induced by fasting, denervation, or disuse, cancer
cachexia is characterized by massive systemic inflamma-
tion12,13. Cytokines and other pro-cachectic mediators
can be directly released by some types of cancer cells into
the bloodstream, however the majority of catabolic cyto-
kines is generated by immune cells in response to can-
cer14. Furthermore, organ damage, induced by metastatic
erosion or chemo- and radiotherapy, may lead to the
secretion of danger-associated molecular patterns
(DAMPs), endogenous signals of cell damage15 that con-
tribute to inflammation and the development of the
cachectic syndrome. Finally, both cardiac and skeletal
muscle can act as endocrine organs, by releasing signaling
molecules called myokines and cardiokines, respectively,
which include members of the transforming growth factor
(TGF) superfamily (like Myostatin and Activin A)16. All
these circulating mediators are involved in the promotion
of skeletal and/or cardiac muscle catabolism and convey
the pro-atrophic signals that trigger cancer cachexia.
At the intracellular level, factors released by the tumor,

its environment, or activated immune cells mediate the
activity of a large variety of signaling molecules, like NF-
κB, p38 MAPK, or STAT3, orchestrating inter- and
intracellular signaling that ultimately promote cancer
cachexia17–22 (Fig. 2). Among those are pathways con-
trolling protein degradation, including the autophagy-
lysosomal pathway (ALP) and the ubiquitin-proteasome

Fig. 1 Multi-organ alterations in cancer-induced cachexia. Cancer cells, together with the activation of the inflammatory response and the toxic
effects of chemotherapy, contribute to concomitant and interconnected alterations in multiple distant organs, including the cardiac and skeletal
muscles and the gut, in the course of cancer-induced cachexia. ILs interleukins, TNF tumor necrosis factor, TGF transforming growth factor, TLRs toll-
like receptors, DAMPs damage-associated molecular patterns, FAO fatty acid oxidation, PAMPs pathogen-associated molecular patterns.
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pathway (UPP)13, whose alteration is a major hallmark of
cancer cachexia. Indeed, in cancer cachexia, ALP and UPP
are hyperactive, leading to muscle atrophy13,23,24.

Autophagy-lysosomal pathway and ubiquitin-proteasome
pathway
The negative protein balance observed in the wasting

syndrome is linked to protein hypercatabolism. Both ALP
and UPP efficiently degrade proteins that have been ubi-
quitylated by E1, E2, and E3 enzymes25. In ALP, uniquely
ubiquitylated proteins are engulfed by autophagosomes
that subsequently fuse to lysosomes to form autolyso-
somes, where proteins are enzymatically degraded25,26.
On the contrary, differently ubiquitylated proteins are
recognized by the UPP and degraded by the proteasome27.
Increasing evidence indicates that the contribution of ALP
and UPP to muscle wasting is context-dependent, varying
between pathologies13. For example, the muscle-specific
E3 ubiquitin ligases Atrogin-1 and MuRF-1 are the main
drivers of skeletal but not cardiac muscle wasting, in
which autophagy has instead a major role28. This might be
explained by the fact that the heart has a higher metabolic
rate and protein turnover than the skeletal muscle. Thus,
induction of ALP, in the presence of a high basal activity
of UPP, might be sufficient to mediate protein

degradation28. On the other hand, both UPP and ALP
contribute to skeletal muscle wasting. Accordingly, direct
comparison between skeletal and cardiac muscle in a
cachectic rat model showed the upregulation of autop-
hagy markers, such as LC3 and p62, in both tissues. In
contrast, TRAF6, an inducer of atrophy, and Beclin1, an
autophagic marker, were specifically upregulated in the
gastrocnemius and the heart, respectively29–31. In line
with this observation, cachectic mice exhibited atrophic
hearts, with enhanced expression of Beclin1 and LC3 but
no significant induction of proteins involved in ubiquiti-
nation or apoptosis28,32. Intriguingly, forkhead box tran-
scription factors 3 (FoxO3), which is an established
inducer of proteasomal-mediated atrophy in skeletal
muscle1, has been reported to induce atrophy via ALP in
the heart33. On the other hand, cardiac atrophy, in
majorly cancer-independent disease models, is accom-
panied by increased levels of Atrogin-1 and therefore an
active UPP, which results from the induction of MAPK
pathways34–36. One study on tumor-bearing mice reports
the increase of atrogenes expression in the heart37 and
indicates the role of UPP in cancer cachexia which
remains to be further defined.
Consequently, the induction of the different molecular

pathways that cause atrophy in skeletal and the cardiac

Fig. 2 Pathological alterations underlying muscle wasting in cancer cachexia. The mechanisms underlying cancer cachexia are multiple and
intertwined. Either factors released by skeletal and cardiac muscles (myokines and cardiokines respectively; pink boxes) or factors secreted by cancer
and cancer-associated immune cells (violet boxes) trigger a cascade of processes which ultimately result in cachexia. The circulating factors (pink),
intracellular signaling pathways (orange), and final effectors of wasting (yellow) that lead to skeletal (left side of the figure) and cardiac (right side of
the figure) muscle wasting are reported. Albeit the biological processes underlying skeletal and cardiac muscle wasting are similar, their relative
contribution and the specific molecular players involved differ slightly. Red arrows indicate those factors that are increased as a consequence of
chemotherapy. DAMPs damage-associated molecular patterns, GDF15 growth differentiation factor 15, ILs interleukins, LIF leukemia inhibitory Factor,
TNF-α tumor necrosis factor alpha, TGF-β transforming growth factor beta.
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muscles32 may depend on the different composition of
humoral factors that are released by the tumor or cancer-
affected tissues.

The inflammatory milieu
Cancer cachexia is accompanied by an increased release

of inflammatory molecules, which are mainly produced by
immune cells in response to cancer38. Among these are
interleukins, tumor necrosis factor, and members of the
transforming growth factor family.

Interleukins
Levels of IL-6 cytokine family members are increased

during cancer-related cachexia39, as a consequence of the
release of leukemia inhibitory factor (LIF) from tumor
cells40. IL-6, in turn, induces intracellular STAT3
(detailed in Box 1), p38, and FoxO signaling in skeletal
muscles21,39 through Glycoprotein 13039. These are
common intracellular signaling pathways elicited by
inflammatory cytokines like IL-141 and IL-842. Interest-
ingly, the loss of cardiac mass in tumor-bearing mice does
not rely on circulating levels of LIF40.

Danger-associated molecular patterns and toll-like
receptors
DAMPs are part of a plethora of molecules3, including

free and histone-associated nuclear DNA86, mitochon-
drial DNA (mtDNA)87, and heat shock proteins88, which
can be released by cancer, immune as well as cardiac cells
upon injury. DAMPs are the endogenous agonists of Toll-
Like Receptors (TLRs), an evolutionarily ancient family of
pattern recognition receptors89. In immune cells, plasma
membrane TLRs stimulate the synthesis of proteins that
belong to the inflammasome complex, by inducing the
translocation of NF-κB into the nucleus, ultimately
modulating innate immunity90. In muscle cells, NF-κB
activation is sufficient to induce mass loss through the
upregulation of E3 ubiquitin ligase MuRF-1, e.g. upon
LPS-induced pulmonary inflammation91 or LLC-derived
tumor in mice92.
In cancer cachexia, the activation of TLRs by DAMPs,

released in the bloodstream, stimulates muscle proteolysis
both directly, by acting on muscle cells, and indirectly, by
activating TLR4 in immune cells to increase systemic
inflammation88. Indeed, TLR4 is the isoform which is
mainly linked to muscle wasting in cancer, being required
for LLC-cancer-related muscle wasting93,94. Accordingly,
the TLR4 expression level in skeletal muscles of cancer
patients significantly correlates with low skeletal muscle
index and weight loss95. Interestingly, the role of TLRs in
cancer-induced muscle catabolism is relatively isoform-
and disease-specific. For instance, muscle-specific activa-
tion of TLR7 by tumor-secreted microvesicles promotes
skeletal muscle cell death96,97, while local activation of

TLR7 in the tumor stroma triggers CD8+ T-cells,
resulting in tumor shrinkage and, consequently, in
reduced cachexia and improved survival98.
Although, to date a clear link between cancer cachexia

and TLRs is missing, it is plausible that the same pathway
may be detrimental for the heart. For instance, activation
of specific TLR isoforms expressed by cardiac cells has
been linked to pro-inflammatory effects, with TLR2,
TLR4, and TLR5 being responsible for NF-κB-dependent
induction of the inflammasome99,100. The inflammasome

BOX 1 STAT3.

Signal transducer and activator of transcription-3 (STAT3)
transduces signals from receptors and intracellular kinases in
order to regulate gene transcription194. Among others, STAT3 is
activated by the IL-6/GP-130/JAK pathway, with IL-6 being a main
promoter of cachexia (see review21,195 for details). Induction of
STAT3 in myofibers, in turn, leads to the expression of pro-
atrophic genes196,197. However, the investigation of this pathway
in clinical samples is challenging and requires further research195.
Therefore, despite strong experimental indications, the role of IL-
6-mediated induction of STAT3 activity remains to be proven in
cancer cachexia patients195. Unlike in skeletal muscles, in the
heart STAT3 preserves cardiac function and size195. Accordingly,
STAT3 deficiency was associated with declined cardiac contrac-
tility, microtubule instability, and disruption of UPP in cardio-
myocytes195,198–200. In the light of its different implications in
skeletal and heart muscle195, further studies are required to
determine the muscle-specific role of STAT3 in cancer cachexia.

Tumor necrosis factor
The first inflammatory cytokine to be linked to

cancer cachexia was the tumor necrosis factor (TNF),
also known as cachectin, due to its elevation in the
blood of cachectic cancer patients and its capacity to
induce muscle wasting in animal models43. TNF-α
activates NF-κB (detailed in Box 2), which leads to
muscle wasting and reduced muscle regeneration44,45.
Recently, the cachectic capacity of TNF-α was linked

to the upregulation of the zinc importer ZRT- and
IRT-like protein 14 (ZIP14) in the wasting muscles of
mice and patients with metastatic cancer46. The
increase in ZIP14 is responsible for zinc accumulation
in cachectic muscles, blocks muscle cell differentiation,
and causes myosin heavy chain loss, overall con-
tributing to muscle atrophy and weakness46. ZIP14
upregulation and altered zinc homeostasis are major
underlying features of cachexia related to pancreatic
cancer47. Of note, both skeletal and cardiac muscle
catabolism occur in pancreatic cancer mouse models48

and patients11. In the heart, ZIP14 is expressed at
relatively high levels49, and is increased after doxor-
ubicin treatment50, resulting in increased intracellular
zinc levels and induction of sarcoplasmic reticulum
stress51.
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complex, in turn, may initiate the activation of pro-
inflammatory cascades, leading to pyroptotic cell death101,
as in the case of acute myocardial infarction102.

Metabolic changes underlying skeletal and heart muscle
wasting induced by cancer
From the biochemical standpoint, cachexia is con-

sidered a metabolic disease linked to the negative energy
balance between calorie intake and dissipation, which
eventually promotes systemic wasting and body weight
loss. Such an imbalance is, on the one side, due to the loss
of appetite and reduced nutrient absorption, and, on the
other side, a result of the upregulation of energy-
consuming processes and metabolic dysfunction, which
collectively increase the energetic needs of the body
driving calorie wasting.
Insufficient calorie intake is mostly driven by anorexia, a

persistent and unphysiological loss of appetite. All
chronically ill patients develop various degrees of anor-
exia, due to depression and neuroinflammation. The so-
called sick state, driven by systemic inflammation, has also
been proposed as a conserved evolutionary mechanism to
limit nutrient availability during infections, in order to
restrain nutrient availability to pathogens. Consistently,

BOX 2 NF-kB.

NF-κB and TNF-α interact in a positive feedback loop201,202, while
TNF-α activation induces MAPKs, like p38, which further induce
atrophic genes such as Atrogin-120. NF-κB has been widely
studied in the context of skeletal muscle atrophy, yet little is
known about the function of NF-κB in heart muscle wasting.
However, activation of NF-κB leads to cardiomyocyte atrophy in
Duchenne muscular dystrophy, indicating that it potentially plays
a role also in heart muscle wasting203.

The transforming growth factor superfamily
Among the stimuli leading to ZIP14 upregulation is

also TGF-β47, one of the members of the TGF super-
family52. Many tumors show increased expression of
TGF superfamily members, which can be further
enhanced by chemotherapy52. For example, TGF-β,
which is implicated in the metabolic changes associated
with cancer cachexia51, is released from the bone as a
result of metastasis-induced bone destruction53.
Two other members of the TGF superfamily, Myos-

tatin and Activin A, negatively regulate muscle mass by
binding to the Activin II B Receptor (ACVR2B).
Myostatin, also known as Growth Differentiation Fac-
tor (GDF) 8, impairs satellite cell activation, myoblast
proliferation and differentiation54,55 as well as it pro-
motes muscle loss56. Consistently, muscle Myostatin
levels are increased in experimental cancer-induced
cachexia57. Interestingly, Myostatin is also a cardiokine
that is expressed and secreted by the myocardium
during end‐stage heart failure58. In accord with its
catabolic effects, Myostatin released from the failing
myocardium is responsible for the induction of skeletal
muscle atrophy in experimental models59.
Similarly, p38-mediated activation of ACVR2B by

Activin A induces catabolic effects in the muscle19

(detailed in Box 3). Of note, circulating Activin A
levels are an independent predictor of survival in
cancer patients60. Consistently, blockage of ACVR2B
abolishes the activation of UPP and the induction of
atrophy-specific ubiquitin ligases in muscles, stimu-
lates muscle stem cell growth, and reverses prior loss
of skeletal muscle and cancer-induced cardiac atro-
phy61, even in the presence of anti-cancer therapies62.
Intriguingly, doxorubicin itself increases the

expression of Myostatin in skeletal muscle63. Accord-
ingly, doxorubicin‐induced cachexia is mediated by the
activation of a common p53-p21-REDD1 pathway in
both skeletal and cardiac muscles and can be pre-
vented by ACVR2B ligand blocking. Notably, treat-
ment with soluble ACVR2B‐Fc decoy receptor has a
minor impact on the heart compared to skeletal
muscles64, suggesting that ACVR2B blockage is an

appealing strategy for reducing cancer-induced wast-
ing of skeletal and, to a lesser extent, cardiac muscle.
Consequently, several strategies targeting the ACVR2
pathway are under evaluation in clinical trials to treat
pathological muscle loss and weakness65–68.
Furthermore, GDF11, ligand of ACVR2B and highly

homologous to Myostatin, is involved in the promotion
of striated muscle catabolism69, since supraphysiological
levels of GDF11 induce cardiac and skeletal muscle
dysfunction and wasting70–72. Moreover, GDF11
increases plasma levels of Activin A and GDF15, another
distant member of the TGF-β superfamily73, which
further contribute to anorexia-cachexia syndrome.
GDF15, also known as MIC-1, has been implicated in

cancer cachexia74, heart failure-induced cachexia9, and
systemic energy metabolism75. GDF15 is both a myo-
kine75,76 and a cardiokine9,77. It is produced by muscle
cells and secreted into the bloodstream, acting on dis-
tant target organs through binding to the GDNF-family
receptor α-like (GFRAL) receptor78–80. Circulating
GDF15 levels correlate with weight loss81 and poor
survival82 in cancer patients and are increased early after
tumor injection in models of cancer cachexia, in which
GDF15 is implicated in MuRF-1 activation and atro-
phy83 as well as in inducing anorexia and emesis, further
worsening the negative energy balance84,85.
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cachexia is often referred to as CAC (cachexia and
anorexia) syndrome.
Recently, it has been demonstrated that cachectic

patients experience impaired intestinal function and
absorption, which is at least in part caused by the
alteration of the gut microbiome103,104.
Collectively, reduced calorie intake and nutrient uptake

drive a systemic energetic failure. Nevertheless, restoring
proper nutrient supply is not sufficient to recover body
mass homeostasis, but only delays wasting progression1.
Such evidence highlights that other mechanisms, like
increased calorie wasting, contribute to the metabolic
unbalance occurring in cachexia. It is indeed well known
that cachectic patients are characterized by an increase in
resting energy expenditure105, which means that, even at
rest, their metabolism is accelerated106.
Since the first attempt to understand cancer cachexia,

tumor growth has been pinpointed as the culprit for
nutrient subtraction and energy consumption107.
Accordingly, it has been shown that, during tumor
growth, nitrogen balance is managed by the tumor and
not by the muscle108. However, besides sequestration of
nutrients from the tumor, a systemic rewiring of the
metabolism takes place during cancer cachexia, indicating
that other organs are involved in the metabolic alterations
occurring in cancer patients. For instance, the liver has
been proposed to contribute to energy wasting in cancer
patients109, at least in part by the generation of phase 2
proteins linked to the systemic inflammatory state. Not
only the liver, but also fat tissue is involved in systemic
metabolic wasting. Indeed, systemic inflammation also
drives tissue browning, which results in systemic lipolysis
and thermogenesis110.
The tumor is a main producer of factors triggering

metabolic reprograming and wasting, including miRNAs,
PTHrP (parathyroid hormone-related protein)106,111,112,

known to cause hypercalcemia in cancer patients113, and
D-2-hydroxyglutarate (D2-HG), an oncometabolite that is
secreted by leukemia cells as a consequence of mutations
of the TCA (tricarboxylic acid/Krebs) cycle enzymes iso-
citrate dehydrogenase 1 and 2. These mutations occur in
some myeloid leukemia patients and result in cardiac
contractile dysfunction linked to mitochondrial dysfunc-
tion, caused by the increased secretion of D2-HG114.
Interestingly, comparing acute leukemia (AL) patients
with other cancer patients, it has been reported that AL is
linked to myocardial dysfunction115. Moreover, the rate of
AL patients who develop heart failure significantly
increases upon chemotherapy116,117. Consequently,
although leukemia patients do not commonly develop
cachexia118, the associated cardiac dysfunction may result
in an increased susceptibility of AL patients to the
development of the wasting syndrome.
Furthermore, tumor growth can directly affect systemic

circadian rhythms119, an alteration that has been function-
ally linked to the onset of insulin resistance. Accordingly,
cancer cell-induced alterations can eventually affect insulin
and glucose metabolism, which per se impact on both
cardiac120 and skeletal muscle function121. Thus, insulin
resistance and glucose insensitivity were associated with
increased weight loss in cancer patients122. For instance,
tumor growth negatively affects plasma insulin and glucose
levels in cancer-bearing mice123,124. As an example, leuke-
mia cells, of mouse models and patients, actively induce
insulin resistance by prompting the production of insulin-
like growth factor (IGF)-binding protein 1, in order to
exclusively exploit glucose availability123. Furthermore,
cancer cells induce changes of the metabolic profile of other
tissues and of the gut microbiome, ultimately conveying
insulin resistance and reduction of the anabolic factor IGF-
13,125. Moreover, decreased insulin levels have been func-
tionally linked to cardiac wasting, as administration of
insulin is able to attenuate cardiac atrophy, while reducing
glucose uptake in the tumor126, a strategy that might also be
important for skeletal muscle. Overall, these findings pro-
vide new opportunities for therapeutic interventions aimed
at restoring glucose supply in the muscles. Whether this
approach may enable to delay or recover cancer cachexia
remains to be demonstrated.
Several pieces of evidence recently pinpointed to an

altered role of lipid homeostasis in driving skeletal muscle
wasting. For instance, it has been shown that wasting
skeletal muscles switch to fatty acid oxidation (FAO) as
the prominent source of energy production127,128. More-
over, FAO has been functionally linked to the wasting
phenotype in cancer, and limiting FAO prevents skeletal
muscle wasting, either through pharmacological inhibi-
tors129 or by genetic inhibition of lipolysis130. Whether
FAO may be impaired during cardiac wasting has yet to
be clarified.

BOX 3 P38.

The p38 MAP kinase regulates transcription, chromatin remodel-
ing, cytoskeletal dynamics, and protein degradation204. p38 is also
required for muscle differentiation as it regulates MyoD activity
and Myogenin expression204–207. In tumor-bearing mice, the
inhibition of p38 activity facilitates protein ubiquitination through
upregulation of Atrogin-1 and, possibly, MuRF-1 expression206.
Furthermore, p38 mediates the activation of the receptor ACVR2B
after Activin A binding. This interaction results in the upregulation
of ubiquitin ligases Atrogin-1 and UBR2 (E3αII) and of the
autophagosome marker LC3II19. Although the role of p38 in
skeletal muscle is well-described, little is known about its
involvement in the cardiac muscle during cancer cachexia.
However, p38 inhibition leads to the induction of growth factor
expression in the adult myocardium208. Furthermore, an
increased activity of p38 has been observed in both animal
models and patients with heart failure, indicating a yet to be fully
discovered role of p38 in the malfunctioning heart209.
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In turn, excessive mitochondrial activity and inter-
mediate overload, caused by increased fatty acid meta-
bolism, may cause an increase in oxidative stress and
mitochondrial ROS, eventually leading to dysfunc-
tions131,132. Coherently, dysfunctions in mitochondrial
metabolism are common alterations occurring in wasting
skeletal muscles133. Similarly, mitochondrial DNA
(mtDNA) released upon stress in cardiac cells can act as a
DAMP, and hence as a ligand for TLR9, an endosomal
TLR isoform. Activation of TLR9 by mtDNA is respon-
sible for impaired induction of autophagy and the ensuing
accumulation of dysfunctional mitochondria and oxida-
tive stress after doxorubicin-induced cardiac injury87.
Moreover, in skeletal muscle, TLR9 has a key role in
coordinating with Beclin1 to activate AMPK under
energetic stress134. Nevertheless, the role of such an
mtDNA-TLR9 axis in cancer-induced cardiac and skeletal
muscle atrophy has yet to be evaluated.
Finally, the inflammatory state per se promotes several

metabolic alterations, eventually triggering wasting. For
instance, inflammatory states, like those occurring during
chronic cardiomyopathy or cancer, are known to halt iron
uptake by the gut and promote iron retention by mac-
rophages135. The resulting iron deficiency triggers anemia,
which might further impact on cardiac function and
skeletal muscle oxygenation136. Interestingly, it has been
demonstrated that, at least in the heart, iron-deficient
anemia might directly affect the functionality of cardiac
cells137. In line with this view, several clinical trials in
cardiopathic patients have shown that iron supple-
mentation restores cardiac function and muscle
strength138. Nevertheless, this approach cannot be directly
applied to cancer patients as cancer growth itself directly
depends on iron supply139. Moreover, it has been shown
that chemotherapy-induced cardiotoxicity partly depends
on excessive accumulation and altered compartmentali-
zation of iron in the heart140,141 leading to mitochondrial
iron overload and dysfunction.

The gut microbiota-muscle axis
The gut-associated lymphoid tissue is considered as the

largest immune organ of the body. Therefore, it is not
surprising that an association between systemic inflam-
mation and gut dysbiosis has been demonstrated in sev-
eral chronic diseases associated with cachexia, including
heart failure142. Consistently, a number of studies
demonstrated a link between dysbiosis and cardiovascular
diseases143–145 as well as cancer146,147. Accordingly, an
increase in intestinal permeability is frequently recognized
in cachexia-associated diseases and could facilitate the
diffusion of pro-inflammatory molecules across the gut
barrier, thus contributing to the systemic inflammatory
state148.

Mechanistically, besides stimulating the systemic
increase of pro-inflammatory cytokines, gut microbiota
could lead to muscle wasting by decreasing amino acid
bioavailability, by stimulating the TLR/NF-kB pathway
through the release of pathogen-associated molecular
patterns (PAMPs)149, and via the production of cachectic
metabolites104.
The hypothesis of a systemic signalosome, originating

from gut microbiota and targeting distant organs like
muscles, was supported by trials showing that modulation
of gut microbiota can change immune/inflammatory para-
meters in cancer patients undergoing esophageal surgery150.
In line with these findings, interventions on gut microbiota
can prolong survival by reducing cancer proliferation,
muscle wasting103, and fat loss151 in mouse models of
cancer cachexia. Similar interventions have been proven
effective in preventing cardiac atrophy and dysfunction in
preclinical models of anthracycline-induced cardiomyo-
pathy152. However, experimental proofs of the involvement
of gut microbiota in cardiac muscle wasting in cachectic
cancer patients are still lacking.

The impact of chemotherapy on skeletal and heart muscle
wasting
Besides chronic tumor-host interactions, acute drug

toxicity and long-term side effects of anti-cancer treat-
ments can significantly contribute to chronic muscle
wasting in cachexia153. Despite a rapid evolution of anti-
cancer treatment options, cytotoxic chemotherapy
remains the first line and preferred treatment for most
cancers. Unfortunately, the presence of cachexia reduces
tolerance and response to treatment, activating a futile
cycle that eventually reduces the quality of life and sur-
vival. In cancer patients, tumor growth might, on the one
side, impair the ability of the host to adapt to stress
imposed by chemotherapy and, on the other side, directly
affect muscle and systemic metabolism154. Moreover,
most of anti-cancer drugs are severely cardiotoxic155,
making patient management during cancer treatment and
follow-up even more difficult, while increasing the risk of
an exacerbation of cachexia.
Chemotherapy itself can contribute to the alteration of

the circulating milieu. On the one hand, chemotherapy
potentially limits the release of tumor-derived cytokines,
therefore relieving cachexia. On the other hand, host
tissues may be directly affected by drug toxicity which
frequently activates an inflammatory response, thus
exacerbating cachexia. For instance, chemotherapy treat-
ment has been shown to trigger GDF15 following endo-
thelial damage156. On the same line, the promotion of
systemic inflammation might indirectly exacerbate the
muscle catabolic action and the systemic dysmetabolism
induced by inflammatory molecules, such as TNFα, that is
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both released by the tumor157 and by the host158 upon
chemotherapy administration.
Moreover, protein hypercatabolism and impaired ana-

bolism are directly affected by both cytotoxic and targeted
chemotherapy, further contributing to muscle wasting159.
In particular, the direct effect of anti-neoplastic drugs on
myofibrillar protein degradation and myofiber atrophy has
been demonstrated160,161. The mechanisms underlying
skeletal muscle atrophy in response to chemotherapy are
the same as the ones involved in cancer-mediated wasting.
In detail, proteasome- and autophagy-mediated protein
degradation are induced by cisplatin162, cyclopho-
sphamide, doxorubicin, and fluorouracil mixture163, or
anthracyclines (e.g. doxorubicin) alone164.
In the cardiac muscle, the impact of chemotherapy on

the main catabolic and anabolic pathways appears even
more complex. A comprehensive study, comparing ske-
letal and cardiac muscle response to doxorubicin, has
been performed by two independent research teams. In
the first study64, albeit similar mass loss was observed in
skeletal and cardiac muscles upon doxorubicin exposure,
protein synthesis, content in ubiquitinated proteins, and
expression of atrogenes were less affected in the heart
than in the skeletal muscle. Similar results were shown by
the second study164, although reporting a controversial
activation of autophagy in the skeletal muscle. Albeit, a
consensus on the role of autophagy in the cardiac
response to anthracyclines has not been reached yet165,
major studies point to an impairment of the ALP as a
major determinant of chemotherapy-induced cardiac
atrophy and dysfunction87,166,167. Accordingly,
anthracycline-induced damage has been associated with
failing autophagic clearance of damaged organelles,
resulting from the stimulation of TLR9 via mtDNA
release by injured cardiomyocytes87.
In addition, anthracyclines may directly impact the

myofibrillar content in both skeletal and cardiac muscles,
further contributing to muscle loss (reviewed in Hiensch
et al.168). In addition to the previously mentioned role of
anthracyclines in regulating metabolism and TLR9 in the
skeletal muscle, doxorubicin-induced oxidative stress
leads to mitochondrial dysfunction169–171, and oxidative
modification of myofibrillar proteins, which increases
their susceptibility to degradation via calpain‐1 and cas-
pase‐3172,173. Moreover, doxorubicin activates all major
proteolytic systems, including calpains173,174, the UPP63,
and autophagy63,175 in skeletal muscles. Likewise, doxor-
ubicin leads to atrophy also in cardiomyocytes, via acti-
vation of MuRF-1176 by CDK2-dependent
phosphorylation of FoxO1 at Ser-249177. Of note,
FoxO1 and FoxO3 are potent regulators of muscle atro-
phy (detailed in Box 4).
Among the proteolytic processes that are induced by

doxorubicin in cardiac muscle cells is intracellular

activation of matrix metalloproteinase 2 (MMP2), which,
in turn, can result in the degradation of both sarcomeric
proteins and myofilaments, including titin178. Intriguingly,
MMP2 is also expressed by skeletal muscle cells, even if at
low levels compared to calpain-1179, and release of titin
from skeletal muscles has been associated with muscle
atrophy180. Nevertheless, the contribution of MMP2 to
proteolysis induced by doxorubicin in tumor-bearing
animals has yet to be evaluated.
Both loss and truncation of titin result in skeletal

muscle atrophy with reduced strength, severe sarcomere
disassembly, and lethality181,182. In contrast, impaired titin
integrity results in considerably different phenotypes in
the heart. Loss of titin leads to dilated cardiomyopathy
with systolic and diastolic dysfunction, while titin trun-
cation or deletion of the N2B segment, that impair sar-
comeric array, lead to cardiac atrophy with preserved
function182,183.
Another layer of regulation of titin is provided by the

RNA-binding protein known as Quaking, which is
downregulated in response to doxorubicin184. Quaking
inhibits doxorubicin-mediated cardiotoxicity via regulat-
ing cardiac circular RNAs, including titin-derived circular
RNA in cardiomyocytes. Mechanistically, Quaking dele-
tion in cardiomyocytes increases sensitivity to doxor-
ubicin, whereas its overexpression attenuates
doxorubicin-induced cardiac atrophy184. Nevertheless,
the role of titin degradation in the context of cancer
cachexia has yet to be elucidated.
Concomitantly with increased protein degradation,

doxorubicin is also responsible for impaired muscle pro-
tein synthesis185, resulting from the inhibition of the
mTOR pathway185. Of note, mTORC1 is a major reg-
ulator of insulin signaling, however, the disruption of the
insulin pathway by doxorubicin has only been detected in
skeletal muscles186, but not in the heart187.
As previously reported, the alteration of energy meta-

bolism, and in particular the occurrence of a systemic
energetic failure, is obtaining an increasing consensus as a
major cause of cachexia. Whether the energy crisis
induced by tumor growth arises from inflammation and
mitochondrial dysfunction or from excessive oxidative
stress is still debated. Most of anti-cancer drugs enhance
oxidative damage in both the skeletal and the cardiac
muscle. In the former, oxidative stress can be directly
linked to protein hypercatabolism and wasting160,161,
while in the latter its role has been downscaled, also
considering the limited success of anti-oxidants against
the cardiotoxicity of drugs like doxorubicin188.
Considering metabolic alterations in the skeletal and

cardiac muscles, chemotherapy has been shown to partly
recapitulate and/or exacerbate cancer-induced muscle
alterations154, while the cardiac metabolome has been
mainly studied with the aim of identifying biomarkers of
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cardiotoxicity189. Instead, only few studies have analyzed
tissue-specific alterations of the metabolome during can-
cer and chemotherapy-associated cachexia. Nevertheless,
some common metabolic alterations featured by skeletal
and cardiac muscles upon chemotherapy have been
identified, which include the increase of free amino acids,
likely indicating increased proteolysis, and the reduction
in β-oxidation154,189. On the contrary, the flux through
the TCA cycle is diminished in the skeletal while aug-
mented in the cardiac muscle, potentially as the only
mean to sustain the vital function of heart contraction.

Conclusion
Cancer cachexia represents an urgent medical need, due

to the great impact on patients’ quality of life and the high
penetrance of this condition. Patients with cancer
cachexia are often too weak to tolerate standard doses of
chemo- and radiotherapy, that may be eventually inter-
rupted, resulting in poor prognosis and increased mor-
tality190. Moreover, patients suffering from wasting of
diaphragm and/or cardiac muscles often die prematurely
because of respiratory and/or cardiac failure191. Finally,
the cancer itself as well as major anti-cancer treatments
have a long-lasting, detrimental effect on myocardial

function192. It has been shown that cancer survivors have
an increased risk of developing cardiac complications,
which may manifest even years after cancer clearance
and/or completion of oncological treatments192, empha-
sizing the importance to increase our understanding of
the link between cancer and cardiac myopathies. The
research for molecular drivers of this tremendous and
mostly untreatable complication of cancer has been
neglected for a long time, as cachexia has been originally
linked to reduced food intake. More recently, research on
cachexia sparked a novel interest as it is emerging as
specifically driven by defined molecular alterations, hence
it can be modeled and targeted independently from tumor
growth.
While the field of cachexia mainly developed as inter-

twined with the modeling of skeletal muscle atrophy,
cardiac wasting is gaining interest as a major cause of
death191. Hence, the definition of the mechanism of car-
diac wasting holds great potential for the management of
cachexia.
The list of inter- and intracellular signaling pathways

and molecules presented here is far from being exhaus-
tive, which reflects the rapid development of the field and
the complexity of the molecular regulation of cachexia but
provides a framework to address the potential analogies
between cardiac and muscular wasting. Taken together,
inter- and intracellular signaling pathways stand as a
central mechanism controlling the autophagy-lysosomal
pathway, the ubiquitin-proteasome pathway as well as
immunological and metabolic changes during cancer, and
integrating the complex phenomenon of cancer
cachexia193. Further investigations are needed to identify
details and differences of cancer-induced cachexia in the
skeletal and heart muscle. Consequently, striving for
further investigation of the molecular background and the
interplay between cancer, metabolism, and cardiac
cachexia is essential to improve treatment of cancer
patients.
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BOX 4 FoxO.

The forkhead box transcription factors (FoxO) are important for
muscle differentiation, metabolism, and atrophy210. FoxO1 is key
for myoblast differentiation and is, like FoxO3, central for the
regulation of muscular atrophy210. In addition, FoxO transcription
factors act as sensors of metabolic changes. For example, FoxO1
interacts with the promoter of pyruvate dehydrogenase kinase 4
and induces its expression in skeletal muscles after energy
deprivation211. As a consequence, FoxO1 enables the main-
tenance of blood glucose levels by inhibiting the pyruvate
dehydrogenase complex and the glycolytic flux211,212. In a
different metabolic context, insulin (as well as IGF1) suppression
blunts the activity of PI3K and Akt, which results in the activation
of FoxO and the subsequent induction of atrogenes expression,
e.g. Atrogin-1 and MuRF-1, in skeletal muscle213,214. In the heart,
FoxO3 and FoxO1 KO result in myocardial hypertrophy due to
reduced atrogenes expression and aberrant activation of
Calcineurin phosphatase215. In detail, Calcineurin dephosphor-
ylates the transcription factor NFAT (nuclear factor of active
T cells), allowing its nuclear translocation and induction of pro-
trophic target genes (e.g. α-skeletal actin and β-myosin heavy
chain). Conversely, the FoxO target gene Atrogin-1 ubiquitinates
and degrades Calcineurin, which further attenuates hypertro-
phy216. Interestingly, in cardiomyocytes, Atrogin-1 acts as a
positive feedback regulator of FoxO activity217. On the contrary,
FoxO-induced inhibition of Calcineurin also blunts its inhibitory
function on Akt, leading to an accumulation of phosphorylated
(active) Akt, which further can induce hypertrophy216. Albeit,
FoxO members (in particular FoxO1 and 3) are primarily regarded
as inducers of atrophy, their role in cancer progression as well as
cancer cachexia still remains to be elucidated.
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