Skip to main content
. 2021 Jan 8;11:34. doi: 10.1038/s41598-020-79336-5

Table 2.

Performances of different 3D networks on the PRM dataset, the same 3D-CNN on different input datasets, and different 2D networks on the PRM dataset.

Accuracy Precision Sensitivity F1 Specificity AUC score
Different 3D networks with PRM dataset
3D-CNN—Naive model 89.3 82.6 88.3 85.1 93.6 0.937
3D-CNN—DenseNet121 86.9 78.1 85.8 81.2 92.3 0.904
3D-CNN—VGG16 77.4 69.8 58.5 57.4 84.0 0.827
3D-CNN—Resnet50 87.2 79.8 85.8 82.4 92.2 0.906
3D-CNN—InceptionV3 83.9 76.0 72.7 72.8 88.5 0.861
3D-CNN with different input datasets
IN 85.1 80.6 71.8 74.8 88.2 0.900
EX 86.5 75.5 86.9 80.3 93.7 0.907
ΔVairf 86.6 80.0 80.4 79.9 90.1 0.897
J 85.2 76.4 83.3 79.4 91.1 0.895
ADI 83.0 74.1 78.0 75.2 88.8 0.862
SRI 84.9 76.8 80.4 77.7 90.2 0.886
Concatenate of IN and EX CT images 87.2 76.1 95.1 84.0 97.2 0.923
Different 2D networks with PRM dataset
2D-CNN—Naive model 84.8 78.6 71.0 74.6 87.3 0.861
Pretrained—DenseNet121 86.7 77.8 85.4 81.4 92.0 0.899
Pretrained—VGG16 87.5 74.1 97.6 84.2 98.5 0.938
Pretrained—Resnet50 88.3 84.6 80.5 82.5 90.1 0.901
Pretrained—InceptionV3 88.3 80.0 87.8 83.7 93.3 0.923