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Assessing ZNF154 methylation 
in patient plasma as a multicancer 
marker in liquid biopsies 
from colon, liver, ovarian 
and pancreatic cancer patients
Brendan F. Miller, Hanna M. Petrykowska & Laura Elnitski*

One epigenetic hallmark of many cancer types is differential DNA methylation occurring at multiple 
loci compared to normal tissue. Detection and assessment of the methylation state at a specific locus 
could be an effective cancer diagnostic. We assessed the effectiveness of hypermethylation at the CpG 
island of ZNF154, a previously reported multi-cancer specific signature for use in a blood-based cancer 
detection assay. To predict its effectiveness, we compared methylation levels of 3698 primary tumors 
encompassing 11 solid cancers, 724 controls, 2711 peripheral blood cell samples, and 350 noncancer 
disease tissues from publicly available methylation array datasets. We performed a single-molecule 
high-resolution DNA melt analysis on 71 plasma samples from cancer patients and 20 noncancer 
individuals to assess ZNF154 methylation as a candidate diagnostic metric in liquid biopsy and 
compared results to KRAS mutation frequency in the case of pancreatic carcinoma. We documented 
ZNF154 hypermethylation in early stage tumors, which did not increase in most noncancer disease or 
with respect to age or sex in peripheral blood cells, suggesting it is a promising target in liquid biopsy. 
ZNF154 cfDNA methylation discriminated cases from healthy donor plasma samples in minimal 
plasma volumes and outperformed KRAS mutation frequency in pancreatic cancer.

Many cancer cases go undetected until patients develop symptoms, at which time the disease has often progressed 
to an advanced stage with poor treatment outcomes. For example, over half of patients with pancreatic cancer are 
diagnosed only after their disease has metastasized to sites distant from the original tumor, at which point the 
5-year survival rate is only 3%1. A molecular screening test capable of detecting cancer could allow patients to be 
diagnosed even in the absence of signs and symptoms, which could lead to earlier treatment and thus improved 
survival rates. Liquid biopsies, which detect circulating tumor cells or DNA (ctDNA) within a patient’s blood, 
hold great promise as the basis for such molecular screening tests: they are minimally invasive, convenient, and 
could potentially detect many different types of cancer at once. In addition, liquid biopsies can be performed 
when tissue biopsies are not feasible—because of the position of a tumor within the body, for example—and 
they may better capture the scope of tumor heterogeneity than do tissue biopsies2. Before a liquid biopsy-based 
screening test is developed, however, suitable biomarkers must be developed. Here we test the suitability of 
one such candidate biomarker, DNA methylation at the ZNF154 locus, for this purpose; we initially discovered 
methylation near the transcriptional start site of this this gene in a search for a multicancer marker3,4, and it has 
subsequently been implicated as a tumor suppressor5.

Historically, developing a ctDNA biomarker suitable for screening purposes has proven challenging. ctDNA-
based liquid biopsies are already being used today as companion tests. For example, tests that detect EGFR muta-
tions in ctDNA have been approved to guide therapy for non-small cell lung cancer6. Blood-based screening tests 
must pass a more rigorous hurdle, however, as they have to be able to detect the very low amounts of ctDNA 
present in blood samples at all stages of cancer, preferably including the very earliest stages, and be sufficiently 
sensitive and specific for the target disease7. Fortunately, increasingly sensitive technology is capable of detecting 
ever lower frequencies of ctDNA8, presenting new opportunities to increase the sensitivity of molecular screening 
tests if promising biomarkers are identified.
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Recently, methylation signatures have been shown to correctly classify cancer versus normal tissue samples 
with high accuracy in many types of cancer9,10. Thus far in our analyses, ZNF154 shows promise as a pan-cancer 
biomarker suitable for blood-based screening. We have shown that ZNF154, in particular, is methylated in 15 of 
16 solid tumor types represented in the Cancer Genome Atlas (TCGA), whereas methylation levels in control 
samples are consistently low4. Moreover, our in silico analyses suggest that ZNF154 methylation can be used to 
detect tumor signal in plasma samples as well, with a predicted AUC of up to 0.96 when ctDNA accounts for as 
little as 1% of cell-free DNA (cfDNA), for colon, lung, breast, stomach, and endometrial tumors3.

The next logical step is to see whether ZNF154 methylation can be used to detect tumors of various types 
in actual patient plasma samples. In addition to verifying that ZNF154 methylation is elevated in the plasma of 
patients with cancer, it is important to establish that methylation of this gene is not correlated with demographic 
factors such as age or sex, as previous studies have found for other loci11–13. It will also be important to confirm 
that ZNF154 methylation is not elevated in the plasma of patients with non-cancer diseases. Thus, in this proof-
of-concept study, we set out to determine whether ZNF154 methylation is a suitable biomarker for a multi-cancer, 
plasma-based screening test. We show that ZNF154 methylation is elevated in early-stage tissue samples from 10 
different cancer types; is not meaningfully associated with age, sex, or non-cancer conditions; results in AUCs 
of up to 0.87 when used to identify plasma samples from cases versus healthy donors for multiple cancer types 
in the context of a liquid biopsy; and outperforms KRAS mutations as a plasma biomarker for pancreatic cancer. 
Notably, our ZNF154 methylation detection method achieved 100% sensitivity and 80% specificity when used 
on plasma from patients with early-stage pancreatic adenocarcinoma, encouraging future studies to validate its 
effectiveness in early stage tumors.

Methods
Samples and datasets.  ZNF154 hypermethylation and mutation frequency in tumor samples.  We ana-
lyzed ZNF154 methylation at position cg21790626 in Illumina 450 K methylation array data derived from 3389 
solid tumor samples from 10 solid tumor types and 27 K methylation array data from 302 ovarian carcinoma 
solid tumor samples, provided by The Cancer Genome Atlas (Table 1). We also analyzed mutation data for the 
same samples using information from cBioPortal14. Only TCGA tumor types with both methylation array data 
and mutation data available were further studied.

ZNF154 hypermethylation in early‑stage tumor samples.  We analyzed Illumina 450 K methylation array data 
from TCGA again, this time in stage I tumor samples from 9 different tumor types (BLCA, BRCA, HNSC, KIRC, 
KIRP, LIHC, LUAD, PAAD, STAD) and clinical stage I serous subtype epithelial ovarian carcinoma samples. In 
this analysis, we included pathological stage I tumors from the tumor types listed in Table 1, with the exception 
of prostate adenocarcinoma (PRAD) and ovarian carcinoma (OV) as there were no pathological stage I cases 
available. For early stage serous epithelial ovarian carcinoma, we included clinical stage I serous subtype ovarian 
carcinoma samples profiled by Illumina 450 K methylation arrays from Bartlett et al.15 (Serous epithelial ovarian 
carcinoma [Serous_EOC] Table 1, GEO accession GSE72021). Serous_EOC controls were fallopian tube tissue 
samples obtained from Bartlett et al.16 (GEO accession GSE74845).

ZNF154 hypermethylation in tissue samples from individuals without cancer.  We investigated associations 
between ZNF154 methylation, age, and sex using TCGA Illumina 450 K human methylation array data from 
2711 peripheral blood cell samples collected from patients without cancer (GEO accession GSE55763, described 
in17). We also analyzed ZNF154 methylation in tissue samples collected from patients with disease conditions 
other than cancer, using Illumina 450 K human methylation array data from NCBI’s Gene Expression Omnibus 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) and other sources (Table 2).

Table 1.   Illumina 450 K and 27 K methylation array data for tumor versus control tissue samples. a 27 K 
methylation array data from TCGA. b 450 K methylation array data from TCGA. c 450 K methylation array data 
for serous subtype pathological stage I tumors (GSE72021)15 and fallopian tube controls (GSE74845)16.

Cancer type Description Controls Tumors Pathological stage I tumors

BLCAb Bladder urothelial carcinoma 21 130 2

BRCA​b Breast invasive carcinoma 82 664 50

HNSCb Head and neck squamous cell carcinoma 45 510 23

KIRCb Kidney renal clear cell carcinoma 160 263 128

KIRPb Kidney renal papillary cell carcinoma 45 267 70

LIHCb Liver hepatocellular carcinoma 50 373 49

LUADb Lung adenocarcinoma 32 185 3

PAADb Pancreatic adenocarcinoma 10 150 21

PRADb Prostate adenocarcinoma 49 498 NA

STADb Stomach adenocarcinoma 2 349 2

OVa Ovarian carcinoma 12 302 NA

Serous_EOCc Serous epithelial ovarian carcinoma 216 7 7

https://www.ncbi.nlm.nih.gov/geo/
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Counts of methylated ZNF154 fragments in plasma samples from individuals with and without cancer assessed 
by DNA melt curve analysis.  We analyzed ZNF154 methylation in plasma samples purchased from Fox Chase 
Cancer Center, from 4 patients with colon cancer, 4 with liver cancer, 17 with pancreatic cancer, and 38 with 
ovarian carcinoma, as well as from 20 healthy donors without cancer. These samples encompassed approxi-
mately 1.5–4 mL (mLs) of plasma each and were obtained from donors with cancers at stage III and IV. An 
additional 8 plasma samples from patients with early-stage pancreatic cancer (1 stage I sample and 7 stage II 
samples) were also collected. Half of the available plasma for the pancreatic cancer samples and healthy donors 
was processed for use with DREAMing analysis26, whereas the remaining half was processed for KRAS mutation 
screening via ddPCR (see subsequent sections). Additional sample information can be found in Supplementary 
Table S1. All samples were obtained as commercial items and were covered under the Fox Chase Cancer Center 
Biorepository IRB review information.

Data analyses.  Illumina 450 K methylation array data analysis.  Beta values were beta-mixture quantile 
(BMIQ) normalized27 and probes overlapping known SNPs were removed. Beta values were extracted for each 
sample from the previously identified ZNF154 probe of interest (Illumina Infinium  HumanMethylation450 
(450 K) BeadChip array probe cg21790626).

Analysis of cancer gene mutation frequency.  We obtained count data for cancer gene mutations from Genome 
Data Analysis Center (GDAC) Firehose Legacy files downloaded from cBioPortal (https://​www.​cbiop​ortal.​
org/)14. For each cancer type, cancer-associated genes were defined as those that were mutated in > 10% of 
tumors based on cBioPortal “Mutated Genes” table and also present in the OncoKB database28. In the case of 
KIRP, no gene was mutated in > 10% of tumors so the top mutated gene was chosen instead. Thus, each cancer 
type assessed had its own set of cancer-associated genes. For a given cancer type, the proportion of tumors that 
contained a non-silent single nucleotide polymorphism mutation within one of the genes of the corresponding 
cancer type gene set was determined.

Analysis of cancer hypermethylation frequency.  The frequency of tumors that were hypermethylated for a given 
cancer type was defined as the proportion of tumors whose beta value at cg21790626 was greater than a beta 
value cutoff at this site. The cutoff was defined as the beta value greater than 95% of the associated normal sam-
ples.

cfDNA extraction.  We performed cfDNA extraction and subsequent bisulfite conversion following pre-
viously published methods29 with the following modifications: the NeoGeneStar cfDNA Purification Kit with 
Pretreatment (NeoGeneStar, Somerset, NJ, USA) was used to extract cfDNA, which was bound to NeoGeneStar 
beads. Instead of eluting as per the standard protocol, we added 20 μL AE buffer to the 1.5 mL Eppendorf tube 
(Eppendorf, Hauppauge, NY, USA) containing the beads with bound cfDNA after the wash steps. From here, 
we then either proceeded with the Zymo Lightning Conversion kit (Zymo Research, Irvine, CA, USA) by add-
ing 130 μL of conversion reagent to the 20 µL AE and bead solution (see below), or split the elution to perform 
ddPCR KRAS mutation screening on one half of the elution and bisulfite conversion in the remaining half via 
the Zymo Lightning Conversion Kit with spin columns following standard procedures.

ddPCR in plasma samples.  For the cfDNA elutions (see previous section) that were split, the elution half 
intended for ddPCR was first cleaned using Zymo DNA Clean and Concentrator-5 (Zymo Research, Irvine, 
CA, USA) using standard procedures and eluted twice in 10 μL of Zymo DNA Elution buffer. The elutions were 

Table 2.   Illumina 450 K methylation array data for tissue samples collected from donors without cancer.

Data source and/or publication Description Sample count

GSE4292118

Colon mucosa: normal controls 12

Colon mucosa: Crohn’s disease 5

Colon muscosa: ulcerative colitis 5

GSE8121119
Colon biopsy: normal 3

Colon biopsy: ulcerative colitis 8

GSE8556620
Airway epithelial cells: asthma 74

Airway epithelial cells: control 41

Dayeh et al.21
Pancreatic islets: type 2 diabetes 15

Pancreatic islets: non-diabetic 34

GSE8762122
Endometriosis (cultured primary cells) 4

Control (cultured primary endometrial stromal cells) 5

GSE4954223
Non-alcoholic fatty liver disease, mild (frozen liver biopsies) 35

Non-alcoholic fatty liver disease, advanced (frozen liver biopsies) 24

GSE5087424,25 Kidney fibrosis 85

https://www.cbioportal.org/
https://www.cbioportal.org/
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then combined and DNA concentration was measured using the Invitrogen Qubit 3.0 Fluorometer and stored 
at − 80 °C.

To calculate the genomic copies of mutated KRAS present in cfDNA extracted from plasma samples, we used 
the BioRad ddPCR KRAS G12/G13 Screening Kit (which targets 7 different KRAS mutations G12A, G12C, G12D, 
G12R, G12S, G12V, G13D) (BioRad product number: 1863506) (BioRad, Hercules, CA, USA), using standard 
instructions with a C1000 Touch Thermo Cycler and the QX200 Droplet Generator and Reader System and an 
annealing temperature of 60 °C. 5 μL of a given sample elution was used as input for each reaction and at least 
two reactions for each sample were performed until the entire sample was used. Droplets were read on a QX200 
Droplet Reader and data was analyzed using QuantaSoft software.

Calculation of KRAS MtAF.  The normalized KRAS mutant allele frequency for a given sample was calcu-
lated by first dividing the counts of mutant KRAS droplets detected by the total amplified droplets (wild-type 
plus mutant KRAS) measured for all ddPCR reactions for that sample. Then, these mutant allele fractions were 
adjusted by dividing by the estimated volume of plasma assayed in ddPCR for the sample. This was determined 
by multiplying the total starting volume of plasma for a given sample by the fraction of the elution that was used 
as input for the ddPCR assay. Sample plasma volumes assessed in ddPCR and MtAFs can be viewed in Supple-
mentary Table S2.

DREAMing analysis of ZNF154 methylation.  DREAMing is a highly sensitive DNA melt-based 
approach for detection of utra-rare methylated DNA fragments in patient samples such as blood plasma, as 
previously described26,30,31. In brief, this is achieved by assuming a bisulfite-converted sample containing a mix 
of epialleles (an epiallele being a sequence of DNA with a particular DNA methylation pattern), in which the 
methylated epialleles of interest are diluted in a background of the unmethylated epialleles. The sample is par-
titioned across many microtiter wells such that each well contains unmethylated background epialleles but the 
methylated epialleles will be distributed into only some of the wells based on a Poissonian distribution. PCR 
followed by high resolution melt analysis is performed and each well will exhibit one of two melt curves. Wells 
containing only unmethylated DNA will exhibit a single melt peak at a characteristic temperature, Tmu. On the 
other hand, wells that contain a methylated epiallele will exhibit 2 melt peaks: 1 from the unmethylated epialleles 
and 1 (higher-temperature) melt peak that is derived from the amplicons of the methylated epiallele. We can 
then determine the relative methylation density of each detected epiallele by observing the melt temperature of 
their respective secondary peaks, which will be proportional to the methylation density (number of methylated 
CpGs) of their respective template epiallele. As the frequency of the secondary melt peaks follow a Poissonian 
distribution, the methylation of each epiallele can be determined and quantitated at single copy sensitivity.

We bisulfite converted cfDNA from plasma samples by adding 130 μL Zymo Lightning Conversion Reagent 
to the 20 μL AE, cfDNA and NeoGeneStar bead solution in a 1.5 mL Eppendorf tube (see above, cfDNA extrac-
tion). For elutions that were split, volume was brought up to 20 μL with water before addition of the 130 μL 
Zymo Lightning Conversion Reagent. Samples were then incubated at 98 °C for 8 min followed by incubation 
at 56 °C for 1 h in the dark. 400 μL Zymo M-Binding was added to the samples, and the solution was gently 
mixed by pipetting, followed by incubation at room temperature for 5 min. Beads were gently spun down and 
tubes were placed onto a magnetic rack until the liquid cleared. Liquid was aspirated off, followed by addition 
of 400 μL Zymo Wash buffer, and subsequent steps followed the standard protocol for the Zymo Lightning Kit 
with Beads. Two elutions were performed, with beads incubated at 60 °C for 5 min with 50 μL Zymo Elution 
buffer each time, and each elution was stored separately at − 20 °C. cfDNA concentration measurements were 
preformed using TaqMan qPCR with primers specific to the 100 bp bisulfite-converted sequence of beta-actin 
and DREAMing reactions as previously described26,30.

Melt peaks of the products amplified in the DREAMing reactions were largely bimodal and represented either 
unmethylated or methylated DNA fragments with methylation densities equivalent to 1 or more methylated 
CpG sites. Counts of methylated melt peaks (i.e. proxies for detected fragments) were normalized by dividing 
by the equivalent volume of plasma loaded into the DREAMing assay for a given sample. The volume of plasma 
used for a sample assayed in DREAMing was determined from the cfDNA concentration by taking the fraction 
of bisulfite converted beta-actin targets loaded into all DREAMing wells for a given sample and multiplying the 
starting plasma volume by that amount. Please see Supplementary Table S1 for the equivalent volume of plasma 
and normalized counts of methylated ZNF154 cfDNA per mL of plasma for each sample.

DREAMing sensitivity.  To test the sensitivity of the DREAMing assay targeting methylated cfDNA frag-
ments of ZNF154 we generated spike-ins of single molecules of fully methylated bisulfite converted mimetic 
synthetic ZNF154 targets (Integrated DNA Technologies, Coralville, IA, USA) in a background of unmethylated 
bisulfite converted male genomic DNA (Promega, Madison, WI, USA). DREAMing primers: F: 5′-GGG​CGA​
TAT​TGG​TAG​GGA​TT-3′; R: 5′-AAA​TAT​ATT​CAC​CGA​ATC​AAA​AAT​AAC​AAA​A-3′; 175 bp fully methylated 
mimetic: 5′-GGG​CGA​TAT​TGG​TAG​GGA​TTC​GGG​GAT​AGC​GGT​TTT​TAT​TTT​AGG​TTT​GAC​GTG​GGT​
TTT​TTA​GGG​CGG​CGT​CGT​TAA​GGT​TTA​GAC​GTT​TTC​GTG​TAG​GAG​GGA​CGA​CGA​TTT​TTT​TTA​CGT​
TTT​CGT​GGT​TTT​AAT​TCG​GCG​TTT​TGT​TAT​TTT​TGA​TTC​GGT​GAA​TAT​ATT​T-3′. DREAMing reaction 
master mixes were designed as described above such that either 3 or 5 copies of fully methylated bisulfite con-
verted mimetic synthetic ZNF154 targets were expected to be diluted across 12 wells, with each well expected to 
have 200 copies of unmethylated bisulfite converted male genomic DNA. Each reaction was repeated a total of 5 
times and the observed peaks of fully methylated bisulfite converted mimetic synthetic ZNF154 were recorded. 
The mean absolute error for the measurement of detecting 3 or 5 copies of fully methylated bisulfite converted 
mimetic synthetic ZNF154 target was calculated.
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Statistical analyses.  Receiver operating characteristic curves, area under the curve (AUC) calculations, 
optimal cutoffs, and associated sensitivity and specificities were computed using python version 3.7.5 and the 
package sklearn 0.21.0.

Results
ZNF154 hypermethylation and mutation frequency in tumor samples.  On the basis of our pre-
vious results3,4, we hypothesized that ZNF154 hypermethylation would occur more frequently in individual 
cancer types than the most common cancer mutations. To test this hypothesis, we compared the frequency of 
methylation at probe cg21790626 (the CpG site we had previously determined to be the best ZNF154 methyla-
tion marker3,4) with the frequency of 52 mutations in cancer-associated genes for 11 solid tumor types from 
TCGA (N = 3691 for all tumor samples, N = 510 for all healthy tissue samples). Here, cancer-associated genes 
were defined as those present in the OncoKB database that were expected to be mutated in > 10% of samples for 
a given tumor type, based on cBioPortal mutation frequencies. For each tumor type, we established a ZNF154 
beta value hypermethylation cutoff that would exclude 95% of control samples. These beta value cutoffs values 
ranged from 0.016 to 0.523 with a median value of 0.161; using these cutoffs, we found that ZNF154 was hyper-
methylated in 50.6–98.6% of tumor samples, depending on the tumor type (for example, 52% PRAD and 92.4% 
OV). For comparison, we used TP53, which was identified as a top recurrently mutated gene in all tumor types, 
except for KIRC and KIRP, in which only 3.0% and 1.9% of tumors contained TP53 mutations. For the other 9 
cancer types, TP53 mutations—located at any position in the gene—were present in 9.8% (for PRAD) to 73.2% 
(for OV) of samples, depending on the tumor type. Thus, ZNF154 hypermethylation at cg21790626 was present 
in approximately 1.5–26.6 times the number of tumor samples as TP53 mutations, depending on the tumor type 
(Table 3).

Next, for each tumor type, we again utilized the ZNF154 beta value hypermethylation cutoff sufficient to 
exclude 95% of control samples and compared the percentage of tumors with ZNF154 hypermethylation with 
the percentage of tumors that harbored any cancer-associated gene mutation in the given cancer-type gene set 
(Fig. 1). The list of cancer-associated genes for each cancer type considered can be viewed in Table 3. ZNF154 
hypermethylation was less frequent than the combinations of cancer-associated gene mutations in only two 

Table 3.   Frequency of tumors mutated or hypermethylated in cancer-associated driver gene sets for each 
cancer type. a Percentages indicate the fraction of tumors from a given cancer type with a non-silent single 
nucleotide polymorphism in the given gene of the cancer-associated gene set. b A tumor is considered 
mutated if it is mutated in any of the genes in the corresponding cancer-associated gene set. c Beta value 
cutoff for a given cancer type at methylation array probe cg21790626 that is greater than 95% of the controls. 
d Hypermethylation for each cancer type based on a beta value cutoff above 95% of the controls for that given 
cancer type.

Cancer type

Recurrently mutated genes selected in 
cancer-associated driver gene set for given 
cancer typea Percent tumors mutated (%)b Beta value hypermethylation cutoffc Percent tumors hypermethylated (%)d

OV TP53 (73.2%) 73.2 0.313 92.4

BRCA​ PI3K3CA (31.6%), TP53 (24.8%), CDH1 (7.1%) 54.2 0.190 74.4

PAAD KRAS (90.7%), TP53 (61.3%), SMAD4 (16.7%), 
CDKN2A (10.7%) 95.3 0.070 90.7

LUAD

TP53 (41.1%), KRAS (31.9%), LRP1B (25.4%), 
PCLO (18.4%), STK11 (8.6%), KEAP1 (15.1%), 
RELN (14.1%), FAT4 (15.7%), EGFR (9.2%), 
PTPRD (13.5%), CPS1 (10.3%), GRIN2A 
(10.8%), NF1 (8.1%), EPHA5 (9.2%), FAT1 
(10.8%), MKI67 (8.6%), SETBP1 (8.1%), 
NOTCH4 (10.3%)

85.4 0.071 75.7

LIHC TP53 (24.1%), CTNNB1 (25.2%), ALB (4.3%) 46.9 0.058 90.1

KIRP MET (7.5%) 7.5 0.025 50.6

PRAD TP53 (9.8%), SPOP (11.0%) 20.5 0.523 52.0

HNSC
TP53 (59.8%), FAT1 (15.9%), CDKN2A 
(17.5%), PIK3CA (18.0%), NOTCH1 (14.5%), 
LRP1B (17.1%), KMT2D (12.7%), PCLO 
(15.3%), NSD1 (9.2%), CASP8 (9.2%)

85.3 0.181 98.6

STAD

TP53 (39.3%), LRP1B (24.6%), ARID1A 
(12.0%), FAT4 (18.6%), PCLO (16.0%), KMT2D 
(10.0%), PIK3CA (16.9%), ACVR2A (1.4%), 
LRRK2 (13.5%), KMT2C (8.6%), CIC (8.9%), 
UBR5 (4.3%), PREX2 (11.7%), APC (7.7%), 
ERBB4 (11.5%), TRRAP (10.6%), RNF213 
(9.7%), STK19 (0.3%), KMT2B (4.6%), RPL22 
(1.7%), PTPRT (8.9%), PRKDC (7.4%), ZFHX3 
(7.2%), RELN (9.7%), EP400 (7.7%)

82.5 0.161 96.6

BLCA TP53 (45.4%), ARID1A (16.9%), KDM6A 
(15.4%), PIK3CA (20.0%) 63.8 0.316 94.6

KIRC VHL (36.1%), PBRM1 (19.8%), SETD2 (9.5%) 52.9 0.016 75.3
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cancer types. For example, in pancreatic adenocarcinoma samples we found 86.7% hypermethylated versus 
95.3% mutated in the common set of PAAD cancer genes, (where 90.7% of tumors harbored a KRAS mutation 
and the remaining 4.6% had a mutation in another PAAD cancer gene: TP53, SMAD4, or CDKN2A). ZNF154 
hypermethylation was also less frequent than cancer-associated gene mutations in lung adenocarcinoma (75.7% 
hypermethylated versus 85.4% mutated in the common set of LUAD cancer genes), where most samples har-
bored either KRAS or TP53 mutations (31.9% and 41.1% respectively). For all other tumor types investigated 
(9 out of 11), however, ZNF154 hypermethylation was more common than cancer-associated gene mutations. 
The difference in recurrent hypermethylation versus mutations across tumors was particularly extreme in the 
case of kidney renal papillary carcinoma, in which 135 out of 267 tumors were hypermethylated but only 20 
were mutated in a common set of cancer-associated genes. Thus, we concluded that ZNF154 hypermethylation 
can be at least as recurrent as the most common cancer-associated mutations, making it a biomarker worthy of 
further investigation.

Frequency of ZNF154 hypermethylation in early‑stage tumor samples.  The earlier that a bio-
marker can be detected in the course of tumorigenesis, the more helpful it will be for screening purposes. Thus, 
we next analyzed ZNF154 methylation at probe cg21790626 in stage I samples, as available from 10 solid tumor 
types, as well as healthy control tissues, using Illumina 450  K methylation array data from either TCGA or 
serous epithelial ovarian carcinoma (Bartlett et al.15 [Serous_EOC] in Table 1, GEO accession GSE72021), and 
normal fallopian tube controls (Bartlett et al.16 GEO accession GSE74845). For all but 2 tumor types investigated, 
ZNF154 was significantly hypermethylated with respect to control samples (p < 0.001; Fig. 2). The two exceptions 
were lung and stomach adenocarcinoma. For both of these tumor types, few cases were available for analysis (3 
for the former, 2 for the latter); the data for stomach adenocarcinoma suggest that if more cases had been avail-
able for analysis as seen for bladder cancer, significant hypermethylation might have been detected at ZNF154.

ZNF154 methylation in tissue samples from individuals without cancer.  To be a viable screen-
ing biomarker, ZNF154 methylation levels in cfDNA should not be associated with demographic factors such 
as age or sex. Most cfDNA in blood comes from circulating white blood cells32; thus, we tested the hypothesis 
that ZNF154 methylation levels are not meaningfully elevated with age or sex by analyzing methylation at probe 
cg21790626 in TCGA Illumina 450 K methylation microarray data from 2711 circulating white blood cell sam-
ples (i.e., whole peripheral blood cell samples) from individuals without cancer. First, we stratified the samples 
by sex and partitioned them into bins based on the age of the peripheral blood sample donor. While we observed 
a positive correlation between the methylation level (beta value) at the probe of interest and patient age, no 
peripheral blood samples surpassed a beta value of 0.2 (female median beta value = 0.038; male median beta 
value = 0.042). Beta values below 0.2 are typically interpreted as a locus being lowly or unmethylated33, indicat-
ing that this genomic locus remains largely unmethylated even in older patients of either sex (Fig. 3). Therefore, 
assessing the methylation at ZNF154 in a blood-based assay should not be expected to be compromised by non-
cancer conditions like patient age or sex.

Figure 1.   Percentage of tumors that displayed ZNF154 hypermethylation at the probe cg21790626 versus 
percentage of tumors that displayed mutations in a set of cancer-associated genes for the given cancer type. 
The percent tumors with a mutation in a cancer gene set on the x-axis are the fraction of tumors that have a 
mutation in any of the cancer genes of the associated cancer gene set. Methylation data were obtained from 
The Cancer Genome Atlas and mutation data were obtained from cBioPortal. *A cancer-associated gene was 
included in a set if it was listed in the OncoKB database and expected to be recurrently mutated in > 10% 
of samples for a given tumor type, based on cBioPortal mutation frequencies. Lists of cancer associated 
genes for each cancer type are located in Table 3. BLCA bladder urothelial carcinoma (n = 130), BRCA​ breast 
invasive carcinoma (n = 664), HNSC head and neck squamous cell carcinoma (n = 510), KIRC kidney renal 
clear cell carcinoma (n = 263), KIRP kidney renal papillary cell carcinoma (n = 267), LIHC liver hepatocellular 
carcinoma (n = 373), LUAD lung adenocarcinoma (n = 185), OV ovarian carcinoma (n = 302), PAAD pancreatic 
adenocarcinoma (n = 150), PRAD prostate adenocarcinoma (n = 498), STAD stomach adenocarcinoma (n = 349).
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To be a viable screening biomarker, ZNF154 methylation levels should not be elevated in non-cancer health 
conditions; that is, methylation should be specific for cancer conditions and not elevated in other diseases, to 
avoid false positives. To test the hypothesis that ZNF154 hypermethylation is limited to tumors, we analyzed 
ZNF154 methylation at probe cg21790626 in array data from the following seven datasets (Table 2): (1) colon 
mucosa taken from patients with Crohn’s disease, ulcerative colitis, or healthy control individuals; (2) colon tissue 
taken from patients with ulcerative colitis or healthy controls; (3) airway epithelial cells in individuals with and 
without asthma; (4) pancreatic islet cells in individuals with and without type 2 diabetes; (5) endometrial primary 
cells in individuals with and without endometriosis; (6) liver biopsies in individuals with mild and advanced non-
alcoholic fatty liver disease; and (7) kidney biopsies in individuals with kidney fibrosis (Fig. 4). For each noncan-
cer set of disease samples with associated control samples, we assessed the difference in beta value distributions 
and observed significant differences only in ulcerative colitis with respect to colon mucosa (p < 0.05)—where 
disease samples showed lower methylation, asthma for airway epithelial cells (p < 0.001)—showing higher than 
normal methylation, and type 2 diabetes for pancreatic islet cells (p < 0.05)—also showing lower methylation than 
normals. Only in the case of asthma were the methylation levels at ZNF154 significantly higher than that of the 
normal control epithelial cells. For reference, we compared the ZNF154 methylation levels seen in control and 
tumor tissues from our preceeding TCGA analyses. Those beta value thresholds were required to exceed 95% 
of the TCGA normal controls to call tumors hypermethylated. There, a beta value threshold of 0.071 captured 
95% of LUAD normal controls, and here the maximum beta value observed for the asthma samples was 0.068 
(i.e., less than the TCGA normal control samples). Additionally, the methylation cutoff calculated for PAAD 
normal controls was 0.070 and the maximum beta value observed here for the type 2 diabetes samples was 0.034.

With respect to the normal colon mucosa and the colon tissue samples, the majority of beta values were 
above 0.2. This is consistent with our previous observation that the methylation level at ZNF154 appears to be 
elevated in the gastrointestinal tract4. This suggests that DNA released from cells in the colon could contribute 
to a background methylation level present in the cfDNA pool at the ZNF154 locus. Interestingly, with respect 

Figure 2.   ZNF154 methylation in stage I solid tumors. The probe cg21790626 was measured in 10 types of 
stage I solid tumor (red) or healthy tissue samples (blue), in Illumina 450 K methylation microarray data 
provided by TCGA or Bartlett et al. (Serous_EOC15, n = 7, and fallopian tube controls16, n = 216). Significant 
hypermethylation was found for all tumor types except for LUAD and STAD. “ns” not significant; *p < 0.05; 
**p < 0.01; ***p < 0.001; p values derived from Wilcoxon rank sum two-sided tests. Data plotted as standard box 
plot and whiskers. BLCA bladder urothelial carcinoma, BRCA​ breast invasive carcinoma, HNSC head and neck 
squamous cell carcinoma, KIRC kidney renal clear cell carcinoma, KIRP kidney renal papillary cell carcinoma, 
LIHC liver hepatocellular carcinoma, LUAD lung adenocarcinoma, PAAD pancreatic adenocarcinoma, STAD 
stomach adenocarcinoma, Serous_EOC serous subtype epithelial ovarian carcinoma.

Figure 3.   ZNF154 methylation in 2711 peripheral blood cell samples collected from individuals without cancer, 
stratified by sex and age. Methylation was measured at probe cg21790626 in Illumina 450 K methylation array 
data provided by Lehne et al. (GEO accession GSE55763, described in17). Pearson correlation coefficients for 
beta value versus donor age for all samples (ρ), samples from only female donors (ρF), or samples from only 
male donors (ρM), are indicated below the figure panels. Data plotted as standard box plot and whiskers.



8

Vol:.(1234567890)

Scientific Reports |          (2021) 11:221  | https://doi.org/10.1038/s41598-020-80345-7

www.nature.com/scientificreports/

to the 450 K methylation array datasets shown here, we observed a decrease in methylation in samples from 
patients with either Crohn’s disease or ulcerative colitis in two independent studies (GSE42921 and GSE81211). 
Therefore, noncancer disease in the gastrointenstinal tract may actually decrease the methylation level at ZNF154 
and prevent detection of false positives. Nonetheless, only 18 of the 350 samples analyzed (5.14%) displayed a 
beta value ≥ 0.2. Thus, we concluded that, with rare exceptions, ZNF154 is not hypermethylated (i.e., compared 
to normal) in non-cancer conditions we examined.

Methylated ZNF154 cfDNA levels in plasma samples from individuals with and without can-
cer.  Having demonstrated that ZNF154 methylation has the potential to be a promising multicancer marker 
in tissue samples, we wanted to investigate its use in plasma samples. We opted for an orthogonal approach 
toward detection of methylated cfDNA. This involved several components: (1) adaptation of a methylation on 
beads (MOB) extraction protocol for cfDNA29 to increase the efficiency of cfDNA recovery from plasma samples 
by a median of approximately 2.5-fold over other methods, and (2) adoption of a PCR-based high resolution 
DNA melt technique called DREAMing26 to identify rare, heterogeneously methylated DNA fragments in clini-
cal samples. The method of DREAMing depends on sequence differences between methylated and unmethyl-
ated DNA molecules after bisulfite conversion and subsequent targeted amplification (where unmethylated “C”s 
become “T”s), which melt at different temperatures due to differences in base pairing energies. Multiple methyl-
ated CpGs in the amplicon additively increase the melt temperature peak. Primers to amplify our target ZNF154 
locus were designed for the DREAMing assay, such that they were preferentially biased toward amplification 
of methylated DNA (see “Methods”). The primers targeted a region that encompassed 14 internal CpG sites 
including the site assessed at cg21790626 by methylation arrays (Supplementary Figure S1). The sensitivity of 
the ZNF154 DREAMing assay was tested by spike-in of single molecules of fully methylated bisulfite-converted 
mimetic synthetic ZNF154 target into a background of bisulfite-converted gDNA from human male DNA (See 
“Methods”; Supplementary Figure S2).

We queried the methylation status of plasma derived ZNF154 cfDNA fragments from a new cohort of patient 
plasma samples. These encompassed pancreatic (early-stage I, n = 1; early-stage II, n = 7; late-stage III–IV, n = 17), 
serous ovarian (late-stage III–IV, n = 38), liver (late-stage IV, n = 4), and colon cancer (late-stage IV, n = 4), as 
well as 20 healthy control donors (Supplementary Table S1). The median age of the control healthy donors was 
significantly higher than the ovarian and pancreatic cancer patient samples (controls median age = 71.5, ovar-
ian cancer patient median age = 59.0, p < 0.001 Wilcoxon two-sided rank sum; pancreas cancer patient median 
age = 60.0, p < 0.01 Wilcoxon two-sided rank sum, Supplementary Figure S3). The older age of the controls 
may result in a higher background level of methylation at ZNF154 in these samples. While this may effectively 
require using a more stringent threshold, this would also increase the confidence in any discriminating signal 
observed in the cancer patient cases as the methylation level would also need to be higher than any methylation 
potentially due to age.

We took advantage of the single molecule sensitivity (quasi-quantitative nature) of the DREAMing assay, 
which allows for direct measurement of individual methylated fragment counts of cfDNA of interest, and tested 
the hypothesis that the concentration of methylated ZNF154 fragments (i.e., fragments where we detected at 
least 1 methylated CpG site per DNA molecule) per mL of plasma could be helpful in classifying plasma samples 
from cases versus controls. Each sample set of cancer patient plasma had a significantly higher concentration of 
methylated ZNF154 cfDNA fragments per mL than the normal controls (late-stage pancreatic cancer median 

Figure 4.   ZNF154 methylation in 365 tissue and peripheral blood cell samples from individuals with and 
without various non-cancer conditions. Methylation was measured at probe cg21790626 in Illumina 450 K 
methylation array data from each dataset. NAFLD non-alcoholic fatty liver disease. Airway epithelial cells, 
pancreatic islet cells and ulcerative colitis showed significant differences between cases and controls (*p < 0.05, 
***p < 0.001; ns not significant, two-sided Wilcoxon rank sum), with 332 samples showing beta values < 0.20.
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normalized fragments = 19.47/mL plasma; ovarian cancer median normalized fragments = 27.30/mL plasma; 
normal controls median normalized fragments = 11.38/mL plasma) (Fig. 5A). Early-stage pancreatic cancer 
samples also had a significantly higher concentration of methylated ZNF154 cfDNA fragments per mL of plasma 
than the normal controls (median normalized fragments = 18.6/mL plasma) suggesting that methylated ZNF154 
cfDNA may be an effective marker for detection of earlier stage cancers in liquid biopsies. With respect to the 
liver and colon cancer sample sets, each had higher median normalized fragments of methylated ZNF154 cfDNA 
(14.56/mL and 64.49/mL, respectively) than the controls, although this was not significant, likely a result of the 
small size of these cohorts (Supplementary Figure S4).

We next derived optimal cutoffs based on the metric of normalized fragments of methylated ZNF154 cfDNA 
per mL of plasma and used these to classify cases from controls for each sample set. We found optimal sensi-
tivity/specificity ratios using receiver operating characteristic curve (ROC) plots, where we counted the total 
number of normalized methylated fragments for samples and controls. Optimal cutoffs were defined as those 
which maximized the positive difference between true positive rate and false positive rate (TPR–FPR). Overall 
classification performance of using the metric of normalized methylated fragments was measured as the area 
under the curve (AUC) of the ROC. We achieved AUC of 0.85 for late-stage pancreas (optimal sensitivity/speci-
ficity = 94.1%/80.0%), 0.87 for early-stage pancreas (optimal sensitivity/specificity = 100%/80%), and 0.85 for 
ovarian cancer (optimal sensitivity/specificity = 86.8%/80.0%) (Fig. 5B; Table 4). Although the sample size for 
the liver and colon cancer cohorts was small, we achieved optimal sensitivity/specificity ratios of 50.0%/90.0% 
and 75.0%/100.0%, respectively, suggesting ZNF154 methylation may also be useful as a cancer marker in liquid 

Figure 5.   Measurement of methylated ZNF154 fragments in plasma samples for cancer patient cases versus 
controls. A fragment is considered methylated if at least 1 of the 14 CpG sites measured per DREAMing 
amplicon is methylated. (A) Distribution of normalized methylated ZNF154 cfDNA fragments per mL of 
plasma from patients with late-stage (stage III–IV, n = 17, red) pancreatic, early-stage (stage I–II, n = 8, red) 
pancreatic, or late-stage ovarian (stage III–IV, n = 38, red) cancer, or normal controls (n = 20, blue). Data 
are plotted using standard box and whisker plots. (B) Receiver operating characteristic curves showing the 
classification performance of the normalized fraction of methylated ZNF154 cfDNA fragments per mL of 
plasma for the late-stage pancreatic, early-stage pancreatic, or ovarian cancer samples versus normal controls. 
Red circles indicate the optimal TPR and FPR combination based on the maximum positive difference between 
the TPR and FPR. ***p < 0.001; **p < 0.01, Wilcoxon rank sum two-sided test. AUC​ area under the curve, FPR 
false-positive rate, TPR true positive rate.

Table 4.   Optimal cutoffs of normalized methylated ZNF154 cfDNA fragments per mL plasma and the 
resulting classification AUCs, and optimal true positive rate (TPR) and false positive rate (FPR) for each 
plasma sample set.

Sample set Cutoff (normalized fragments/mL plasma) AUC​ TPR FPR Sample size (tumor/normal)

Late stage pancreatic cancer 14.69 0.85 0.94 0.20 17/20

Early stage pancreatic cancer 15.96 0.87 1.00 0.20 8/20

Ovarian cancer 13.81 0.85 0.87 0.20 38/20

Liver cancer 21.89 0.48 0.50 0.10 4/20

Colon cancer 29.83 0.75 0.75 0.00 4/20



10

Vol:.(1234567890)

Scientific Reports |          (2021) 11:221  | https://doi.org/10.1038/s41598-020-80345-7

www.nature.com/scientificreports/

biopsies from patients with these cancer types as well, although more extensive sample cohorts will be needed. 
Interestingly, the four normal controls with the highest normalized fragments per mL, and thus reducing the 
overall specificity based on the derived cutoffs, were also all above 80 years old, suggesting that age or conditions 
associated with age should be further studied for any effect on concentration of methylated ZNF154 cfDNA in 
the circulation (Supplementary Table S1).

Performance of ZNF154 hypermethylation and KRAS mutation in classifying plasma samples 
from individuals with and without pancreatic cancer.  Above, we found that ZNF154 hypermethyla-
tion in Illumina methylation array data (90.7%) was as frequent as KRAS mutations (90.7%) for the PAAD sam-
ples (Table 3), making pancreatic cancer an interesting case study for comparing the utility of the two markers 
for classifying samples from blood. Finding an effective marker for detecting pancreatic cancer is also of special 
interest because this type of cancer is currently typically detected at a late stage, when outcomes are very poor. 
For these reasons, we decided to conduct a head-to-head comparison of ZNF154 hypermethylation versus KRAS 
mutation for classifying plasma samples taken from individuals with and without pancreatic cancer.

We experimentally analyzed KRAS mutations using ddPCR on the same 17 plasma samples from patients 
with late-stage pancreatic cancer, 8 patients with early-stage pancreatic cancer, and 20 individuals without cancer, 
using the same plasma input volumes used for the DREAMing analysis. We observed mutant KRAS fragments in 
9 of 17 (52.9%) late-stage pancreatic cancer samples vs. 7 of 20 (35%) control samples after collectively targeting 
7 different KRAS alterations in the cfDNA (Fig. 6; Supplementary Table S2). The late-stage pancreatic cancer 
cases had higher median KRAS mutant allele frequencies (MtAF) when normalized for mLs of plasma input 
(median MtAF = 7.07e−4; Supplementary Table S2 with respect to the controls (control median MtAF = 0.0; 
control maximum MtAF = 1.44e−3) and this difference was statistically significant (p = 0.036, Wilcoxon one-
sided rank sum test). However, the sample set of 8 early-stage (I and II) pancreatic cancer plasma samples had 
no detectable KRAS mutant cfDNA. Using the KRAS MtAF cutoff to distinguish between late-stage case versus 
healthy donor plasma samples resulted in an AUC of 0.67 (optimal MtAF cutoff of 7.07e−4 yielded a sensitivity/
specificity of 53%/95%). These findings, in comparison to our previous measurements of ZNF154 cfDNA meth-
ylation (i.e., AUC = 0.85 at late stage), indicate that ZNF154 has potential to outperform even the most common 
cancer-associated mutations when used to classify plasma samples from individuals with and without cancer. 
Moreover, ZNF154 may be particularly helpful in detecting early-stage disease (AUC for early stage was 0.87), 
as shown for this small sample size of pancreatic cancers.

Discussion
In this proof-of-concept study, we set out to determine whether ZNF154 methylation appears to be a suitable 
biomarker for a multi-cancer, plasma-based screen. We found that ZNF154 hypermethylation occurs in tissue 
samples from patients with early-stage tumors in 10 different cancer types; is not meaningfully associated with 
age or sex, or elevated in non-cancer conditions; and displays promising performance when used to classify 
plasma samples as tumor versus healthy donor controls, with AUCs of 0.85 for late-stage ovarian cancer, and 
0.85 or 0.87 for late- or early-stage pancreatic cancer.

One key finding from our study was the importance of how methylation is quantified in plasma samples. We 
found that if ZNF154 methylation was quantified using the average methylation levels in each sample, tumor 
signals in plasma often went undetected because of background signals in control samples. The ZNF154 locus 

Figure 6.   Classification performance of the KRAS mutant allele fraction (MtAF) in the cfDNA of 17 late-
stage or 8 early-stage pancreatic cancer patient plasma sample cases and 20 healthy donors without cancer. 
(A) Distribution of KRAS MtAFs in cases and controls. Counts are plotted as a standard box and whiskers 
plot. Pancreas Late has 2 outliers not shown (see Supplementary Table S2 for full list of values). (B) Receiver 
operating characteristic curve for the classification of late-stage pancreatic cases and control donors using the 
sample KRAS MtAF. The red circle indicates the optimal MtAF cutoff based on the maximum positive difference 
between the TPR and FPR (optimal cutoff yielding 53% sensitivity/95% specificity). *p < 0.05; ns not significant, 
Wilcoxon rank sum one-sided test. AUC​ area under the curve, FPR false-positive rate, TPR true positive rate.
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can be methylated in tissues of the gastrointestinal tract (see Figs. 2, 4), and it is possible that cfDNA derived 
from these tissues could contribute to this background methylation signal observed in healthy donor cfDNA. 
It will be important to establish a larger set of control samples to fully characterize the extent of background 
methylation and refine our classification cutoffs. In this study, the single-molecule sensitivity of the DREAMing 
DNA melting curve analysis used herein allowed us to use all methylated fragments of ZNF154 cfDNA (hetero-
geneously methylated as well as fully methylated), which increased the amount of signal detectable and likely 
increased our ability to detect signal above background. For example, we found that we could only detect plasma 
samples for patients with early-stage pancreatic cancer reliably when we considered counts of all methylated 
cfDNA fragments. This finding contradicts the expected efficacy of a binary test like methylation-specific PCR.

The ability of ZNF154 methylation to outperform KRAS mutations for the detection pancreatic cancer in 
patient plasma may reflect technical differences between the assays used and biological differences between DNA 
methylation and mutations. ddPCR and DREAMing are both are highly sensitive techniques and can detect 
rare DNA molecules robustly26,31,34. However, the targets of each assay are disparate and therefore difficult to 
directly compare. For ddPCR we utilized TaqMan probes to target 7 different KRAS point mutations. In contrast, 
for the DREAMing assay, we designed PCR primers to preferentially amplify methylated DNA of interest and 
subsequently performed a variation of DNA high resolution melt (HRM)35 to quantify the number of epialleles 
(i.e., DNA fragments from the same genomic location but with different methylation patterns) with different 
methylation densities (e.g., 1–14 internal CpGs methylated). It is important to note that this differs from other 
methylation detection assays like MSP, which only detect heavily or fully methylated epialleles36. By including 
ZNF154 DNA fragments with any methylation detected, albeit heterogeneous or complete methylation, (i.e., 
any number of the 14 internal CpGs methylated), we were able to increase the number of methylated epialleles 
targetable for cancer detection and thus increased the ability to distinguish pancreatic cancer patients from 
healthy controls. Additionally, one of the shortfalls of the KRAS mutations was that these were present in 7/20 
of the control samples, which lowered assay specificity. While methylated ZNF154 fragments were also detected 
in the healthy controls, these levels were sufficiently low, enabling us to maintain high specificity, which is also 
consistent with the observation that ZNF154 hypermethylation is an early event in cancers, including pancreatic 
cancer, and is also absent in noncancer conditions, as we show in this study.

ZNF154’s performance at identifying plasma samples from patients with cancer is competitive with that of 
other proposed biomarkers. For example, in this study, ZNF154 methylation outperformed KRAS mutations in 
pancreatic cancer, when counts of any methylated ZNF154 fragment were used to classify cancer versus control 
plasma samples. ZNF154 methylation also should be compared with methylation of a recently proposed pan-
cancer biomarker, Gasdermin E (GSDME)37. When GSDME was used to identify various tumor types based on 
methylation in tissue samples, its reported AUCs are 0.84–0.97; these values are similar to what we have reported 
previously for ZNF154 in various tumor types (AUCS ≥ 0.95)3. However, GSDME methylation has not yet been 
tested in plasma samples, as ZNF154 has in this study.

The preliminary results presented in this article suggest that ZNF154 methylation also appears to be com-
petitive with the multi-marker CancerSEEK test, a blood test that analyzes levels of 8 proteins and the presence 
of mutations at 1933 distinct genomic positions in cfDNA38. CancerSEEK’s reported median sensitivity across 
8 cancer types was 70%, ranging from 98% in ovarian cancer to 33% in breast cancer. Its median sensitivity for 
stage I cancers was 43% overall, ranging from 20% for esophageal cancer to 100% for liver cancer. Finally, its 
overall specificity was ≥ 99%. Analysis of methylation at ZNF154 is considerably simpler, cheaper, and faster 
than CancerSEEK, and achieves similar detection sensitivity with respect to colorectal and pancreatic cancer 
detection by only using a single genomic locus. Some of the proteins used by CancerSEEK are also elevated in 
people with inflammatory disease39, so the test’s false-positive rate is likely to be elevated in real-world popula-
tions, whereas ZNF154 does not appear to be methylated in non-cancer conditions. While methylation array 
data derived from tissues of the gastrointestinal tract indicated elevated methylation at ZNF154, patients with 
Crohn’s disease or ulcerative colitis actually had reduced methylation levels relative to healthy controls. One 
important difference between ZNF154 methylation and CancerSEEK is the ability of CancerSEEK to localize 
cancer to a small number of anatomic sites in a median of 83% of patients, which ZNF154 methylation cannot 
do. Neverthless, given recent reports of elevated mutation rates stemming from clonal hematopeosis, the false 
positive rates of mutation screening will need to be carefully evaluated40.

In conclusion, our research indicates that ZNF154 methylation testing in plasma may be a method capable 
of detecting multiple cancer types. This report provides proof of concept that ZNF154 is a biomarker worthy 
of further study in the context of liquid biopsy-based lab testing or screening for cancer. However, although 
ZNF154′s performance in this study was satisfactory, it could also potentially be followed by additional markers 
that can help pinpoint the organ of origin for ctDNA, to aid diagnosis. Nonetheless, the ability of a single locus 
to achieve similar sensitivities to alternative methods that rely on hundreds or thousands of different markers 
suggests that the ZNF154 assay presented here may be more applicable to the clinic. The assay itself is simpler, 
requires less patient material (we were able to detect discriminating signal with less than 2 mL of patient plasma), 
easier to implement (requires a qPCR machine and easily acquired reagents), and less expensive than current 
ultra-deep sequencing approaches.

In future studies, we plan to investigate ZNF154 methylation in larger validation sets of plasma samples from 
patients with cancer of different types and stages, as well as larger control sample cohorts. In a previous study, 
ZNF154 methylation was shown to be unhelpful for identifying thyroid tumors4, so it will be important to clarify 
which types of cancer the marker will miss. Eventually, it may be worthwhile to investigate ZNF154 in a clinical 
trial, potentially as a marker used to screen patients at high risk of developing cancer41, providing that technical 
sensitivity can be achieved.
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Data availability
Data from publicly accessible collections are listed in Table 2. The analysis code to reproduce the figures present 
here can be found at: https://​github.​com/​bmill​3r/​ZNF154_​Manus​cript.
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