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Abstract

Annual gains in BMC and areal bone mineral density (aBMD) in children vary with age, pubertal 

status, height-velocity, and lean body mass accrual (LBM velocity). Evaluating bone accrual in 

children with bone health-threatening conditions requires consideration of these determinants. The 

objective of this study was to develop prediction equations for calculating BMC/aBMD velocity 

SD scores (velocity-Z) and to evaluate bone accrual in youth with health conditions. Bone and 

body compositions via DXA were obtained for up to six annual intervals in healthy youth (n = 

2014) enrolled in the Bone Mineral Density in Childhood Study (BMDCS) . Longitudinal 

statistical methods were used to develop sex- and pubertal-status-specific reference equations for 

calculating velocity-Z for total body less head-BMC and lumbar spine (LS), total hip (TotHip), 
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femoral neck, and 1/3-radius aBMD. Equations accounted for (1) height velocity, (2) height 

velocity and weight velocity, or (3) height velocity and LBM velocity. These equations were then 

applied to observational, single-center, 12-month longitudinal data from youth with cystic fibrosis 

(CF; n = 65), acute lymphoblastic leukemia (ALL) survivors (n = 45), or Crohn disease (CD) 

initiating infliximab (n = 72). Associations between BMC/aBMD-Z change (conventional 

pediatric bone health monitoring method) and BMC/aBMD velocity-Z were assessed. The BMC/

aBMD velocity-Z for CF, ALL, and CD was compared with BMDCS. Annual changes in the 

BMC/aBMD-Z and the BMC/aBMD velocity-Z were strongly correlated, but not equivalent; LS 

aBMD-Z = 1 equated with LS aBMD velocity-Z = −3. In CF, BMC/aBMD velocity-Z was normal. 

In posttherapy ALL, BMC/aBMD velocity-Z was increased, particularly at TotHip (1.01 [−.047; 

1.7], p < 0.0001). In CD, BMC/aBMD velocity-Z was increased at all skeletal sites. LBM-velocity 

adjustment attenuated these increases (eg, TotHip aBMD velocity-Z: 1.13 [0.004; 2.34] versus 

1.52 [0.3; 2.85], p < 0.0001). Methods for quantifying the BMC/aBMD velocity that account for 

maturation and body composition changes provide a framework for evaluating childhood bone 

accretion and may provide insight into mechanisms contributing to altered accrual in chronic 

childhood conditions.
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Introduction

Numerous childhood diseases and their therapies threaten bone mineral accretion during 

peak bone mass development. Children with such conditions often have poor growth, 

delayed maturation, and altered body composition: All of which impact bone mineral 

accrual. DXA measures of BMC and areal bone mineral density (aBMD) are a critical 

component of bone health assessment and monitoring for such children.(1)

SD scores (Z) based upon pediatric BMC and aBMD reference data are necessary for 

interpreting a child’s measures,(2) and methods are available to account for the effects of 

short stature on DXA outcomes.(3) Presently, monitoring bone health is limited to examining 

the change in bone-Z obtained at discrete points over time. An important clinical question is 

whether BMC or aBMD changes over a given interval are appropriate for the amount of 

growth and maturation achieved. Currently, no such method exists. This issue is particularly 

relevant in children with chronic illness who may fail to accrue bone mineral at a pace 

similar to same-age peers caused, for example, by growth faltering, or for whom 

pharmacological treatments or improved nutritional status result in catch-up growth and 

rapid bone accrual.

Annual changes in BMC and aBMD (hereafter referred to as BMC/aBMD velocity) differ 

by age, sex, pubertal stage, and population ancestry.(4) BMC/aBMD velocity typically 

accelerates during puberty in sex-specific ways,(5,6) and is driven by linear growth and body 

composition changes. The functional muscle–bone unit model posits that bone mineral 
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deposition is responsive to muscle forces on bone.(7–10) The amount of lean tissue is widely 

used as a surrogate for this mechanism of bone accretion. Thus, assessment of BMC/aBMD 

velocity should consider sex, age, pubertal status, and gains in height and lean mass.(3,11–14)

Our goal was to develop a method for evaluating BMC/aBMD changes over time accounting 

for important determinants of BMC/aBMD accrual (age, pubertal status, linear growth, body 

composition). We then applied these equations to three pediatric disease models for which 

DXA data from previously published studies were available for secondary analyses: cystic 

fibrosis (CF), posttreatment acute lymphoblastic leukemia (ALL), and Crohn disease (CD).

Subjects and Methods

BMDCS Study participants for the development of prediction equations

The Bone Mineral Density in Childhood Study (BMDCS), a multicenter longitudinal study 

to develop pediatric BMC and aBMD reference ranges,(15) included 2014 study participants 

(1022 female) from different ethnic groups in the United States. Participants were classified 

as African-American or non-African-American based on parental report. Participants were 

evaluated annually for up to 6 years (seven measurements maximum).

Detailed inclusion/exclusion criteria and study procedures for BMDCS have been published 

previously.(15) Briefly, healthy typically developing individuals aged 5 to 19 years were 

recruited. Subjects were retained in the study regardless of pubertal timing, height-

percentile, weight-percentile, or BMI-percentile.

We developed aBMD and BMC velocity-Z calculation equations using data from subjects 

aged ≤22 years with ≥2 annual measurements. Participants diagnosed with significant 

chronic illness during the study were excluded from analyses.

Pediatric disease participants

We applied these aBMD and BMC velocity-Z calculation equations to data available for 

secondary analyses from three prospective studies conducted at the Children’s Hospital of 

Philadelphia: (1) CF patients participating in a nutritional intervention study,(16) (2) ALL 

patients within 2 years of posttherapy completion,(17) and (3) CD patients participating in an 

observational study following infliximab therapy initiation.(18) Details of the three cohorts 

including their DXA data have previously been published,(16–18) and are summarized in 

Supplemental Table 1.

Anthropometry

Weight was measured on a digital scale with subjects wearing light clothing. Standing height 

was measured in triplicate using a wall-mounted stadiometer and recorded to the nearest 0.1 

cm. Z-scores for height (height Z), weight (weight Z), and BMI (BMI Z) were calculated for 

subjects 5.0 to 19.9 years old using Centers for Disease Control and Prevention 2000 growth 

charts.(19) Ages of individuals aged > 19.9 years were converted to 19.9 to permit 

calculation of height Z, weight Z, and BMI Z. for individuals aged ≥20 years were 

calculated using age 19.9 years. Weight velocity and height velocity were calculated as the 

difference in weight or height, divided by the difference in age between consecutive annual 
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study visits. Height velocity <0 cm/year was assumed to reflect a measurement error after 

reaching adult height and was recoded to 0. Height velocity Z was calculated using 

published reference data.(20)

Pubertal assessment

For the BMDCS and ALL study participants, sexual maturation was determined by physical 

examination. The pubertal stage of breast (females) was assessed according to physical 

maturation Tanner criteria,(21) and testicular volume (males) was measured by orchidometer.
(22) For CF and CD cohorts, pubertal status was assessed by validated self-assessment 

questionnaire.(23,24)

DXA

Whole-body, anteroposterior lumbar spine, nondominant forearm, and left proximal femur 

DXA scans were acquired with Hologic (Bedford, MA, USA) bone densitometers 

(QDR4500A, QDR4500W, and Delphi A models) and were analyzed using Hologic 

software versions 12.3 or 12.6 for quantification of total body less head BMC (TBLH 

BMC), lumbar spine aBMD (Spine aBMD), total hip aBMD (TotHip aBMD), femoral neck 

aBMD (HipNeck aBMD), 1/3-radius aBMD (Radius aBMD), whole-body lean body mass 

excluding BMC (LBM), and whole-body fat mass (FM). Coefficients of variation were 

<1.4% for TBLH BMC, <1% Spine aBMD, and <1.7% for aBMD of all other sites.(15)

DXA results were corrected for clinical center differences, longitudinal drift, and QDR4500 

FM underestimation.(25) Age and height Z-adjusted BMC/aBMD-Zs were calculated as 

previously described.(2,3) The LBM index-Z (LBMI-Z) was calculated for LBMI [LBM 

(kg)/height (m)2] using 1999 to 2004 NHANES data.(26) Annualized BMC/aBMD, LBM, 

and FM velocities were calculated as the difference in outcome divided by the difference in 

age between consecutive visits. Mid-age was calculated as the midpoint between consecutive 

visits. BMC/aBMD velocities were included if the interval between consecutive visits was 

≥11 months and ≤13 months. Velocity outliers (>99% or <1%) were identified by graphical 

inspection of BMC/aBMD velocity versus age, reviewed for potential measurement or data 

entry error, and excluded from the data used to develop Fig. 1A, B if the pattern of BMC/

aBMD raw data over consecutive years in a participant revealed juxtaposition of positive and 

negative extremes (n = 7). Because we could not confirm error, these data were not excluded 

from prediction equation development.

Statistical analyses

Statistical analyses were conducted with Stata 15 (StataCorp, College Station, TX, USA). 

Generalized estimating equations were used to develop sex-specific, longitudinal models of 

annualized velocities from the BMDCS cohort for each DXA outcome: TBLH BMC, Spine 

aBMD, TotHip aBMD, HipNeck aBMD, and Radius aBMD. Initial models included age, 

age2, height, weight or LBM and FM, and BMC/aBMD at the beginning of the interval. The 

last was done as expected changes were conditional on baseline measurement.(18,27) 

African-American or non-African-American status, pubertal stage at interval end, height 

velocity, and weight velocity, or LBM velocity and FM velocity were also included. After 

including these covariates, BMC/aBMD velocity did not vary by African-American ancestry 

Kelly et al. Page 4

J Bone Miner Res. Author manuscript; available in PMC 2021 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or FM and FM velocity. Therefore, these were not included in subsequent models. The 

effects of pubertal status identified in initial models were used to develop puberty-specific 

models. The smallest quasi-likelihood,(28) bias-adjusted quasi-likelihood,(29,30) and 

correlation information(31) criterion and the Rotniztky-Jewell criteria(32,33) closest to 0 were 

used to identify the model with the best fit and correlation structure.

Three velocity-Z-score calculation equations were developed for each bone outcome based 

on: Equation (1): height velocity only; Equation (2): weight velocity and height velocity; 

and Equation (3): LBM velocity and height velocity. Comparison of Equation (1) and 

Equation (3) was intended to differentiate the impact of LBM on BMC/aBMD velocity 

(bone accrual may be “normal” for the increase in LBM over the interval, but nonetheless 

suboptimal if LBM accrual is compromised); Equation 2 is a surrogate for LBM accrual in 

the event that LBM was not or could not be determined. Model β-coefficients and SD were 

used to calculate BMC/aBMD velocity-Z (BMC/aBMD velocity-Z) at each site.

Velocity Z-score = (measured velocity – predicted velocity)/SD

These BMC/aBMD Velocity-Z were then compared with the results generated using the 

standard approach of assessing bone density change, ie, determining the difference in height 

Z-adjusted BMC/aBMD-Z obtained over the same interval using 1) graphical inspection and 

2) Spearman correlation. Linear regression was used to quantify the relationship between a 

unit change in BMC/aBMD velocity-Z versus the change in aBMD/BMC-Z over the same 

interval.

For the three patient populations, we compared baseline anthropometric and BMC/aBMD Z-
scores, as well as BMC/aBMD velocity-Z results with the BMDCS cohort using the 

Kruskal-Wallis rank test. Within the patient populations, BMC/aBMD velocity-Z results 

derived from the three equations were compared using a paired t test; the relationship of 

differences in these BMC/aBMD velocity-Z results with height velocity-Z and LBM 

velocity results was assessed using Spearman correlation.

The institutional review board at each institution approved the protocols. For subjects aged 

<18 years, consent was obtained from each participant’s parent or guardian and assent was 

obtained from the study participants. Consent was obtained directly from participants if age 

was ≥18 years.

Results

Sample characteristics

Each study has been published(15–18) (Supplemental Table 1). Baseline characteristics of 

participants for whom velocities were determined are listed in Table 1. The BMDCS sample 

was comprised primarily of children of European or African ancestry. Consistent with the 

increased prevalence of overweight children in the United States, average weight-Z and 

BMI-Z were >0 in the BMDCS cohort. The CF, ALL, and CD groups exhibited growth and 

body composition patterns consistent with their diagnosis and treatment.
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Baseline BMC/aBMD Z-scores are given in Table 1. TBLH BMC-Z was significantly 

reduced in CD (p = 0.0001), whereas Spine aBMD-Z was reduced in both CF (p = 0.02) and 

CD (p = 0.0001), compared with the BMDCS sample. TotHip aBMD-Z and HipNeck 

aBMD-Z results were also reduced in ALL (p < 0.0001 and p = 0.003, respectively) and CD 

patients (p = 0.0001 and p = 0.0001, respectively).

Prediction equation development

Figure 1 illustrates TBLH BMC velocity and Spine aBMD velocity according to age and 

pubertal stage in the BMDCS cohort. Bone accrual is relatively constant in prepubertal/early 

puberty, increases in midlate puberty, and slows at later ages when bone loss may occur. 

BMC/aBMD velocities were available for TBLH BMC (n = 7243), Spine aBMD (n = 7535), 

TotHip aBMD (n = 7527), HipNeck aBMD (n = 7527), and radius aBMD (n = 7428) to 

develop sex-specific velocity-Z-score equations. Potential determinants of BMC/aBMD 

velocity were considered: age, age2, pubertal status, height velocity, race (African-American 

versus non-African-American), and either weight velocity or LBM velocity and FM velocity. 

As examples of how regression results are used, corresponding prediction equations for 

TBLH BMC and Spine aBMD are provided in Table 2. African-American ancestry and FM 

velocity were not significant after adjustment for other covariates and were excluded from 

the models. BMC/aBMD velocity was not different in pubertal stages 1 to 2 for females and 

pubertal stages 1 to 3 for males, except for the latter in whom TBLH BMC velocity in 

pubertal stage 3 was more rapid (p < 0.0001). Covariates that were relevant for some, but not 

all statistical models, were maintained in prediction equations. An independent correlation 

structure provided the best overall fit and was, thus, used for prediction equations. β-

coefficients for each of the three prediction equations for each skeletal site can be found in 

Supplemental Table 2.

Comparison of BMC/aBMD velocity-Z with change in BMC/aBMD-Z

The relationships of BMC/aBMD velocity-Z adjusted for height velocity [Eq. (1)] to 

changes in BMC/aBMD-Z over 1 year are shown in Supplemental Fig. 1. In general, a 1 SD 

change in TBLH BMC-Z over 1 year is associated with a TBLH BMC velocity-Z of 3.00 

(95% CI, 2.93 to 3.06); a 1 SD change in Spine aBMD-Z is associated with a Spine aBMD 

velocity-Z of 2.99 (95% CI, 2.95 to 3.03). In other words, for a child’s Spine aBMD-Z to 

decline by 1 SD over a year, his/her Spine aBMD velocity-Z would be −3.00.

Impact of additional adjustment for lean body mass velocity or weight velocity upon height 
velocity-only-adjusted BMC/aBMD velocity-Z

Within BMDCS participants, LBM velocity-adjusted BMC/ aBMD velocity-Z [(Eq. (3)] was 

on average higher than height velocity-adjusted BMC/aBMD velocity-Z [Eq. (1)] at the 

femoral neck and 1/3-radius (Supplemental Table 3). These differences varied across 

individuals at all skeletal sites (eg, 1/3-radius 0.02 [−0.65 to 0.87] and femoral neck (FN) 

0.01 [−1.49 to 1.34]). These differences correlated negatively with LBM accrual, eg, in the 

setting of more rapid LBM accrual, adjusting for LBM velocity lessened the difference 

between the LBM velocity-adjusted BMC/Abmd velocity-Z [Eq. (3)] and height velocity-

adjusted BMC/aBMD velocity-Z (Supplemental Table 3).
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Application of the BMD/BMC velocity-Z equations in youth with health conditions

BMC/aBMD velocity-Z equations were calculated using the three sex- and pubertal status-

specific prediction equations as plotted in Table 2. For comparison, the change in BMC/

aBMD-Z over the same interval for which the velocity-Z was calculated is also shown (Fig. 

2).

Cystic fibrosis

In CF youth, TBLH BMC velocity-Z and Spine aBMD velocity-Z did not differ from the 

BMDCS cohort (Table 3). However, TBLH BMC velocity-Z was greater with adjustment for 

LBM velocity (Fig. 2).

Posttherapy ALL (6- to 24-months posttherapy completion)

In ALL survivors, BMC/aBMD velocity-Z were higher than the BMDCS BMC/aBMD 

velocity-Z at all skeletal sites (all ps < 0.03; Table 3). The TBLH BMC velocity-Z-adjusted 

for LBM velocity [Eq. (3)] was greater than the TBLH BMC velocity-Z adjusted for height 

velocity (p = 0.0012). Multiple differences were found between LBM and weight velocity-

adjusted velocity-Z scores (Fig. 2).

Crohn’s disease with infliximab

BMC/aBMD velocity-Z was increased at all skeletal sites except for Spine aBMD velocity-Z 
adjusted for height velocity and LBM velocity [Eq. (3)] in the year following infliximab 

initiation (all ps < 0.01; Table 3). On average, BMC/aBMD velocity-Z adjusted for height 

velocity and LBM velocity [Eq. (3)] was lower than BMC/aBMD velocity-Z adjusted for 

height velocity only [Eq. (1)] and height velocity and weight velocity [Eq. (2); Fig. 2].

Discussion

Childhood is a time of rapid bone accrual. The rate of bone accrual varies with age, pubertal 

status, linear growth, and with weight gain or LBM accrual. Consideration of these issues is 

particularly important for pediatric chronic conditions in which disease progression and 

treatments can affect growth, body composition, maturation, and bone accrual 

simultaneously. Quantifying the appropriateness of bone accrual given these changes is 

essential for clinicians and researchers who monitor these children.

In adults, absolute or percent changes in DXA-measured aBMD are used to monitor bone 

health.(34,35) However, in children, absolute or percent changes in BMC/aBMD are not 

informative, given the dynamic changes in bone accrual during different growth phases (Fig. 

1). Presently, the only available strategy for monitoring bone accrual in children is to 

compare BMC/aBMD-Z at two time points. Even after adjusting for the effects of short or 

tall stature on BMC/aBMD-Z, this strategy does not account for pubertal development and 

weight gain or LBM accrual occurring during this same interval. In addition, BMC/aBMD-Z 
“track” very strongly (measurements between visits are highly correlated),(12) so the health 

significance of modest changes in BMC/aBMD-Z-scores is difficult to interpret.
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Here we show an approach for the assessment of DXA-derived measures of BMC and 

aBMD annual velocities. Sex- and pubertal status-specific equations accounted for baseline 

age, BMC/ aBMD, and height and height velocity over the interval. Additional equations 

included either LBM or weight, the latter potentially useful when whole-body DXA is not 

available to quantify LBM. The equations were applied to youth with conditions that place 

them at increased risk for compromised bone health and interventions that have the potential 

to augment bone accrual.

In healthy children, BMC/aBMD velocity-Z at the various skeletal sites was highly 

correlated with absolute changes in BMC/aBMD-Z over the same time interval, but they 

were not equivalent. BMC/aBMD velocity-Z provided more granularity in detecting changes 

over 1 year. For example, a decline of 1 SD in Spine aBMD-Z over 1 year was equivalent to 

a Spine aBMD velocity-Z of −3. Additionally, these two measures likely provide 

complementary clinical information: BMC/aBMD-Z change may indicate fracture risk as 

well as peak bone mass trajectory, whereas BMC/aBMD velocity-Z indicates the impact of 

events over the previous year on bone accretion.

Osteoporosis occurs in approximately 30% of adults with CF.(36) Reports of low BMD in 

youth with CF have been inconsistent, likely reflecting differences in methods to account for 

height and LBM.(37,38) In this study of generally healthy CF youth enrolled in an 

intervention study that was not expected to impact bone accretion, we found normal TBLH 

BMC velocity-Z and Spine aBMD velocity-Z. This contrasts with the other two chronic 

disease groups who were studied during (1) a period of recovery from treatment (ALL), or 

(2) active treatment with an agent (infliximab) expected to reduce inflammation and improve 

disease course (CD).

Recovery of bone after ALL therapy has been reported.(35) The BMC/aBMD velocity-Z data 

in our ALL cohort confirm enhanced bone accrual in individuals studied 6 to 24 months 

from completion of ALL therapy. The total hip was particularly responsive to recovery, with 

50% of ALL participants experiencing height velocity-adjusted TotHip-aBMD velocity-Z >1 

SD. Moreover, enhanced accrual was apparent even after adjustment for height velocity and 

lean body mass accrual, suggesting additional mechanisms beyond improved linear growth 

and body composition are operative in bone recovery in the 6 to 24 months following 

completion of ALL therapy. These mechanisms could include recovery from toxic effects of 

glucocorticoids, beneficial effects of increased physical activity, or improved skeletal muscle 

function. More fascinating was that TBLH BMC velocity-Z adjusted for LBM velocity and 

height velocity was greater than the TBLH BMC velocity-Z adjusted for weight velocity and 

height velocity. The TBLH BMC site largely reflects cortical bone. Children with ALL tend 

to gain excess weight and experience a higher prevalence of obesity, likely attributable to the 

high-dose glucocorticoid therapy of the ALL protocol.(39,40) Increased BMI-Z in the ALL 

cohort persisted at the 12-month follow-up (data not shown; p = 0.54). The mechanism 

underlying the “magnification” of TBLH BMC velocity-Z with adjustment for LBM-

velocity versus weight gain is not clear, but the proposed models have the potential to 

quantitate effects of physical activity, improved muscle function, and body composition 

changes in future studies.
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Poor bone accrual in CD has been attributed to poor linear growth, delayed maturation, 

inflammation, malabsorption, and compromised lean mass.(41–43) Infliximab targets 

inflammation and is associated with improvements in disease activity, growth, and body 

composition.(18,44) Our sample of children with CD treated with infliximab had positive 

BMC/aBMD velocity-Z. Positive BMC/aBMD velocity-Z indicates that bone accrual was 

greater than the BMDCS age-matched norms based upon their linear growth and lean body 

mass accumulation. This augmented bone accretion rate suggests a role for decreased 

inflammation in bone recovery.

A number of considerations in the use of these prediction equations are worth mentioning. 

First, these equations are applicable to measurements obtained on Hologic DXA devices, 

over an interval of 12 months. Although the BMDCS reference dataset is robust, children 

beyond the extremes of normal puberty (precocious or delayed) were excluded. Thus, how 

these equations operate in such extremes is not known. Additionally, the disease conditions 

presented generally had normal or enhanced bone accrual. The utility of these equations in 

disease conditions in which poor bone accrual or bone loss occurs was not evaluated. These 

velocity Z-scores do not account for the least significant change that can be detected given 

scan precision. However, DXA scan precision in children is similar to adults, and expected 

changes in BMC/aBMD far exceed measurement error until later adolescence.(45) 

Importantly, poor nutritional status and inadequate LBM accrual and muscle function feature 

in many childhood conditions (eg, Duchenne muscular dystrophy, mitochondrial disorders, 

neurologic disorders)— normal bone accrual relative to LBM accrual is not synonymous 

with having a healthy skeleton in the context of lean mass deficits. Nonetheless, comparing 

velocity-Z from equations that only include height velocity versus height and LBM velocity 

can provide insight into the contribution of LBM to poor or enhanced bone accrual, as 

depicted by the CD and ALL cohorts here. Additionally, as used here, LBM is a surrogate 

for skeletal muscle. Whether accrual of appendicular lean mass, a DXA-derived measure of 

skeletal muscle, better predicts bone accretion was not tested. Because LBM is readily 

available in a DXA report and Dorsey et al. reported appendicular lean mass was worse than 

LBM in predicting BMC,(46) we elected to rely on LBM rather than appendicular mass to 

generate prediction equations. Finally, though many of the BMC/aBMD-velocity-Z 
comparisons within each health condition and between the health condition and BMDCS 

reference group were highly statistically significant, adjustment for multiple comparisons 

was not pursued. Our goal was largely to describe how these equations performed and 

compared, but we did not have any a priori hypotheses regarding how the velocity-Z would 

compare.

The bone velocity prediction equations proposed here enable precise evaluation of bone 

accrual in childhood. Their use in health and in chronic illness provides greater insight into 

the extent to which improving or worsening bone health can be ascribed to linear growth, 

weight, and lean body mass.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Relationship of annualized (A) total body less head-BMC velocity and (B) lumbar spine 

areal bone mineral density velocity to age by pubertal status (pubertal stage 1 light green, 2 

orange, 3 dark green, 4 red, 5 blue) in males and females.
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Fig. 2. 
Boxplots comparing bone mineral content/ areal bone mineral density (BMC/aBMD) 

velocity-Z adjusted for height velocity (red), height velocity and weight velocity (blue), and 

height velocity and lean body mass accrual (LBM) velocity (green), as well as the BMD/

aBMD-Z change over 1 year (conventional approach for monitoring bone health) in youth 

with cystic fibrosis (CF), postacute lymphoblastic leukemia (ALL) therapy, and in the year 

following infliximab initiation for Crohn disease (CD). aHeight velocity adj-velocity-Z 
versus height velocity and LBM velocity adj-velocity-Z. CF: total body less head (TBLH), p 
= 0.0002; ALL: TBLH, p = 0.0012; CD: TBLH, p = 0.0002; spine, p < 0.0001; total hip, p < 

0.0001; femoral neck, p < 0.0001. bHeight velocity and weight velocity adj-velocity-Z 
versus height velocity and LBM velocity adj-velocity-Z. CF: spine, p < 0.0001; ALL: 

lumbar spine, p < 0.0001; total hip, p = 0.0026; femoral neck, p = 0.049; CD: spine, p = 

0.0001. cHeight velocity versus height velocity and weight velocity adj-velocity-Z. CD: 

TBLH, p = 0.0001; lumbar spine, p = 0.002; total hip, p < 0.0001; femoral neck, p < 0.0001.
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