Skip to main content
. 2021 Jan 4;21(1):291. doi: 10.3390/s21010291

Table 5.

Results of the LOSO evaluation for different classifiers with data of patients with tremor.

Data Representation # of Features Classifier Sensitivity Specificity AUC
FFT (baseline) 64 SVM 81.1% (5.89) 80.5% (6.67) 0.872 (0.045)
FFT 64 AdaBoost (100 estimators) 84.3% (3.20) 84.4% (3.42) 0.918 (0.025)
MFCCs [49] 36 AdaBoost (100 estimators) 82.6% (4.86) 82.2% (4.65) 0.905 (0.040)
Mahadevan et al. [55] 64 Random Forest (10 estimators) 82.3% (5.88) 84.0% (4.51) 0.893 (0.049)
Hssayeni et al. [15] 39 Gradient Boost (170 estimators) 84.1% (4.52) 84.0% (4.13) 0.922 (0.035)
Raw signal 384 CNN (with GAP) 84.1% (4.30) 84.0% (4.20) 0.915 (0.043)
Raw signal 384 multitask CNN 85.0% (5.15) 2 85.3% (5.13) 2 0.923 (0.039) 2
FFT 64 multitask CNN 86.1% (5.37) 2 86.1% (5.49) 2 0.936 (0.024) 2

2 Values obtained only from the tremor detector output.