Skip to main content
. 2020 Dec 30;10(1):111. doi: 10.3390/jcm10010111

Table 4.

Model performance of LR, MARS, CART, RF, and XGBoost methods.

Methods MAPE SMAPE RAE RRSE RMSE
LR 0.1266 0.1226 0.8235 0.8458 2.3283
MARS 0.1259 0.1219 0.8228 0.8409 2.3149
CART 0.1341 0.1298 0.8666 0.8835 2.4323
RF 0.1271 0.1229 0.8222 0.8331 2.2934
XGBoost 0.1182 0.1155 0.7783 0.8211 2.2604

Note: LR: linear regression; MARS: multivariate adaptive regression splines; CART: classification and regression tree; RF: random forest; XGBoost: eXtreme gradient boosting; MAPE: mean absolute percentage error; SMAPE: symmetric mean absolute percentage error; RAE: relative absolute error; RRSE: root relative squared error; RMSE: root mean squared error.