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Abstract: Advanced sensor technologies have been applied to support frozen shoulder assessment.
Sensor-based assessment tools provide objective, continuous and quantitative information for evalu-
ation and diagnosis. However, the current tools for assessment of functional shoulder tasks mainly
rely on manual operation. It may cause several technical issues to the reliability and usability of
the assessment tool, including manual bias during the recording and additional efforts for data
labeling. To tackle these issues, this pilot study aims to propose an automatic functional shoulder
task identification and sub-task segmentation system using inertial measurement units to provide
reliable shoulder task labeling and sub-task information for clinical professionals. The proposed
method combines machine learning models and rule-based modification to identify shoulder tasks
and segment sub-tasks accurately. A hierarchical design is applied to enhance the efficiency and
performance of the proposed approach. Nine healthy subjects and nine frozen shoulder patients
are invited to perform five common shoulder tasks in the lab-based and clinical environments,
respectively. The experimental results show that the proposed method can achieve 87.11% F-score for
shoulder task identification, and 83.23% F-score and 427 mean absolute time errors (milliseconds) for
sub-task segmentation. The proposed approach demonstrates the feasibility of the proposed method
to support reliable evaluation for clinical assessment.

Keywords: shoulder task identification; sub-task segmentation; frozen shoulder; wearable inertial
measurement units; accelerometer; gyroscope

1. Introduction

Frozen shoulder (FS) is a common joint condition that causes stiffness and pain among
people aged from 40 to 65 years [1], especially in women [2]. The stiffness and pain of
shoulder joints lead the limitation to the range of motion in all movement planes of the
shoulder joints. FS has great impacts on the quality of daily life and activities of daily
living (ADL) performance [2,3]. The common treatments in FS patients involving physical
therapy and joint shoulder injection aim to relieve pain, improve joint mobility, and increase
the independent ability. In order to support clinical decisions, there is a requirement of
objective assessment for clinical evaluations and follow-up progresses [4].

Goniometry measurements [5] and questionnaires [6] are common evaluation tools
for clinical FS assessment. However, these traditional assessment approaches have several
challenges and limitations related to inter-rater reliability, respondent interpretation, and
cultural diversity [7–9]. In recent years, inertial measurement units (IMUs) have been
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used to develop objective evaluation systems. Joint evaluation systems using IMUs have
advantages in simplification of implementation, cost, and computation complexity. They
have the potential to continuously and accurately measure dynamic and static range of
motion of shoulder joints, including flexion, extension and rotation [10]. Previous studies
have shown the reliability of measurement systems with inertial sensors for elbow and
shoulder movement in laboratory environments [10–13].

For FS patients, wearable IMUs are also implemented to objectively measure functional
abilities while the questionnaires can only provide subjective scores from the patients
(e.g., shoulder pain and disability index [14] and simple shoulder score [15]). These works
extracted movement features and parameters to evaluate the performance of functional
shoulder tasks. However, the whole measurement still relies on manual operation. For
example, researchers or clinical professionals have to manually label the starting and
ending time of the shoulder tasks from the continuous signals. Then, they label the spotted
shoulder task with the correct task information. These additional efforts may decrease the
feasibility and usability of the IMU-based evaluation systems in the clinical setting.

To tackle the aforementioned challenges, this pilot study aims to propose an automatic
functional shoulder task identification and sub-task segmentation system using wearable
IMUs for FS assessment. We hypothesized that the proposed wearable-based systems
would be reliable and feasible to automatically provide shoulder task information for
clinical evaluation and assessment. Several typical pattern recognition and signal process-
ing techniques (e.g., symmetry-weighted moving average, sliding window and principal
component analysis), machine learning models (e.g., support vector machine, k-nearest-
neighbor and classification and regression tree), and rule-based modification are applied
to the proposed system to accurately identify shoulder tasks and segment sub-tasks from
continuous sensing signal. Moreover, a hierarchical approach is applied to enhance the
reliability and efficiency of the proposed system. The novelty and contribution of this pilot
study are listed as follows:

• This work firstly proposes a functional shoulder task identification system for auto-
matic shoulder task labeling while the traditional functional measurement in clinical
setting still relies on manual operation.

• The proposed approach can provide not only shoulder task information (e.g., cleaning
head) but also sub-task information (e.g., lifting hands to head, washing head and
putting heads down). Such sub-task information has the potential to support clinical
professionals for further analysis and examination.

• The feasibility and the effectiveness of the proposed shoulder identification and sub-
task segmentation is validated on nine FS patients and nine healthy subjects.

2. Related Works

In recent years, automatic movement identification and segmentation algorithms
have been proposed to clinical evaluation and healthcare applications [16–20]. The main
objective of identification and segmentation algorithms is to spot the starting and end-
ing points of target activates precisely. For example, previous studies have developed
diverse approaches to automatically and objectively obtain detailed lower limb and trunk
movement information, such as sitting, standing, walking and turning [16]. Such reliable
segmentation approaches can assist clinical professionals for various disease assessment, in-
volving Parkinson’s disease [17], fall prediction [18] and dementia [19]. Similar approaches
are also applied to upper limb assessments in stroke patients. Biswas et al. [20] proposed
segmentation algorithms using a single inertial sensor to gather three basic movements
from the complicated forearm activities in healthy and stroke patients, involving exten-
sion, flexion and rotation. However, few studies focus on the development of automatic
systems in FS patients [11]. Most evaluation tools for FS assessment still relied on manual
operation [10,21–24].

Various machine learning (ML) approaches are applied to automatically identify
human movements for healthcare applications [25–29]. Generally, there are two categories
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for ML: discriminative and generative approaches. The typical discriminative approaches
involving k- nearest-neighbors (k-NN) [25], classification and regression tree (CART) [26]
and support vector machine (SVM) [26] aim to optimize the rules or decision boundaries
to separate classes. Such approaches have shown the high- speed processing and reliable
detection performance for movement segmentation. Another approach is generative
models, such as hidden Markov models (HMM) [27], which are built based on probabilistic
models to identify continuous movements. Generative approaches have better abilities to
the more complicated activities and temporal order problems. Additionally, diverse deep
learning approaches are widely applied to movement segmentation [28] and human activity
recognition [29], e.g., convolutional neural networks (CNN) and recurrent neural networks
(RNN). They have superior classification ability compared to traditional ML approaches.
However, generative and deep learning approaches require a large dataset to ensure
the performance of the detection model, while the data requirements for discriminative
approaches are comparatively low.

3. Methods

The framework of the proposed automatic shoulder task identification and sub-task
segmentation is shown in Figure 1. The brief introduction of the whole training and testing
stages for the identification and segmentation is as follows:

• Input and pre-processing: In the beginning, accelerometers and gyroscopes are utilized
to collect shoulder task sequences (Input). Then, the sensing sequences are pre-
processed with the moving average technique to filter the noises. These pre-processed
sequences are spilt into the training set and testing set for the training and testing
stages, respectively.

• Training for shoulder task identification: The feature extraction process with 12 feature
types is firstly applied to the pre-processed sequences. Then, the principal component
analysis is employed to reduce the size of the features and select the critical features
for training machine learning models. Next, the machine learning model is trained
with the selected features of the training set for shoulder task identification. Various
machine learning techniques, including SVM, CART, and kNN, are investigated in
this work. The parameter optimization for each technique is executed in this stage.

• Training for sub-task segmentation: First, the sliding window technique divides the
pre-processed sequences into segments. Then, the feature extraction and dimension
reduction techniques are employed to obtain the critical features from the segments.
Lastly, the machine learning model for ML-based sub-task segmentation is built with
the critical features. During the training stage, several machine learning techniques
(e.g., SVM, CART, and kNN) and their optimized parameters are also explored.

• Testing for shoulder task identification: Initially, the selected features are extracted
from the shoulder task sequence of the testing set. Then, these features are identified us-
ing the trained machine learning model to output the shoulder task information (output 1).

• Testing for sub-task segmentation: After the testing stage of the shoulder task identifi-
cation, the sliding window technique is firstly applied to the shoulder task sequence
to gather a sequence of segments. Secondly, the feature extraction process is employed
to the segments to obtain selected features. Thirdly, the process of ML-based sub-
task segmentation classifies these segments and the corresponding features using the
trained machine learning models and outputs a sequence of the identified class labels.
Fourthly, the rule-based modification is utilized to modify the output of the ML-based
sub-task segmentation. Finally, the sub-task information generator generates a se-
quence of sub-task labels based on the classified and modified class labels and outputs
it as the sub-task information (output 2).
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Figure 1. The framework of the automatic shoulder task identification and sub-task segmentation.

3.1. Participants

Participants were outpatients at a rehabilitation department of Tri-service general
hospital who were diagnosed with primary FS between June 2020 and September 2020. The
patients were included if they have shoulder pain with a limited range of motion more than
3 months and age from 20 to 70 years old. Participants were diagnosed with primary FS
according to standardized history, physical examination, and ultrasonographic evaluation
by an experiment physiatrist. Patients were excluded if they had any of the following: full
or massive thickness tear of the rotator cuff on ultrasonography or magnetic resonance
imaging (MRI); secondary FS (secondary to other causes, including metabolic, rheumatic,
or infectious arthritis; stroke; tumor; or fracture); and acute cervical radiculopathy.

The study was approved by the institutional review board (TSGHIRB No.: A202005024)
at the university hospital, and all participants gave written informed consent. Our research
procedure followed the Helsinki Declaration. All participants were assured that their par-
ticipation was entirely voluntary and that they could withdraw at any time. Nine healthy
adults (height: 170.6 ± 7.9 cm, weight: 75.1 ± 17.0 kg, age: 27.0 ± 5.0 years old) and nine
FS patients (height: 164.3 ± 11.1 cm, weight: 66.3 ± 14.4 kg, age: 56.4 ± 9.9 years old)
participated in the experiments.

3.2. Experimental Protocol and Data Collection

Two IMUs placed on the arm and wrist are employed to sense the upper limb move-
ment, as shown in Figure 2. Similar sensor placements have been selected in previous
works [20,21]. The sensors placed on the arm and wrist can catch information of upper
limb movement while performing shoulder tasks. The used IMU (APDM Inc., Portland,
OR, USA) involves a tri-axial accelerometer, tri-axial gyroscope, and tri-axial magnetometer.
In this study, only the tri-axial accelerometer (range: ±16 g; resolution: 14 bits) and tri-axial
gyroscope (range: ±2000◦/s; resolution: 16 bits) work for the data. The data is collected
with a sampling frequency of 128 Hz.
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Figure 2. An illustration of the sensor placements.

The experiment is executed in the lab-based and clinical environments for healthy
and FS subjects, respectively. Each subject is asked to perform five shoulder tasks once,
including cleaning head, cleaning upper back and shoulder, cleaning lower back, placing
an object on a high shelf, and putting/removing an object from the back pocket. These
shoulder tasks have been widely adopted for shoulder function assessment and evaluation
in previous works [21,22]. The performed shoulder tasks and the corresponding three
sub-tasks are listed in Table 1. Each task consists of three sub-tasks. Totally, there are
90 shoulder task sequences (18 subjects × 5 shoulder tasks). The participants are free to
execute tasks in their ways with basic manual instruction. The sub-tasks are performed
continuously within the same shoulder task. Mean sub-task time performed by healthy
and FS patients is listed in Table 2.

Table 1. A list of shoulder task and sub-task.

Task ID Shoulder Task Sub-Task A Sub-Task B Sub-Task C

T1 Cleaning head Lifting hands toward head Washing head Putting hands down

T2 Cleaning upper back
and shoulder

Lifting hands toward
upper back and shoulder

Washing upper back
and shoulder Putting hands down

T3 Cleaning lower back Lifting hands towards
lower back Washing lower back Putting hands down

T4 Placing an object on a
high shelf

Lifting the object toward
the shelf

Holding the hands on the
shelf for few seconds Putting hands down

T5 Putting/Removing an object
into/from the back pocket

Putting an object into the
back pocket

Holding the hands in the
back pocket for few seconds

Removing an object
from the back pocket

Table 2. Mean sub-task time performed by healthy and FS patients (s).

Healthy Subjects FS Patients All Subjects

Sub-task A 0.86 ± 0.15 1.6 ± 0.73 1.22 ± 0.62
T1 Sub-task B 3.13 ± 1.18 5.66 ± 2 4.46 ± 2.08

Sub-task C 0.9 ± 0.2 1.18 ± 0.16 1.04 ± 0.22

Sub-task A 1.16 ± 0.25 1.82 ± 0.85 1.45 ± 0.68
T2 Sub-task B 2.58 ± 0.75 7.81 ± 3.75 4.93 ± 3.63

Sub-task C 1.18 ± 0.2 1.35 ± 0.21 1.29 ± 0.24

Sub-task A 0.78 ± 0.12 1.1 ± 0.44 0.92 ± 0.35
T3 Sub-task B 3.09 ± 1.15 6.32 ± 4.19 4.94 ± 3.57

Sub-task C 0.99 ± 0.21 0.94 ± 0.25 0.95 ± 0.24
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Table 2. Cont.

Healthy Subjects FS Patients All Subjects

Sub-task A 1.53 ± 0.35 2.02 ± 0.65 1.81 ± 0.59
T4 Sub-task B 0.97 ± 0.49 1.98 ± 0.53 1.45 ± 0.7

Sub-task C 1.52 ± 0.41 1.25 ± 0.45 1.45 ± 0.49

Sub-task A 1.47 ± 0.46 1.79 ± 0.75 1.61 ± 0.62
T5 Sub-task B 0.9 ± 0.65 0.89 ± 0.68 0.93 ± 0.66

Sub-task C 2.42 ± 2.44 1.37 ± 0.35 1.88 ± 1.82

The external camera synchronized with inertial sensors is applied to provide reference
information for the ground truth labeling, including starting and ending points of shoulder
tasks. During the experiment, the camera is put in front of the subjects. The frame per
second of the camera is 30 Hz.

3.3. Data Pre-Processing

This study applies the symmetry-weighted moving average (SWMA) technique to
the sensing signals to reduce the noise and artifacts for shoulder task identification and
segmentation. This pre-processing technique has been applied to other applications while
the sensors are placed on the upper limbs, including eating activity recognition and daily
activity recognition [30,31]. SWMA technique determines different weights to sample
points within the determined ranges. The data points closer to the central point are
assigned with higher weights.

Suppose the sensing data of any shoulder task sequence is defined as S = {si|i = 1, 2, . . . , nR},
where nR is the total number of the data samples from the sequence. The pre-processed
sensing data point s̃t at time t with the determined range m is defined as follows:

s̃t =
1

Totalδ

(
δ0si +

(
∑

m+1
2 −1

i=1 δi(st+i + st−i)

))
, (1)

Totalδ = ∑
m+1

2 −1
i=0 δi, (2)

where Totalδ is the sum of all determined weights, δ0 is m+1
2 and δi = {δo − i|i = 1, 2, . . . , δ0}.

For example, if m is 5, s′3 = [(s3 × 3 + s2 × 1 + s4 × 1 + s1 × 0.5 + s5 × 0.5)/(3 + 1 + 1+
0.5 + 0.5)]. The SWMA with m = 9 is applied to this study.

3.4. Shoulder Task Identification
3.4.1. Feature Extraction

The main objective of the feature extraction process is to extract movement charac-
teristics from the continuous sensing data for shoulder task identification. There are two
feature categories that have been applied to catch motion features, such as statistical and
kinematic features. The common statistical features involving mean, standard deviation
(StD), variance (var), maximum (max), minimum (min), range, kurtosis, skewness, and
correlation coefficient (CorrCoef) have been applied to the field of activity recognition
applications [32]. These nine statistical features are applied to this work. Also, kinematic
features have been applied to upper limb movement recognition systems in several clinical
applications, such as stroke rehabilitation and assessment [33]. This study employs three
general kinematic features, such as the number of velocity peaks (NVP), zero crossing
(NZR), and mean crossing (NMR) for shoulder task identification.

Suppose a sequence of data from a sensor is defined as S̃ = {s̃i|i = 1, 2, . . . , nR},
where nR is the total number of the data samples from the sequence. Any sample point
si includes data collected from a tri-axial sensor s̃i =

{
r̃xi , r̃yi , r̃zi

}
. Then, the feature

extraction process is applied to the shoulder sequence. The utilized features are listed
in Table 3.
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Table 3. A list of statistical and kinematic feature types from a single sensor.

No. Description

f̃1− f̃3 Mean of r̃xi , r̃yi , r̃zi

f̃4 − f̃6 Standard Deviation of r̃xi , r̃yi , r̃zi

f̃7 − f̃9 Variance of r̃xi , r̃yi , r̃zi

f̃10 − f̃12 Maximum of r̃xi , r̃yi , r̃zi

f̃13 − f̃15 Minimum of r̃xi , r̃yi , r̃zi

f̃16 − f̃18 Range of r̃xi , r̃yi , r̃zi

f̃19 − f̃21 Kurtosis of r̃xi , r̃yi , r̃zi

f̃22 − f̃24 Skewness of r̃xi , r̃yi , r̃zi

f̃25 − f̃27 Correlation coefficient between each pair of r̃xi , r̃yi , r̃zi

f̃28 − f̃30 Number of velocity peaks of r̃xi , r̃yi , r̃zi

f̃31 − f̃33 Number of zero crossing of r̃xi , r̃yi , r̃zi

f̃34 − f̃36 Number of mean crossing of r̃xi , r̃yi , r̃zi

Note. r̃xi , r̃yi , r̃zi are the sample points of x-axis, y-axis and z-axis collected from a tri-axial sensor node.

In this work, the sensing data of the shoulder task sequence from two IMUs is defined
as S̃seq =

{
s̃i
∣∣i = 1, 2, . . . , nseq

}
, where nseq is the total number of S̃seq. Any sample point s̃i

of S̃seq is defined as:

S̃i =
{

ãwrist
xi , ãwrist

yi , ãwrist
zi , g̃wrist

xi , g̃wrist
yi , g̃wrist

zi , ãarm
xi , ãarm

yi , ãarm
zi , g̃arm

xi , g̃arm
yi , g̃arm

zi

}
The formation of the extracted features from S̃seq is show in Figure 3. There are two

IMUs, four sensors (2 accelerometers + 2 gyroscopes), and a total of 144 features (4 sensor
units × 36 features) are obtained.
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3.4.2. Feature Selection

During the training stage, the feature selection process is applied to all extracted
features after the feature extraction. This is because the size of all features (144 features) is
quite big for the systems.

Using a suitable feature selection technique can simplify the computing processes,
which is beneficial for training and testing stages. This study utilizes principal component
analysis (PCA) [34] to select critical features and reduce the number of features in dealing
with multi-dimensional time sequence data. PCA aims to find a linear transformation
matrix that transforms the raw feature vectors F̃ =

[
f̃1, f̃2, . . . , f̃k

]
to lower dimensional

feature vectors F̂ =
[

f̂1, f̂2, . . . , f̂l

]
, where k = 144 is the number of the raw feature vectors

and l is the number of the transformed feature vectors.
Firstly, the covariance matrix C f is calculated based on the variance maximiza-

tion of the projected data. Then, the eigenvalues λ = (λ1, λ2, . . . , λk) and eigenvectors
ν = (ν1, ν2, . . . , νk) can be determined based on C f . Note that the eigenvectors ν are the
principal components, where that first eigenvector has the largest variance.
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In the dimension reduction process, the l eigenvectors with the most explained compo-
nents are kept, where l ≤ k. A threshold thres = 0.99 is set to keep 99% variance information
of the raw feature vectors. The minimum value of l is determined as Equation (3):

l

∑
i=1

λi

/
k

∑
i=1

λi ≥ thres (3)

For the shoulder task identification, the number of features is reduced from 144 to 35 af-
ter PCA and dimension reduction processes. Compared to the original raw feature vectors,
the system using the transformed feature sets has the potential to reduce computational
complexity for the classification of the shoulder task.

3.4.3. Shoulder Task Identification Using Machine Learning

Suppose there is a set of class labels C =
(
c1, c2, . . . , cnc

)
, where nC is the number of

the class labels. The training set Γtrain =
{(

F̂train
i , ci

)∣∣i = 1, 2, . . . , ntrain
}

has ntrain pairs of
feature vectors F̂train

i and the corresponding label ci. In the training stage, the machine
learning technique can optimize the parameters θ of a classification model by minimizing
the classification loss on Γtrain. For the shoulder task identification, nC = 5 is the number
of the shoulder tasks.

In the testing stage, given that the testing set Γtest =
{

F̂test
i

∣∣i = 1, 2, . . . , ntest
}

has ntest
feature vectors. Each F̂test

i is mapped to a set of class labels C with the corresponding

confidence score Pi =
{

pj
i

∣∣∣j = 1, 2, . . . , nC

}
using the trained classification model H with

the optimized parameters θ:

pi
(
c
∣∣F̂test

i , θ
)
= H

(
F̂test

i , θ
)
, (4)

where c ∈ C. Then, we select the class label with the maximum confidence score as the
final classification output:

ci = argmax
c∈C, p∈Pi

p
(
c
∣∣F̂test

i , θ
)
. (5)

There are various machine learning models have been applied to segment human
movements and recognize activities in other clinical applications [16–20]. At this moment,
several machine learning techniques requiring a lot of data volume for model training
are not considered in this work, involving HMM, CNN, and RNN. Therefore, we focus
on exploring the feasibility of the following machine learning models for shoulder task
identification:

• Support vector machine (SVM): The main objective of the SVM model is to find a
hyperplane to separate two classes. It maximizes the margin between two classes to
support distinct classification with more confidence. Since the number of the classes
are more than two, we employ one-vs-all techniques to multi-class classification with
a radial basis kernel function.

• K-nearest-neighbors (kNN): kNN approach is also called as a lazy classifier as this ap-
proach actually does not require any training process. The main idea of this approach
is to determine the class of the testing data based on the major voting of nearest k
neighbors. The determination of the value k is application-dependent, which have
critical influences on the performance of the classifier. In this work, a range of k from 1
to 9 is explored. The results show that k = 7 achieves the best detection performance.

• Classification and regression tree (CART): The CART approach is a binary tree that
can tackle classification and regression problems. The branch size and the process
of the splitting is determined by measure of the Gini impurity. This approach has
advantages in easy implementation and high processing speed.

The feasibility and reliability of the explored techniques have been validated in the
field of activity recognition [29].
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3.5. Sub-Task Segmentation
3.5.1. Sliding Window

There are several windowing approaches that have been proposed to divide the
continuous data into chunks [35], involving sliding window, event-defined window and
activity-defined window techniques. This work uses the sliding window to segment the
data into small segments. This windowing approach is very popular in the field of activity
recognition due to its simple realization and fast processing speed.

Suppose the pre-processed sensing data of the shoulder task sequence from two IMUs
is defined as S̃seq =

{
s̃i
∣∣i = 1, 2, . . . , nseq

}
, where nseq is the total number of S̃seq. The

sliding window technique is applied to S̃seq with several parameters, including window
size ws, the starting point of the segment sp, ending point of the segment ep, sliding samples
ss. The pseudocode of the sliding window is described in Algorithm 1 and illustrated
in Figure 4.
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sp

to s̃j+1
sp . The overlapping samples is the number of the overlapping data samples between segments

wj and wj+1.
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Algorithm 1: Sliding Window.

Input:
the pre-processed sensing data S̃seq =

{
s̃i
∣∣i = 1, 2, . . . , nseq

}
, window size

ws, the starting point of the segment sp, ending point of the segment ep,
sliding samples ss

Output: a set of segments W =
{

wj

∣∣∣j = 1, 2, . . . , nsl

}
1: Begin
2: initialize sp← 1 , e p← ws and j← 1
3: while ep ≤ nseq do
4: wj ←

{
s̃j

sp, s̃j
sp+1, . . . , s̃j

ep−1, s̃j
ep

}
5: W ← wj
6: j← j + 1
7: sp← sp + ss
8: e p← sp + ws− 1
9: endwhile
10: End

After the process of sliding window, a set of segments obtained from the shoulder task
sequences S̃seq is defined as W =

{
wj
∣∣j = 1, 2, . . . , nsl

}
, where nsl is the total number of

segments obtained from S̃seq. Any segment is defined as wj =
{

s̃j
sp, s̃j

sp+1, . . . , s̃j
ep−1, s̃j

ep

}
,

where s̃sp and s̃ep are the starting and ending points of the segment. Note that op is defined
as the overlapping percentage between wj and wj+1, where j+ 1 ≤ nsl . op can be calculated
as follows:

op =
os
ws

, (6)

os = ws− ss, (7)

where os is the overlapped samples.
The window size has great impact on the system performance while using the sliding

window technique. A range of window sizes from 0.1 to 1.5 s with a fixed overlapping of
50% is tested to explore the reliability of the proposed automatic sub-task segmentation.

3.5.2. Training Stage for Sub-Task Segmentation

Given that there is a set of segments WTrSet =
{

wtrain
j

∣∣∣j = 1, 2, . . . , nTrSet

}
obtained

from the pre-processed shoulder task sequences using sliding window, where wtrain
j ={

s̃train
j

∣∣∣j = 1, 2, . . . , nws

}
contains nws sample points. Any s̃train

i containing the sensing data

collected from the wrist and arm is defined as S̃train
i =

{
ãwrist

xj , ãwrist
yj , ãwrist

zj , g̃wrist
xj , g̃wrist

yj , g̃wrist
zj ,

ãarm
xj , ãarm

yj , ãarm
zj , g̃arm

xj , g̃arm
yj , g̃arm

zj

}
. The training process is as follows:

• Firstly, wTrSet are initially extracted with nine types of statistical features and three

types of kinematic features to obtain training feature vectors Ũtrain =
{

F̃train
j

∣∣∣j = 1, 2, . . .

nTrSet}, where F̃train
j =

{
f̃ train
j,1 , f̃ train

j,2 , . . . , f̃ train
j,k

}
and k = 144.

• Then, PCA is also applied to Ũtrain to obtain dimensionless feature vectors Ûtrain ={
F̂train

j

∣∣∣j = 1, 2, . . . nTrSet

}
, where F̂train

j =
{

f̂ train
j,1 , f̂ train

j,2 , . . . , f̂ train
j,ĺ

}
and ĺ ≤ k. In this

paper, the size of the utilized feature vectors ĺ for different windows is reduced from
144 to less than 50.

• After the processes of feature extraction and selection, a training set Γ́train
=
{(

F̂train
j , ctrain

j

)
|i = 1, 2, . . . , nTrSet} is created, where nTrSet is the number of feature vectors, and
ctrain

i is the corresponding label of F̂train
i . In this work, there is a set of class labels

Ć =
(
ć1, ć2, . . . , ćnć

)
, where nĆ is 3, including sub-task A, B, and C.
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• Finally, using a machine learning technique learns the parameters θ́ of the machine

learning model H́ from Γ́train. Several typical ML approaches are also explored for
sub-task segmentation, such as SVM, CART, and kNN.

3.5.3. Testing Stage for Sub-Task Segmentation Using Machine Learning Models,
Rule-Based Modification and Sub-Task Information Generator

There are three main processes for sub-task segmentation: ML-based identification,
rule-based modification and sub-task information generator. The first process is to employ
ML approaches to segment and identify sub-tasks. Several typical machine learning
approaches are tested, such as SVM, CART, and kNN. However, mis-segmentation and
mis-identification is unavoidable during the process. Therefore, the second process is
to correct the errors from the ML-based approach. The modification process modifies
fragmentation errors as the identified results are irrational to the context. For example, a
continuous data stream identified as sub-task B “washing head” should not involve other
sub-tasks (e.g., lifting hands or putting hands down). Finally, the generator generates the
sub-task information based on the outputs of the rule-based modification.

Given that a set of segments WTeSet =
{

wtest
1 , wtest

2 , . . . , wtest
nS

}
and the corresponding

feature vectors Ûtest =
{

F̂test
1 , F̂test

2 , . . . , F̂test
nS

}
are obtained from a pre-processed shoulder

task sequence of the testing set S̃TeSeq =
{

s̃1, s̃2, . . . , s̃nTeSeq

}
by using the sliding window

technique and feature extraction with the selected features, where nTeSeq and nS are the total
number of S̃TeSeq and WTeSet, respectively. The detailed ML-based sub-task segmentation
and rule-based modification processes in the testing stage is described as follows:

• Firstly, the mapped confidence score Ṕi =
{

ṕ1
i , ṕ2

i , . . . , ṕnć
i
}

of a set of class labels
Ć =

(
ć1, ć2, . . . , ćnć

)
from each F̂test

i is calculated, where nć is the total number of Ć.
• Secondly, each F̂test

i maps to a class label ćML with the maximum confidence score
by using the trained machine learning model H́ and the optimized parameters θ́. A
sequence of classified class labels DML =

{
ćML

1 , ćML
2 , . . . , ćML

nS

}
is generated from Ûtest

using H́ and θ́.
• Thirdly, the rule-based modification is applied to DML to obtain a sequence of modified

class labels Dr =
{

ćr
1, ćr

2, . . . , ćr
nS

}
. If ćML

t is different from ćML
t−1 and ćML

t+1, and ćML
t−1 is

equal to ćML
t+1 then ćML

t would be modified as the sub-task of ćML
t−1 and ćML

t+1, where
ćML

t ∈ DML and 2 ≤ t ≤ nS − 1. An example to illustrate the modification process is
shown in Figure 5.

• Finally, a generator generates a sequence of sub-task labels Dg =
{

ćg
1 , ćg

2 , . . . , ćg
ng

}
based on Dr, where ng is the total number of Dg and determined as:

ng = ws + ss× (nS − 1), (8)

where ws and ss are window size and sliding samples, respectively. The processes of
the sub-task information generator are illustrated in Figure 6 and the corresponding
pseudocode is shown in Algorithm 2.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 23 
 

 

tasks (e.g., lifting hands or putting hands down). Finally, the generator generates the sub-
task information based on the outputs of the rule-based modification. 

Given that a set of segments ்ܹௌ௧ = ൛ݓଵ௧௦௧, ,ଶ௧௦௧ݓ … ,  ೄ௧௦௧ൟ and the correspondingݓ
feature vectors ܷ௧௦௧ = ൛ܨଵ௧௦௧, ,ଶ௧௦௧ܨ … ,  ೄ௧௦௧ൟ are obtained from a pre-processed shoulderܨ
task sequence of the testing set ሚ்ܵௌ = ቄ̃ݏଵ, ,ଶݏ̃ … ,  ೄቅ by using the sliding windowݏ̃
technique and feature extraction with the selected features, where ்݊ௌ and ݊ௌ are the 
total number of ሚ்ܵௌ and ்ܹௌ௧, respectively. The detailed ML-based sub-task segmen-
tation and rule-based modification processes in the testing stage is described as follows: 
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Sensors 2021, 21, 106 12 of 22
Sensors 2021, 21, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 6. An illustration of the sub-task information generator. A sequence of sub-task labels ܦ =൛ܿ́ห݅ = 1, 2, … , ݊ൟ is obtained based on a sequence of modified class labels ܦ =൛ܿ́ห݆ = 1, 2, … , ݊௦ൟ. For the first ݊௦ − 1 modified class labels, each ܿ́ maps to a sequence of sub-
task labels {ܿ́, ܿ́ାଵ ,…, ܿ́ା௦௦ିଶ , ܿ́ା௦௦ିଵ }, where ݅ = 1 + ݏݏ × (݆ − 1). Finally, a sequence of sub-task 
labels {ܿ́, ܿ́ାଵ ,…, ܿ́ା௪௦ିଶ , ܿ́ା௪௦ିଵ } is obtained from the last modified class label ܿ́ೞ . 

  

Figure 6. An illustration of the sub-task information generator. A sequence of sub-task la-
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{

ćg
i

∣∣∣i = 1, 2, . . . , ng

}
is obtained based on a sequence of modified class labels Dr ={

ćr
j

∣∣∣j = 1, 2, . . . , ns

}
. For the first ns − 1 modified class labels, each ćr

j maps to a sequence of sub-task

labels {ćg
i , ćg

i+1, . . . , ćg
i+ss−2, ćg

i+ss−1 }, where i = 1+ ss× (j− 1). Finally, a sequence of sub-task labels
{ćg

i , ćg
i+1, . . . , ćg

i+ws−2, ćg
i+ws−1 } is obtained from the last modified class label ćr

ns
.
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Algorithm 2: Sub-task Information Generator.

Input: a sequence of modified class labels Dr =
{

ćr
j

∣∣∣j = 1, 2, . . . , ns

}
, window size ws,

sliding samples ss
Output: a sequence of sub-task labels Dg =

{
ćg

i

∣∣∣i = 1, 2, . . . , ng

}
1: Begin
2: initializei← 1
3: for j = 1 to ns − 1 do //for the first ns − 1 modified class labels
4: while i ≤ (j× ss)
5: ćg

i ← ćr
j

6: Dg ← ćg
i

7: i← i + 1
8: endwhile
9: endfor
10: for i to i + ws do //for the last ns modified class labels
11: ćg

i ← ćr
ns

12: Dg ← ćg
i

13: endfor
14: End

3.6. Performance Evaluation and Statistical Analysis

The whole system implementation and statistical analysis are done using the Statistics
and Machine Learning Toolbox in Matlab 2017b (MathWorks Inc., Natick, MA, USA).

This study utilizes a leave-one-subject-out cross-validation approach [32] to validate
the system performance of the proposed shoulder task identification and sub-task segmen-
tation. This validation approach divides the dataset into k folds based on the subjects,
where k is the number of subjects; one fold is kept as the testing set and the remaining k-1
folds are utilized for the training. The whole process repeats k times until each fold is used
as the testing set. Finally, the system outputs the average results of k folds.

In order to evaluate the reliability of the shoulder task identification, several typi-
cal metrics are utilized for performance evaluation, including sensitivity, precision and
F-score [36] as shown in Equations (9)–(11):

sensitivity =
TP

TP + FN
(9)

precision =
TP

TP + FP
(10)

F− score = 2× sensitivity × precision
sensitivity + precision

(11)

where TP, FP, TN, and FN are true positive, false positive, true negative, and false negative.
F-Score is the harmonic mean of precision and recall, which is a common approach to
evaluate the reliability and performance of classification systems.

There are two evaluation and analysis approaches applied for the evaluation of
sub-task segmentation: the sample-based approach [36] and mean absolute time errors
(MATE) [37–39]. An illustration of the evaluation approaches for sub-task segmentation is
shown in Figure 7. The first one is to calculate the number of TP, FP, TN, and FN based
on the sample-by-sample mapping between the ground truth and system outputs. Then,
the sensitivity, precision and F-score are applied to assess the system reliability based
on the mapping results. The second approach is to calculate the average of the absolute
time errors between the reference and identified boundaries, where the boundary is the
edge between two sub-tasks. There are two MATE values calculated for the proposed
sub-task segmentation:

• MATEA,B: MATE of the boundaries between sub-task A and sub-task B.
• MATEB,C: MATE of the boundaries between sub-task B and sub-task C.
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• MATEoverall: MATE of all boundaries between sub-task A and sub-task B and between
sub-task B sub-task C.
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4. Results

The experimental results of the shoulder task identification are shown in Table 4. The
results show that the shoulder task identification using SVM model can achieve 87.06%
sensitivity, 88.43% precision and 87.11% F-score, and outperform that using other ML
models. However, the proposed approach using SVM model is still weak to tackle several
shoulder tasks such as T3 (cleaning lower back) and T5 (putting/removing an object
in/form the back pocket) while the F-score of other shoulder tasks can achieve over 90%.

Table 4. The results of the shoulder task identification using machine learning approaches (%).

Shoulder Task
Sensitivity Precision F-Score

SVM kNN CART SVM kNN CART SVM kNN CART

T1 94.12 82.35 70.59 100.00 60.87 66.67 96.97 70.00 68.57
T2 100.00 64.71 64.71 85.00 91.67 78.57 91.89 75.86 70.97
T3 88.24 76.47 82.35 71.43 86.67 77.78 78.95 81.25 80.00
T4 82.35 82.35 76.47 100.00 82.35 68.42 90.32 82.35 72.22
T5 70.59 88.24 76.47 85.71 83.33 81.25 77.42 85.71 78.79

Overall 87.06 78.82 74.12 88.43 80.98 74.54 87.11 79.04 74.11

Note. SVM: support vector machine; kNN: k-nearest-neighbors; CART: classification and regression tree.

The sensitivity, precision, and F-score of the sub-task segmentation using different
ML approaches and window sizes are presented in Tables 5–7, respectively. Generally,
the sub-task segmentation using SVM and kNN models have the similar performance
in sensitivity, precision, and F-score, which outperforms that using kNN model. The
experimental results show that the proposed segmentation approach with SVM model can
achieve the best overall performance in sensitivity (82.27%), precision (85.07%) and F-score
(83.23%) while the worst performance is with CART model. Furthermore, using SVM
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model has the best F-score of 86.53%, 82.75%, and 82.42% in the sub-task A, sub-task B, and
sub-task C, respectively.

Table 5. The sensitivity of the sub-task segmentation using machine learning approaches (%) vs. different window sizes (s).

Window Size (s)
Sub-Task A Sub-Task B Sub-Task C Overall

SVM kNN CART SVM kNN CART SVM kNN CART SVM kNN CART

0.1 77.94 83.88 94.39 90.15 87.43 64.05 78.71 61.40 48.32 82.27 a 77.57 68.92
0.2 83.02 81.46 88.80 88.81 87.12 59.81 74.86 71.39 70.81 82.23 79.99 73.14
0.3 75.91 82.31 83.56 87.80 83.98 63.09 79.43 76.27 75.28 81.05 80.85 73.98
0.4 73.20 78.04 81.73 83.38 76.33 50.92 83.28 80.60 78.64 79.96 78.32 70.43
0.5 74.06 79.61 80.57 87.45 80.94 56.92 82.46 79.50 80.61 81.32 80.02 72.70
0.6 71.50 76.34 73.70 86.27 79.30 56.13 82.21 80.63 81.91 79.99 78.76 70.58
0.7 73.73 74.64 80.16 89.66 84.46 68.15 81.91 77.65 72.33 81.77 78.92 73.55
0.8 67.50 69.98 70.97 86.13 84.87 66.27 80.80 78.07 80.48 78.14 77.64 72.57
0.9 65.00 71.34 76.22 90.39 79.71 68.87 75.12 74.79 74.00 76.84 75.28 73.03
1 66.06 70.52 71.26 87.87 80.20 75.29 80.28 72.54 75.70 78.07 74.42 74.08

1.1 66.61 68.77 77.65 89.71 84.96 69.35 70.61 65.60 67.97 75.64 73.11 71.66
1.2 66.60 68.41 78.80 86.41 77.80 75.31 75.00 67.45 61.82 76.00 71.22 71.98
1.3 66.55 66.70 73.10 90.06 83.40 73.81 71.30 65.82 60.81 75.97 71.97 69.24
1.4 67.85 65.25 67.34 94.35 91.58 83.01 56.94 54.26 56.01 73.05 70.36 68.79
1.5 69.86 66.66 72.79 92.04 90.40 79.48 60.41 55.80 54.91 74.10 70.95 69.06

Note. The best performance of the column is highlighted in bold; SVM: support vector machine; kNN: k-nearest-neighbors; CART:
classification and regression tree. a: The best overall performance.

Table 6. The precision of the sub-task segmentation using machine learning approaches (%) vs. different window sizes (s).

Window Size (s)
Sub-Task A Sub-Task B Sub-Task C Overall

SVM kNN CART SVM kNN CART SVM kNN CART SVM kNN CART

0.1 93.73 81.36 57.94 77.67 73.22 76.97 82.96 93.72 76.26 84.79 82.77 70.39
0.2 90.46 85.71 71.35 78.57 76.26 77.50 86.20 90.94 56.59 85.07 a 84.30 68.48
0.3 91.06 89.23 78.28 76.19 76.15 74.43 80.97 82.08 54.42 82.74 82.49 69.04
0.4 90.48 89.31 78.94 75.40 76.31 75.85 76.56 69.19 49.65 80.81 78.27 68.14
0.5 90.84 88.66 78.10 76.26 76.28 75.07 79.80 77.83 53.19 82.30 80.92 68.78
0.6 89.38 85.14 81.02 75.25 76.38 72.54 76.72 74.21 49.97 80.45 78.58 67.85
0.7 91.47 87.51 69.72 76.86 74.81 77.99 83.53 86.00 63.00 83.96 82.77 70.24
0.8 93.06 87.90 81.66 73.02 74.23 73.87 78.08 84.29 55.61 81.38 82.14 70.38
0.9 94.73 86.09 78.86 71.55 72.70 71.50 86.60 77.96 61.21 84.29 78.92 70.52
1 92.49 86.30 83.49 73.85 70.40 72.37 80.43 81.05 65.88 82.26 79.25 73.91

1.1 93.86 88.22 73.83 70.83 69.17 71.31 79.98 81.50 63.31 81.55 79.63 69.49
1.2 92.25 78.63 76.47 71.40 69.19 74.57 79.12 79.68 73.10 80.92 75.83 74.71
1.3 96.16 83.56 72.32 70.93 68.92 70.42 83.35 79.85 65.18 83.48 77.44 69.31
1.4 96.93 91.79 75.98 68.75 67.01 67.34 89.40 89.02 84.14 85.03 82.61 75.82
1.5 96.29 87.87 75.82 69.34 67.43 68.91 86.31 88.45 80.72 83.98 81.25 75.15

Note. The best performance of the column is highlighted in bold; SVM: support vector machine; kNN: k-nearest-neighbors; CART:
classification and regression tree. a: The best overall performance.
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Table 7. The F-score of the sub-task segmentation using machine learning approaches (%) vs. different window sizes (s).

Window Size (s)
Sub-Task A Sub-Task B Sub-Task C Overall

SVM kNN CART SVM kNN CART SVM kNN CART SVM kNN CART

0.1 84.79 82.29 81.18 82.75 78.81 74.03 80.30 73.45 71.20 82.61 78.18 75.47
0.2 86.53 83.08 79.54 82.42 81.06 68.96 80.74 79.86 65.33 83.23 a 81.33 71.27
0.3 82.68 85.54 83.23 80.77 79.56 73.23 79.20 78.90 70.14 80.88 81.33 75.53
0.4 80.68 83.19 80.65 78.51 75.92 59.56 78.68 73.00 62.32 79.29 77.37 67.51
0.5 81.06 83.84 81.93 80.73 78.22 65.73 80.13 77.74 64.57 80.64 79.93 70.74
0.6 78.96 80.42 83.87 79.11 77.38 67.14 78.59 76.27 64.64 78.89 78.02 71.89
0.7 81.34 80.45 82.24 82.14 78.99 73.95 82.42 80.83 69.49 81.97 80.09 75.23
0.8 78.32 77.83 81.38 78.46 78.96 73.85 78.69 80.44 69.54 78.49 79.08 74.92
0.9 77.06 77.57 79.20 78.83 75.84 68.40 79.93 74.87 60.36 78.61 76.09 69.32
1 76.84 77.51 78.47 79.64 74.79 73.31 80.10 76.34 70.03 78.86 76.21 73.94

1.1 77.96 77.02 77.03 77.81 75.45 70.92 74.53 72.05 69.66 76.77 74.84 72.53
1.2 77.25 72.54 76.57 77.33 73.00 75.76 76.48 71.92 72.43 77.02 72.49 74.92
1.3 78.60 74.11 74.79 78.38 74.47 74.32 76.62 70.94 71.03 77.87 73.17 73.38
1.4 78.87 75.94 75.05 77.78 75.85 74.10 69.26 65.57 68.55 75.30 72.45 72.57
1.5 80.40 75.39 78.28 77.11 75.46 76.67 69.18 64.63 71.73 75.57 71.83 75.56

Note. The best performance of the column is highlighted in bold; SVM: support vector machine; kNN: k-nearest-neighbors; CART:
classification and regression tree. a: The best overall performance.

The results also reveal that the F-score of the sub-task segmentation model using
SVM and kNN models significantly decreases when the window is larger than 1.0 s. Most
of them achieve the best performance as window sizes are 0.2 and 0.3 s. However, the
performance using CART model achieves the best F-score with the window size of 1.5 s.

Tables 8–10 presents the sub-task segmentation performance of MATEA,B, MATEB,C
and MATEoverall using different machine learning models and window sizes for all subjects,
healthy subject and FS patients, respectively. Overall, the proposed segmentation using
kNN achieves the lowest MATEA,B, MATEB,C and MATEoverall in most subject groups.
However, the best machine learning models for MATEoverall and MATEB,C of FS patients
are SVM and CART, respectively. The lowest MATEoverall of all subjects, healthy subjects
and FS patients are 427, 273, and 517 ms, respectively. Also, the experimental results reveal
that the MATE of healthy subjects is lower than that of the FS patients.

Table 8. The MATEA,B, MATEB,C and MATEoverall of all subject using different machine learning models vs. difference window sizes (s).

Window Size (sec)
MATEA,B (ms) MATEB,C (ms) MATEoverall (ms)

SVM kNN CART SVM kNN CART SVM kNN CART

0.1 393 387 a 569 496 466 819 445 427 c 694
0.2 392 438 590 472 473 1238 433 456 914
0.3 468 502 481 522 422 959 495 462 720
0.4 505 525 538 567 577 1549 536 551 1044
0.5 489 559 488 514 447 1419 502 503 954
0.6 536 554 439 555 404 1379 546 479 909
0.7 478 586 496 430 406 1017 454 496 757
0.8 543 551 495 554 403 1024 549 477 760
0.9 560 555 544 499 411 1425 530 483 985
1.0 556 527 558 500 403 b 909 528 465 734
1.1 537 579 612 624 515 916 581 547 764
1.2 561 581 616 591 541 739 576 561 678
1.3 533 494 691 564 550 723 549 522 707
1.4 523 490 676 679 560 816 601 525 746
1.5 498 497 594 698 599 665 598 548 630

Note. The best performance of the column is highlighted in bold; SVM: support vector machine; kNN: k-nearest-neighbors; CART:
classification and regression tree. a: The lowest MATE value of MATEA,B; b: The lowest MATE value of MATEB,C; c: The lowest MATE
value of MATEoverall.
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Table 9. The MATEA,B, MATEB,C and MATEoverall of healthy subject using different machine learning models vs. difference window
sizes (s).

Window Size (sec)
MATEA,B (ms) MATEB,C (ms) MATEoverall (ms)

SVM kNN CART SVM kNN CART SVM kNN CART

0.1 250 223 a 458 328 397 389 289 310 424
0.2 314 282 450 431 301 501 373 292 476
0.3 304 274 442 365 271 514 335 273 c 478
0.4 384 311 438 470 388 796 427 350 617
0.5 325 301 426 342 316 1026 334 309 726
0.6 359 321 359 281 267 b 544 320 294 452
0.7 371 355 486 353 341 481 362 348 484
0.8 436 343 427 490 313 655 463 328 541
0.9 474 361 415 410 332 756 442 347 586
1.0 458 381 398 357 353 635 408 367 517
1.1 427 409 592 573 474 653 500 442 623
1.2 433 380 568 586 574 608 510 477 588
1.3 424 299 695 538 562 786 481 431 741
1.4 411 328 676 778 609 703 595 469 690
1.5 423 357 556 812 633 804 618 495 680

Note. The best performance of the column is highlighted in bold; SVM: support vector machine; kNN: k-nearest-neighbors; CART:
classification and regression tree. a: The lowest MATE value of MATEA,B; b: The lowest MATE value of MATEB,C; c: The lowest MATE
value of MATEoverall.

Table 10. The MATEA,B, MATEB,C and MATEoverall of FS patients using different machine learning models vs. difference window
sizes (s).

Window Size (s)
MATEA,B (ms) MATEB,C (ms) MATEoverall (ms)

SVM kNN CART SVM kNN CART SVM kNN CART

0.1 535 551 a 680 617 536 1250 576 544 965
0.2 472 594 729 562 646 1975 517 c 620 1352
0.3 631 730 520 679 574 1404 655 652 962
0.4 626 739 638 664 767 2302 645 753 1470
0.5 653 817 549 686 578 1812 670 698 1181
0.6 714 788 520 830 541 2215 772 665 1368
0.7 585 817 505 506 470 1554 546 644 1030
0.8 650 759 563 618 494 1394 634 627 979
0.9 646 748 673 588 491 2094 617 620 1384
1.0 654 673 718 643 453 b 1184 649 563 951
1.1 646 749 631 675 557 1178 661 653 905
1.2 689 783 665 596 507 870 643 645 768
1.3 642 690 687 589 538 660 616 614 674
1.4 635 652 675 580 510 929 608 581 802
1.5 573 637 632 584 566 526 579 602 579

Note. The best performance of the column is highlighted in bold; SVM: support vector machine; kNN: k-nearest-neighbors; CART:
classification and regression tree. a: The lowest MATE value of MATEA,B; b: The lowest MATE value of MATEB,C; c: The lowest MATE
value of MATEoverall.

The impact of window sizes in the sub-task segmentation performance of MATEA,B,
MATEB,C and MATEoverall is similar to that of sensitivity, precision and F-score. The
proposed segmentation approach with different machine learning models have the lowest
MATE values when the window size is smaller or equal to 1.0 s. Particularly, the results
show that the proposed segmentation system using window sizes of 0.1 and 1.0 s can
achieve the lowest MATEA,B, MATEB,C and MATEoverall.

An example to demonstrate the processes of ML-based identification and rule-based
modification for sub-task segmentation on the healthy subject is shown in Figure 8. It
presents that a complete segment is often divided into fragments when the system used
ML-based segmentation only, as shown in Figure 8c. For example, a segment of sub-
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task B is divided into 4 fragments. The proposed rule-based modification can correct the
segmentation errors caused by ML-based sub-task segmentation, as presented in Figure 8d.
After the processes of ML-based sub-task segmentation and rule-based modification, the
segmentation errors of this work mainly occur in the boundaries between two sub-tasks,
which decrease the performance of the proposed sub-task segmentation approach.
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Figure 8. An example of the signal performed by the health subject and the processes of the proposed
sub-task segmentation. (a) The accelerometer and gyroscope signals collected from the IMUs placed
on the wrist and arm. (b) The divided segments obtained from the process of sliding window. In
this example, there are 23 segments (c) The classification results for sub-task A, B and C after the
processes of feature extraction and ML-based sub-task segmentation, where the TP, TN, FP, and FN
are annotated. (d) The classification results after the processes of rule-based modification, where the
modified sliding segments are highlighted in red square (e.g., w4, w10, w15, w22) and the successful
modification results are annotated.
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5. Discussion

Various sensor technologies have been applied to develop objective evaluation sys-
tems, including range of motion measurement and function evaluation. To tackle the issues
in labeling errors and bias during the measurement, we propose an automatic functional
shoulder task identification and sub-task segmentation system using wearable IMUs for FS
assessment. The proposed approach can achieve 87.11% F-score for shoulder task identifi-
cation, and 83.23% F-score, 387 MATEA,B and 403 MATEB,C for sub-task segmentation. The
proposed system has the potential to support clinical professionals in automatic shoulder
task labeling and sub-task information obtainment.

The results show that the proposed shoulder task identification has poor performance
on T3 and T5 as the F-score on them are lower than 80%. This is because several FS patients
are unable to move hands to the lower back but they can reach the back pocket while
performing T3. The execution of T3 and T5 performed by the patients have very similar
movement patterns. Such a situation confuses the models for identification of T3 and T5,
even for SVM model.

Several machine learning models have been applied in this work, including SVM,
CART and kNN. Previous works have shown the feasibility and the effectiveness of these
models in movement identification and segmentation [16–20]. The proposed segmentation
approach using SVM and kNN models can achieve the best performance in F-score and
MATE, respectively. However, the differences between their segmentation performance
are very close in the two evaluation performance approaches. Considering that the kNN
model has the advantages of less computation complexity and simple implementation, the
kNN model is more suitable for the proposed system.

Previous studies have shown that the sliding window approach is sensitive to the
window sizes [35]. The proposed sub-task segmentation approach has similar experimental
results as the segmentation performance with different window sizes ranges over 10%.
This is because the larger sizes of the window may smooth the movement characteristics
that confuse the identification models and lead to misidentification. Also, using too larger
window sizes may lead to early or late segmentation of the sub-tasks, which increases
the segmentation errors of the proposed system. An illustration of the segmentation
performance using smaller and larger window sizes is shown in Figure 9.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 23 
 

 

5. Discussion 
Various sensor technologies have been applied to develop objective evaluation sys-

tems, including range of motion measurement and function evaluation. To tackle the is-
sues in labeling errors and bias during the measurement, we propose an automatic func-
tional shoulder task identification and sub-task segmentation system using wearable 
IMUs for FS assessment. The proposed approach can achieve 87.11% F-score for shoulder 
task identification, and 83.23% F-score, 387 ܧܶܣܯ, and 403 ܧܶܣܯ, for sub-task seg-
mentation. The proposed system has the potential to support clinical professionals in au-
tomatic shoulder task labeling and sub-task information obtainment. 

The results show that the proposed shoulder task identification has poor perfor-
mance on T3 and T5 as the F-score on them are lower than 80%. This is because several FS 
patients are unable to move hands to the lower back but they can reach the back pocket 
while performing T3. The execution of T3 and T5 performed by the patients have very 
similar movement patterns. Such a situation confuses the models for identification of T3 
and T5, even for SVM model. 

Several machine learning models have been applied in this work, including SVM, 
CART and kNN. Previous works have shown the feasibility and the effectiveness of these 
models in movement identification and segmentation [16–20]. The proposed segmenta-
tion approach using SVM and kNN models can achieve the best performance in F-score 
and MATE, respectively. However, the differences between their segmentation perfor-
mance are very close in the two evaluation performance approaches. Considering that the 
kNN model has the advantages of less computation complexity and simple implementa-
tion, the kNN model is more suitable for the proposed system. 

Previous studies have shown that the sliding window approach is sensitive to the 
window sizes [35]. The proposed sub-task segmentation approach has similar experi-
mental results as the segmentation performance with different window sizes ranges over 
10%. This is because the larger sizes of the window may smooth the movement character-
istics that confuse the identification models and lead to misidentification. Also, using too 
larger window sizes may lead to early or late segmentation of the sub-tasks, which in-
creases the segmentation errors of the proposed system. An illustration of the segmenta-
tion performance using smaller and larger window sizes is shown in Figure 9. 

 
Figure 9. An illustration of the segmentation performance using smaller and larger window sizes. 
(a) The classification results using smaller window size, where the window size is 0.5ݏ. (b) The 
classification results using larger window size, where the window size is 1.5ݏ. 

Figure 9. An illustration of the segmentation performance using smaller and larger window sizes.
(a) The classification results using smaller window size, where the window size is 0.5 s. (b) The
classification results using larger window size, where the window size is 1.5 s.
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Figure 10 shows the signal of T2 “clean upper back and shoulder task” collected from
the FS patient and healthy subject using a wrist-worn sensor. Due to stiffness and pain of
the shoulder, the FS patients perform the shoulder task slowly and carefully with a limited
range of motion. Obviously, the movement patterns of the three sub-tasks performed by
the FS patient are significantly different from those performed by the healthy subject. It
means the shoulder task can be performed in diverse ways according to the health status
and the function of the shoulder, which leads to identification challenges of variability and
similarity to the shoulder task identification and sub-task segmentation [32].
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Figure 10. An example of the data of the T2 task “cleaning upper back and shoulder” collected from the wrist-worn sensor,
which are performed by (a) the FS patient and (b)the healthy subject.

To our best knowledge, this is the first study aiming to identify and segment upper
limb movements of shoulder tasks using machine learning approaches in FS patients,
especially for FS assessment. Machine learning models have been successfully applied to
automatic movement identification and recognition models to analyze lower limb move-
ments in other clinical applications [16–20]. However, most IMU-based shoulder function
assessment systems still rely on manual operation [10,21–24]. Our results demonstrate the
feasibility and effectiveness of the ML-based functional shoulder task identification for
supporting clinical assessment and proof of concept. Moreover, the proposed system can
obtain sub-task information from continuous signals, which has the potential for further
analysis and investigation of functional performance.

Some technical challenges still limit the performance of the proposed system to shoul-
der task identification and sub-task segmentation, including gesture time, variability,
similarity, and boundary decision. We plan to test other powerful machine learning models
to improve identification and segmentation performance, such as CNN, LSTM, longest com-
mon subsequence (LCSS) dynamic time warping (DTW), hidden Markov model (HMM)
and conditional random field (CRF). Another limitation is that the proposed automatic
system is validated on five shoulder tasks only. More shoulder tasks from other clinical tests
and questionnaires are going to be explored for validation of the proposed system, e.g., sim-
ple and shoulder score [14], American Shoulder and Elbow Surgeons score [40], and so on.
Furthermore, there are only nine FS patients and nine healthy subjects participating in this
work. More FS patients with different functional disabilities, the different ages of healthy
subjects and different disease groups will be recruited for validation and investigation.

6. Conclusions

In order to support FS assessment in the clinical setting, we propose a functional
shoulder task identification system using IMUs for shoulder task identification and sub-
task segmentation. We use several typical pattern recognition techniques, machine learning
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models and rule-based modification to automatically identify five shoulder tasks and
segment three sub-tasks. The feasibility and reliability of this study are validated with
healthy and FS subjects. The experimental results show that the proposed system has the
potential to provide automatic labeling of the shoulder task and sub-task information for
clinical professionals.
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