Skip to main content
. 2020 Dec 28;13(1):57. doi: 10.3390/cancers13010057

Table A6.

Hyperparamter bounds for Bayesian optimization.

XGBoost Hyper Parameters Lower Bound Upper Bound
scale_pos_weight Y = 0/Y = 1 2 + Y = 0/Y = 1
n_estimators 10 1000
learning_rate 0.1 1
min_child_weight 1 10
max_depth 3 12
subsample 0 1
colsample_bytree 0.3 1
gamma 0 5
reg_alpha 1 × 10−5 0.75
reg_lambda 1 × 10−5 0.45

Y = 0: patient without relapse at 18 months, Y = 1 patients with relapse at 18 months. Bold: highlight labels of lines.