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Abstract: Samples of triticale seeds of various qualities were assessed in the study. The seeds
were obtained during experiments, reflecting the actual sowing conditions. The experiments were
conducted on an original test facility designed by the authors of this study. The speed of the air
(15, 20, 25 m/s) transporting seeds in the pneumatic conduit was adjusted to sowing. The resulting
graphic database enabled the distinction of six classes of seeds according to their quality and sowing
speed. The database was prepared to build training, validation and test sets. The neural model
generation process was based on multi-layer perceptron networks (MLPN) and statistical (machine
training). When the MLPN was used to identify contaminants in seeds sown at a speed of 15 m/s,
the lowest RMS error of 0.052 was noted, whereas the classification correctness coefficient amounted
to 0.99.

Keywords: triticale; entropy; image analysis and processing; artificial neural networks

1. Introduction

Sowing is one of the most important operations in the cultivation of cereals and other
crops, because it determines the success of all subsequent operations and the essence
of agriculture, which is specific and the most important branch of economy for human
survival. Currently, machines with a very large working width are increasingly used for
sowing. They work independently or are used as components for cultivation and sowing
units. They seem to indicate the dynamic development of simplified sowing methods [1–3].
These are usually machines with a mechanical central seed metering unit (sowing unit)
and pneumatic transport and distribution of seeds into individual rows [4]. Seeds are
separated in special distribution heads invented by Weist in the 1950s [5]. The advantage
of this system is its lightness and simplicity. The seed drill can be easily folded for road
transport. While pneumatic seed drills have a lot of advantages, such as high efficiency, the
possibility to be mounted on a combined cultivator, quick and easy loading of seeds, they
also have some disadvantages. One of the most important disadvantages is low lateral
sowing evenness, especially in hilly terrains [6,7].

There are a lot of scientific studies on the causes of uneven sowing of seeds with
pneumatic seed drills [8–13] and methods of assessment of sowing evenness [14,15]. Re-
searchers conducted experiments on the numerical simulation of seed dosing [16] and
the separation of the mixture of airstream and seeds in the distributor head of the seed
drill [17–19]. Unfortunately, these authors did not conduct any research to find out how
seed contamination influenced the evenness of the distribution of the dosed stream.

It is usually impossible to control sowing in individual seed ducts [20] and to detect
impurities or damaged seeds in commonly used universal and pneumatic seed drills. There
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have been scientific reports with examples of attempts to solve this problem with optical
sensors [21]. There have also been experiments on piezoelectric sensors placed inside the
distributor head of the seed drill [22] and tests of the sensitivity of various sensors [21,23].
Patent literature provides an example with an attempt to use capacitive sensors—US Patent
4782282 A. However, the experiment showed that this method was not promising due
to slight changes in the capacitance of the sensors. Researchers from the University of
Paderborn invented a honeycomb-shaped piezoelectric sensor, mounted on top of the
distribution head and in the ducts, which can count seeds and monitor their flow [24].
For many years scientists have been working on various sowing control systems, mainly
based on photoelectric sensors detecting individual seeds. One of the latest and heavily
advertised achievements in this field is the ‘seed eye’ system developed by Väderstad [25].

A similar system was developed at the Poznań University of Technology between 2009
and 2012 [5]. It was also based on photoelectric sensors built from a single photoelement.
This single photoelement was placed at the point of seed flow concentration on the outer
arc of the measuring elbow. As a result, it was not necessary to X-ray the entire cross-section
of the channel and thus the construction of the sensor could be simplified.

However, no seed quality control system has thus far been developed, i.e., a system
detecting seed contamination as well as small and damaged seeds, which do not guarantee
a good yield.

At present, there are attempts to find optimization solutions to effectively identify
various decision-making processes in real time. This study is based on a method of artificial
intelligence, i.e., artificial neural networks.

Recently, artificial neural networks (ANN) have been used to classify [26], analyze
data [27], predict [28–30], control [31] and assess the quality of biomaterials [32,33]. What
is an important practical feature of ANN is the fact that trained neural models work online.
This enables continuous control (monitoring) of the identification of contamination of
triticale seeds in real time.

Classification means finding a classifier that will enable the division of a set of elements
into groups called classes. Elements belonging to one group are called objects [26,34]. They
may differ from each other, but not in the properties due to which they are assigned to a
particular class. The seeds in our research were divided into three classes of triticale: select,
screenings and chaff.

Multilayer Perceptron (MLP) is an example of a neural network that is most often used
in classification problems [35,36]. It is a unidirectional network, trained with the trainer
method. It has multilayer architecture with at least one hidden layer. Only communication
between neurons in neighbouring layers is possible. The activation function for hidden
neurons is non-linear (sigmoidal). It is a unidirectional network, trained by a teacher, which
has a multi-layer architecture with at least one hidden layer. The principle of operation of
the unidirectional network is based on training, which uses a backpropagation algorithm.
This means that the method enables the selection of modulating variables (weights) so
that the data error (i.e., Root Mean Square Error) is as low as possible [30]. The set of
modulating variables enables the acquisition of information from other neurons. The
weights determine the values of the matched data by connecting nodes between individual
neurons. The activation function for hidden neurons is non-linear (sigmoidal) [30,37,38].

The way of preparing the dataset is important in classification. Recently, image
analysis has also played a major role in various research areas. Image analysis includes:
segmentation [39], location of objects and the identification of geometric parameters [40],
models of colors [41,42], detection of edges and texture from the image. The computer
imaging process is not easy. It is complex and takes time to get a promising result [43].
Consequently, the existing methods of image analysis are continuously modernized.

The aim of this study was to apply one of the methods of artificial intelligence, i.e.,
neural networks, to identify contaminants in seeds by means of image analysis and a
camera for displaying quick photos. The behavior of three main variants of triticale seeds
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sown by pneumatic seed drills was investigated: select triticale, triticale screenings, and
triticale chaff.

2. Materials and Methods
2.1. Preparation of Samples

The most common cereal seeds sown in Poland were used in the study. The research
material consisted of triticale seeds of the Rotondo cultivar, whose initial moisture content
in each class of triticale was as follows (Figure 1): select—9.8%, screenings—10.7%, and
chaff—9.9%. Triticale seeds were harvested on one of the local farms in the town of Kórnik,
Wielkopolskie Voivodeship, Poland.
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At the next stage of the research the dose of seeds sown was determined—it was
based on the most common dose in Poland, i.e., 168 kg/ha. Before the experiments had
an adequate stream of the mass of seeds flowing through the pneumatic conduit was
selected, so that it would correspond to the dose of 168 kg/ha, i.e., the sowing density was
400 pcs/m2. The sowing density was calculated according to the following formula [44]:

sowing density =
(number of seeds sown · germination capacity)

TKW
(1)

where:

• sowing density. the number of plants per area unit (pcs/m2),
• number of seeds sown (kg/ha),
• TKW—Thousand Kernel Weight (g), and
• germination capacity—for qualified seeds MINIMUM 80% for triticale.

2.2. Test Facility

An original test facility was built for the experiment in order to reflect the actual oper-
ating conditions of the sowing control system as much as possible. The facility consisted of
the following elements (Figure 2):
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• a seed sowing unit, including: a seed dispenser and sowing rollers driven by an
electric motor with adjustable rotational speed of the pneumatic channel (1),

• a Chronos 1.4 camera (2),
• a screen with a scale (10 mm) (3),
• an armoured pneumatic hose (4),
• a vacuum cleaner with the blower function and rotational speed control (5),
• two LED lamps with a system (6), and
• a seed container (7).
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4—pneumatic hose, 5—vacuum cleaner with the blower function, 6—LED lighting with a stabiliser,
and 7—seed container.

One of the variable factors checked in the tests was the influence of the speed of air
transporting seeds in the pneumatic conduit, i.e., 15, 20, and 25 m/s based on the air speeds
used in pneumatic seed drills. Pneumatic conduits in seed drills are arranged in different
configurations and they differ in length. For this reason, an S-shaped arrangement of the
conduit was chosen, because this configuration is the most common in seed drills with
two-meter conduits.

The seed dispenser was made from a typical sowing roller with a diameter of 80 mm
(the pin sowing unit), which was driven by a 500 W electric motor. Changes in the voltage
resulted in changes to the rotational speed of the sowing roller. As how big the seed
mass stream needed to be was known, it was possible to calibrate the dispenser at the
appropriate value of rotational speed so as to obtain a sowing density of 400 pcs/m2.

The last stage of the experiments involved attempts to set the appropriate speed of air
in the pneumatic conduit. The aim of the project was to generate an airstream, transporting
seeds in the pneumatic conduit by means of a STANLEY SXVC20PTE vacuum cleaner of
Annovi Reverberi S.p.A., Bangkok, Thailand with a nominal power of 1200 W, with the
blower function. The power of the vacuum cleaner was adjusted with a potentiometer,
which controlled the speed of air within a range of 5–50 m/s.

In order to verify at which speed of transporting air the largest number of small or
damaged seeds could be seen, speeds of 15, 20 and 25 m/s were selected. The obtained val-
ues were checked with a VOLTCRAFT VPT—100 pressure anemometer with a measuring
range of 1–80 m/s and accuracy of +/− 2.5%.

The following factors were assumed in laboratory tests:
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(a) constant factors:

• triticale seed sowing rate 266.7 g/min, which corresponds to 168 kg/ha,
• sowing speed of 8 km/h, and
• cable configuration: K1 (see Figure 2),

(b) variable factors:

• airstream speed: 15 m/s, 20 m/s, 25 m/s, and
• type of seeds: select, screenings, waste,

(c) outcome factors:

• speed of caryopses (m/s), and
• acceleration of caryopses m/s2.

2.3. Preparation of Material for Tests with Camera

The graphical data of triticale seeds with different variability (according to the speed
and type of seeds) were obtained with a Chronos 1.4 camera of Kron Technologies Inc.
Eastlake Dr, Burnaby, Canada, characterized by a high range of image display frequency
during the movement of triticale seeds. This is a high-speed camera with a built-in
1.3-megapixel image intensifier, which records transmission rates up to 1057 kbps at
a resolution of 1280 × 1024 or even up to 38,500 kbps at lower resolutions.

As a result of the experiment, nine videos were recorded in the MP4 format at a data
transmission rate of about 9400 kbps and image resolution of 640 × 360. Frame pacing
is important when video devices are used. The more frames per second displayed, the
smoother the image is. According to the European TV standard, the correct frame rate is
24 fps. In our tests, the same image display parameters were maintained, i.e., 58 fps, to
ensure the repeatability of the results and comparison of speed.

2.4. Edge Detection with the Kirsch Mask

Edge detection is a method of computer image analysis, which includes: image
exposure, processing, analysis and classification. The analysis of the resulting image is
interpreted by means of: segmentation, location of objects and extraction of the following
traits from the image: geometric parameters, color models and image texture. The Kirsch
mask consists of pattern recognition by means of segmentation to detect edge pixels in
the image. Edge pixels are defined as a set of points (pixels) located on a curve that
separates the neighboring points (pixels) or points (pixels) on the other side of the curve,
which differ in brightness. The aim of the project was to detect local discontinuities in
the brightness level and the outline of the research material [45–47]. The Kirsch mask
consists of matching the perfect pattern to the edge pixels of the research material. The
Kirsch mask in this study used a 5 × 5 matrix. It was based on the free AForge.NET
framework (http://www.aforgenet.com/framework/). The authors of this study prepared
original functions written in the C# language to import the library to their original ‘PID
system’ program. The Kirsch mask edge detection process involved the use of greyscale
functions in the ‘PID system’ program to convert 24-bit color images into monochrome
(8-bit) greyscale images. In the next step, the Aforge.NET library and original auxiliary
functions were used to convert the monochrome images into photos with the Kirsch mask.

2.5. Image Processing

At the next stage of the research the training sets of triticale seed classes were designed.
In order to obtain digital images, image frames were extracted by means of the VLC Media
Player. This free software for watching videos also saves images in .tiff files. As a result,
a series of digital photos with a resolution of 640 × 360 was obtained. Table 1 shows
the number of photos obtained for each video, allowing for a type of triticale seeds. The
photos extracted from the video required preparation of an image pattern in order to
determine the representative traits of the image. The original ‘PID system’ (Przybył
Image Detector system) software [48] was used for image processing and analysis. It

http://www.aforgenet.com/framework/
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accelerated the generation of the image pattern. The software included a batch module
for collective image processing. A series of graphic objects with a resolution of 640 × 360
was imported to the ‘PID system’. The images were collectively filtered with the Kirsch
mask and were then exported to the catalogue. At the next stage, the size of the processed
image was reduced/cropped with the Kirsch mask in order to obtain a lower resolution
image. Like the Kirsch mask, the image processing module in the program allows for
collective cropping, having specified the parameters, i.e., image coordinates. This procedure
resulted in a set of bitmaps with a resolution of 320 × 280 and 24-bit image depth. Texture
descriptors were extracted from the resulting images. The term texture refers to the
three-dimensional graphics technique, which is used to present details of the surface of
spatial objects by means of bitmap images (textures) or mathematical functions (procedural
textures). However, texture cannot always be described in a deterministic way. Statistical
methods describe texture as a nondeterministic distribution of dependencies between
neighboring pixels. The authors of this study used the Grey-Level Co-occurrence Matrix
(GLCM) [49,50] to extract texture descriptors. This statistical method examines texture on
the basis of the spatial relationship between pixels. The measurements and statistics of
selected texture descriptors were based on the GLCM, which used the individual formulas
shown below [51–54]:

Table 1. The distribution of the frequency of training cases depending on the sowing speed and the type of triticale seeds.

Name Speed [m/s] Select Screenings Chaff Number of Training Cases

Z1 15 200 200 200 600
Z2 20 50 50 50 150
Z3 25 100 100 100 300
Z4 15, 20, 25 200, 200, 200 200, 200, 200 200, 200, 200 1800

Angular Second Moment (ASM):

ASM = ∑i ∑j{p(i, j)}2, (2)

Entropy of texture descriptors based on the GLCM:

entropy = −∑i ∑j p(i, j) log(p(i, j)), (3)

The correlation that measures the probability of joint occurrence of certain pairs of
pixels is calculated in MATLAB with greycoprops:

correlation =
∑i ∑j(ij)p(i, j)− µxµy

σxσy
, (4)

Contrast—local variations in the grey level co-occurrence matrix. This value is calcu-
lated in MATLAB by means of the greycoprops function (Park et al., 2001):

contrast = ∑i ∑j p(i− j)2p(i, j), (5)

Inverse Difference Moment—pairs of pixels of feature for texture based on the GLCM:

inverse difference moment = ∑i ∑j
1

1 + (i− j)2 p(i, j), (6)

where:

µx and µy—average as a function of the probability of occurrence of pairs of pixels,
σx and σy—mean standard deviations as a function of the probability of occurrence of
similarity between pixels,
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p(i, j)—i and j are coordinates of Grey-Level Co-occurrence Matrix.

2.6. Construction of the Training Sets

When creating artificial neural networks, the first stage involves designing training
sets. It is very important to select quality discriminants, i.e., textural descriptors, and the
number of training cases (repetitions) to obtain adequate results (Table 1). The texture
descriptors data were extracted from the database of the adapted resulting images (i.e.,
the creation of the image pattern shown in Figure 1), which refer to the identification of
contaminants in seeds. The original ‘PID system’ software was used at this stage of image
processing (Figure 3) [48]. The descriptors were extracted into MS Excel spreadsheets and
four training sets created. The number of their repetitions is shown in Table 1 (Z1, Z2, Z3,
and Z4). Each training case included the following texture descriptors [26,51]: angular
second moment, entropy, contrast, correlation, and inverse difference. The numerical data
(descriptors) were obtained by means of the Matlab and ‘PID system’ software. Next,
the training sets were imported into Statistica. Each training set represented a set of the
aforementioned descriptors and was divided into training, validation and test subsets at
a 2:1:1 ratio [30]. The subsets were not used in the creation of artificial neural networks.
Figure 3 shows the image processing, analysis and classification algorithm (based on
the interpretation of texture descriptors extracted from the image) in the artificial neural
networks creation process.
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3. Results and Discussion
3.1. Results of Artificial Networks

As a result of neural networks training, the networks with the lowest Root Mean
Square (RMS) error were obtained (Table 2) [37,55]. In view of the fact that the use of multi-
ple architectures resulted in such high diversity of neural networks, it is very important to
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choose the ones that will be the most helpful to solve the problem. It might be a good idea
to look at the problem area and then select several networks for training and testing. The
networks with the smallest error will be the closest to reality and they can be used to solve
the problem. Table 2 shows the networks characterized by the highest classification ability
for each set. The lowest RMS error, i.e., 0.052 for the training, test and validation sets was
noted for the MLP network with five input variables (five texture descriptors) belonging
to the input layer, 23 neurons in the hidden layer and three neurons in the output layer.
The output layer of the network defined a three-state variable, i.e., types/classes of triticale
seeds. The MLP 5-23-3 network was selected from set Z1, for which the resulting image
was obtained at a speed of 15 m/s. The MLP 5-6-3 network was selected from set Z2. It
had a structure with the same parameters in the input and output layer and six neurons
in the hidden layer. The RMS error of the MLP 5-6-3 network was 0.097 at 20 m/s. When
the speed was 25 m/s, the MLP 5-3-3 network had a structure with five neurons in the
input layer, three neurons in the hidden layer and three neurons in the output layer. The
RMS error was 0.187. As the speed of the air transporting triticale seeds increased, so did
the error, whereas the classification efficiency decreased. The process of recognition of
individual sets was confirmed by the network simulation process with randomly selected
outcome images obtained at all speeds of the airstream transporting seeds through the
pneumatic channel. As a result, an MLP 5-35-3 network with five input neurons, 35 hidden
neurons and three output neurons in the structure was obtained. The RMS error of this
network was 0.232.

Table 2. Network training results.

Name of Learning Set Z1 Z2 Z3 Z4

Ann model MLP 5-23-3 MLP 5-6-3 MLP 5-3-3 MLP 5-35-3
Training error 0.060 0.095 0.160 0.226

Validation error 0.038 0.091 0.186 0.251
Testing error 0.058 0.103 0.214 0.220

Quality of learning 0.990 0.973 0.933 0.894
Quality of validation 0.999 0.999 0.947 0.844

Quality of testing 0.993 0.990 0.920 0.913
Training cases 600 150 300 1800

Training algorithm BP50, CG257b BP50, CG227b BP50, CG69b BP50, CG1094b

The correctness of the classification in the test set did not exceed the results in the
training set. This means that the networks in Table 2 were not overtrained. In practice, the
selected networks were characterized by an excellent classification factor, i.e., above 0.91
for the test set. The best result for the test set was 0.99, when networks with the triticale
seed flow speeds of 15 and 20 m/s were simulated. There were also very good results in
the network with a seed flow speed of 25 m/s.

3.2. Results of Statistical Analysis

A correlation analysis was applied to determine which variable in the set was char-
acterized by high dependence [56,57]. As can be seen in Tables 3–5, the entropy variable
exhibited the strongest correlation. The highest correlation for the entropy variable was ob-
tained when seed transport at a speed of 15 m/s was simulated. The entropy variable was
strongly positively correlated (at 0.92) with the contrast variable and strongly negatively
correlated with all the other variables. An increase in the speed of seed transport through
the pneumatic channel reduced the strong dependence of the entropy variable in relation
to the other parameters. The entropy variable improved the identification of triticale seed
classes. It was one of the GLCM texture variables that improved the reproduction of image
details. Like other reference publications, our study also proved that entropy had the
greatest influence on improvement of the image pattern and texture analysis [58,59].
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Table 3. The correlation matrix of set Z1.

Angular Second Moment Contrast Correlation Inverse Difference Moment Entropy

Angular Second
Moment 1

Contrast −0.851 1
Correlation 0.779 −0.830 1

Inverse Difference
Moment 0.900 −0.780 0.788 1

Entropy −0.935 0.925 −0.859 −0.927 1

Table 4. The correlation matrix of set Z2.

Angular Second Moment Contrast Correlation Inverse Difference Moment Entropy

Angular Second
Moment 1

Contrast −0.526 1
Correlation 0.046 −0.778 1

Inverse Difference
Moment 0.989 −0.438 −0.061 1

Entropy −0.967 0.696 −0.275 −0.932 1

Table 5. The correlation matrix of set Z3.

Angular Second Moment Contrast Correlation Inverse Difference Moment Entropy

Angular Second
Moment 1

Contrast −0.504 1
Correlation 0.084 −0.604 1

Inverse Difference
Moment 0.954 −0.350 −0.041 1

Entropy −0.907 0.772 −0.361 −0.786 1

Figure 4 shows that, due to the change in speed, the entropy variable exhibited linear
dependence of data at 15 m/s. Thus, as the speed increased, the frame pacing deteriorated
the image quality, which resulted in a non-linear dependence of the entropy variable.
Consequently, the correlation value decreased (Tables 4 and 5).

By comparison, principal component analysis was applied. Tables 6–8 show the
eigenvalues of the correlation matrices as measures of variability of the original data
presented in the coordinates of the principal components. The specific values of these
variances are shown in the second row of the table. The eigenvectors define the individual
principal components PC1–PC6. The set of the values of the texture traits at a seed sowing
speed of 15 m/s shows the eigenvalue of 5.144 for the first component. The percentage of
the variance explained by this component was 85.734%. The second component explained
much less variance, i.e., 5.4%, and its eigenvalue was 0.324. According to the Kaiser
criterion, the principal component for which the eigenvalue is greater than one is sufficient
for interpretation. The first two components carried over 90% of the variance of the
original data.
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Table 6. The eigenvalues of the correlation matrix (15 m/s).

Eigenvalues PC1 PC2 PC3 PC4 PC5 PC6

Variance 5.144 0.324 0.273 0.180 0.060 0.019
% of var. 85.734 5.400 4.546 2.995 1.008 0.316

Cumulative% of var. 85.734 91.134 95.680 98.676 99.694 100

Table 7. The eigenvalues of the correlation matrix (20 m/s).

Eigenvalues PC1 PC2 PC3 PC4 PC5

Variance 3.410 1.487 0.090 0.010 0.004
% of var. 68.195 29.739 1.797 0.190 0.078

Cumulative% of var. 68.195 97.935 99.732 99.922 100.00

Table 8. The eigenvalues of the correlation matrix (25 m/s).

Eigenvalues PC1 PC2 PC3 PC4 PC5

Variance 3.274 1.357 0.296 0.062 0.011
% of var. 65.484 27.133 5.916 1.242 0.224

Cumulative% of var. 65.484 92.618 98.534 99.776 100

The interdependencies of the variables were compared at a seed sowing speed of
20 m/s. The eigenvalue for the first component was 3.410 and the percentage of the
variance it explained was 6.195%. The second component explained much less variance,
i.e., 29.739%, and its eigenvalue was 1.487. The first two components carried over 97% of
the variance of the original data.

The variance of the values at a seed sowing speed of 25 m/s gave the eigenvalue of
3.274 for the first component. The percentage of the variance explained by this component
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was 65.485%. The second component explained the variance at 27.133% and its eigenvalue
was 1.357. As a result, the first two components carried over 92% of the variance of the
original data.

The eigenvalues of the correlation matrices showed that the statistical variance of the
data in two dimensions was very good, i.e., approximately over 90%. A change in the seed
transport speed decreased the variance of the original data. This was also manifested by
weaker correlation of the entropy value with the other variables.

As a result of the progress made in the research area concentrating on classification
issues [26,30,40] with Artificial Neural Networks (ANN, quality changes were observed in
relation to farm and food products, which are dictated by consumer expectations [26,34].
This method is based on neural models supported by computer analysis of images, which
is faster and more efficient in comparison to the traditional calculating methods. Artifi-
cial Neural Networks (ANN) allows us to make more effective simulations of complex
processes, among other things, via the process of learning parallel with information pro-
cessing [29,34]. On the basis of the research results, it was found that the image analysis
is an effective technique of recognizing contamination of triticale seeds. Application of
traditional methods of classification is slow and often results in improper classification or
comes from harvests from previous years. Currently, there is no system that could indicate
that a given seed material is contaminated with chaff, which would entail the use of bigger
dosage of seed material to ensure the required density of sowing per hectare [60,61]. It
sometimes happens that seeds are really small (tailings), especially during dry years. In
such a situation, one should decrease seed material dosage in order to ensure a proper
sowing. Sowing units used in standard seeders fail to dispense seeds precisely, but only
dispense seeds in volume portions. That is why the first step was taken to devise the
system of contamination recognition of tiny seeds (tailings). In precise farming, automated
seeders are used more and more often and the above system could be applied in those
devices [62,63]. It was also noted that high effectiveness in the process of classifying various
varieties of grains can be achieved when one takes into consideration proper determination
of physical features of grains such as: the mass of a thousand seeds, average geometrical
diameter, globosity, grain volume, area, hopper density, real density, porosity and color
parameters [64]. It turns out that one can quickly and non invasively evaluate sowing as
well as inner structure of grains on the basis of bitmap. The parameters of color can have a
tremendous influence on effective evaluation of product quality, because it is responsible
for sensory changes in agricultural produce that are subject to research and examination.
It can translate into high quality grains, which is the most important indicator in flour
production and bread baking [65], cake baking, noodles making and in the brewery indus-
try [27]. The ANN that was created can be a useful tool supporting the existing systems of
seeding grains.

4. Conclusions

The research showed that the classification error of the generated networks in the
recognition of the type of triticale seeds ranged from 6% to 22% in relation to the test set.

The experiment showed that, as the speed increased, the effectiveness of recognition
of individual triticale seed classes decreased. The most effective recognition was noted
at a speed of 15 m/s. It was the MLP 5-23-3 network, whose RMS error value was 0.052,
whereas its classification correctness coefficient was 0.99.

The statistical analysis confirmed the influence of variables on the speed of seed
transport. The entropy variable was the most strongly correlated with the other variables,
which indicates particular importance of this variable in the dataset.

The entropy variable was the most potent texture factor because it affected image
recognition (bitmap) to the greatest extent.

The topology of the MLP network proved to be the best at recognizing the triticale
seed classes.
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