Skip to main content
. 2020 Dec 28;21(1):136. doi: 10.3390/s21010136

Table 1.

3D detection and bird’s eye view detection performance: Average precision (AP) (%) of the car on the KITTI validation set.

Type Method Modality 3D Detection (IoU = 0.7) BEV Detection (IoU = 0.7) FPS
Easy Moderate Hard Easy Moderate Hard
MV3D [20] RGB + LiDAR 71.29 62.68 56.56 86.55 78.10 76.67 3
AVOD-FPN [21] RGB + LiDAR 84.41 74.44 68.65 N/A N/A N/A 10
2-stage F-PointNet [22] RGB + LiDAR 83.76 70.92 63.65 88.16 84.02 76.44 6
IPOD [30] RGB + LiDAR 84.10 76.40 75.30 88.30 86.40 84.60 N/A
PointRCNN [25] LiDAR 88.88 78.63 77.38 N/A N/A N/A 10
VoxelNet [11] LiDAR 81.97 65.46 62.85 89.60 84.81 78.57 4
SECOND [12] LiDAR 87.43 76.48 69.10 89.96 87.07 79.66 25
Pointpillars [13] LiDAR 86.13 77.03 72.43 89.93 86.92 84.97 62
1-stage 3DBN [31] LiDAR 87.98 77.89 76.35 N/A N/A N/A 8
TANet [14] LiDAR 88.21 77.85 75.62 N/A N/A N/A 29
Voxel-FPN [32] LiDAR 88.27 77.86 75.84 90.20 87.92 86.27 50
PSANet (Ours) LiDAR 89.02 78.70 77.57 90.20 87.88 86.20 11