Skip to main content
. 2020 Dec 24;21(1):56. doi: 10.3390/s21010056

Table 7.

Comparisons results based on 4-class based DFD systems by using hybrid deep learning based classifier (CNN and RNN–LSTM) along with traditional machine learning (SVM, ANN) and 12 different subjects and recorded time is 30 min.

Classifiers AL VL MD ED
ANN SE: 65.6, SP: 67.5, PR: 0.64, ACC: 67 SE: 66.2, SP: 67, PR: 0.65, ACC: 68 SE: 67, SP: 68.3, PR: 0.65, ACC: 68 SE: 75.3, SP: 76.4, PR: 0.75, ACC: 76.5
SVM SE: 81.3, SP: 82.2, PR: 0.80, ACC: 81 SE: 80.0, SP: 81.5, PR: 0.81, ACC: 80 SE: 71.2, SP: 72.3, PR: 0.70, ACC: 71 SE: 77.1, SP: 78.1, PR: 0.78, ACC: 79.5
CNN+ANN SE: 82.6, SP: 83.4, PR: 0.82, ACC: 82 SE: 80.4, SP: 81.3, PR: 0.82, ACC: 81 SE: 72.4, SP: 73.5, PR: 0.73, ACC: 72 SE: 78.4, SP: 79.1, PR: 0.78, ACC: 79.0
CNN+SVM SE: 81.3, SP: 82.2, PR: 0.80, ACC: 81 SE: 84.0, SP: 85.5, PR: 0.83, ACC: 84 SE: 78.2, SP: 79.3, PR: 0.78, ACC: 77 SE: 80.1, SP: 81.1, PR: 0.81, ACC: 81.5
CNN with soft-max classification SE: 82, SP: 83,
PR: 0.83, ACC: 83
SE: 84, SP: 85, PR: 0.84, ACC: 84 SE: 81.2, SP: 82.3, PR: 0.84, ACC: 84 SE: 84.5, SP: 0.85, PR: 0.84, ACC: 85
CNN+RNN-LSTM SE: 86.3, SP: 87.6, PR: 0.85, ACC: 86 SE: 88.3, SP: 89, PR: 0.89, ACC: 89 SE: 90.0, SP: 91.2, PR: 0.90, ACC: 90 SE: 92, SP: 93,
PR: 0.91, ACC: 92

AL: alert, VL: very alert; MD: moderately drowsy, ED: extremely drowsy, SE: sensitivity, specificity: SP, PR: precision, ACC: detection accuracy.