Skip to main content
. 2021 Jan 1;21(1):241. doi: 10.3390/s21010241
Algorithms A2 Learning process of the AdaBoost algorithm
Input:DatasetD1(i)=1/m;D={(x1,y1),(x2,y2),,(xm,ym)};
   Basic-learnerL;
   IterationT;
Process:
1. D1(i)=1/m; % Initialize training set weight
2. for t=1,,T:
3.  ht=L(D,Dt); % use D and Dt to train the learner ht
4.  et=Prx~Dt,y I[ht(x)y]; % Calculate the error of learner ht
5.  if et>0.5 then break
6.  αt=12ln(1etet); % Calculate the coefficient of learner ht
7.  Dt+1(i)=Dt(i)Zt×{exp(αt),ht(xi)=yiexp(αt),ht(xi)yi=Dt(i)exp(αtyiht(xi))Zt
8. % Update the weight of training set, where Zt is the normalization factor.
  % Zt=i=1mDi·exp(α·yi·L(xi))
9. end
Output:H(x)=sign(t=1Tαtht(x))