CANCER GENOMICS & PROTEOMICS 78: 43-52 (2021)
doi:10.21873/cgp.20240

Noncoding RNAs Serve as the Deadliest
Universal Regulators of all Cancers

ANYOU WANG! and RONG HAI'2

IThe Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, U.S.A.;
2Department of Microbiology and Plant Pathology, University of California at Riverside, Riverside, CA, U.S.A.

Abstract. Numerous cancer drivers have been identified, but
they are specific to a given cancer type and condition;
universal cancer drivers and universal cancer mechanisms still
remain largely unclear. Here, we identified the deadliest
universal drivers for all cancers via developing algorithms to
analyze massive RNAseqs and clinical data from The Cancer
Genome Atlas (TCGA). In general, noncoding RNAs primarily
serve as the most important inducers and suppressors for all
types of cancers. In particular, pseudogenes are primary
inducers, and specifically the antisense RNA RP11-335K5.2
serves as the most universal cancerous driver, independently
of the cancer type and condition. Therefore, noncoding RNAs,
instead of proteins as conventionally thought, primarily drive
cancer, which establishes a novel field for future cancer
research and therapy.

All cancers arise from genome abnormalities that share a
certain degree of commonality (1-4), which is based on
universal regulators for all cancers. Understanding these
cancer regulators will contribute to the understanding of the
fundamental common mechanisms of tumorigenesis and the
development of therapeutic strategies against all cancers.
Numerous studies have aimed to identify universal
cancerous drivers (2-6). Both genome sequences, functional
genomics and biochemistry have been employed. It has been
hypothesized that DNA mutations play a major role in
driving tumorigenesis and mutations conserved across all
cancers act as universal cancer drivers. Projects based on this
hypothesis have produced a large number of patient DNA
samples from various cancer types and identified thousands
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of mutations in both protein-coding regions and noncoding
RNAs (2, 6, 7); however, they have not found consensus
mutations across all cancer types. Most DNA mutations are
specific to individual patients. For example, KRAS has been
shown to be one of the most mutated genes in lung cancer,
however, a KRAS mutation is present in less than 40% of
lung cancer patients and in less than 2% of all cancer types
(6). This indicates that this strategy to identify common
mutations might not be an efficient way to identify universal
cancer drivers. However, functional genomics and
biochemistry studies have revealed a list of genes that
perform similar functions across different cancer types (8-
10). For example, TP53 has been identified as a cancer
suppressor for an array of cancer types (11), suggesting that
TP53 is a universal cancer regulator. Given the fact that
more than 63,000 annotated genes, including protein-coding
and noncoding RNAs, exist in the human genome (12), it is
reasonable to hypothesize that a certain number of genes
functionally serve as universal cancer regulators.

The identification of universal cancer regulators faces
challenges. First, cancer genome abnormalities result from a
combination of numerous factors, such as genetic
heterogeneity, tissue type and a variety of epidemiological
variables (13-16). Because of variations in these factors, the
factor combination is complex in the human population and
the identification of the causal relationship between cancer
phenotype and primary factors is difficult. This poses
difficulty in uncovering a conserved pattern of genomic
changes that is consistent in all cancer types. Second, the
current algorithms employed to identify cancer drivers have
failed to comprise the complex factor combination.
Conventionally, individual metrics (e.g. p-value derived from
various analyses) have been employed to identify a cancer
regulator (17), but it is unlikely for individual metrics to
account for the majority of genome activation variations. The
individual metrics obviously lead to biased results. Recent
studies have employed several algorithms together to avoid
biases from individual metrics (18). This certainly improves
the variance interpretation, but it is uncertain if these
algorithms are complementary or overlap and how much
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actual variances they can account for. Thus, all current
results may be seriously biased.

In this present study, we systematically identified variance
distributions in all cancers and found principal components
that account for the majority of variances. Then, we
developed algorithms to comprise all factors and most
variances into a Cox proportional-hazards regression model
(coxph), Furthermore, we also inserted stability-selection into
the coxph to increase accuracy. These algorithms enabled us
to identify universal cancer regulators, independent from of
condition and cancer type. Our results revealed noncoding
RNAs as primary cancer regulators, both as inducers and
repressors. Strikingly, RP11-335K5.2, an antisense RNA,
served as a universal cancer driver independent of any factor
and condition. This finding advances our understanding of the
fundamental drivers of tumorigenesis.

The Deadliest Cancerous Regulators

In order to identify the most important universal regulators
of cancers, we need a gene regulation database that included
all types of cancers and a software that can accurately infer
the most important regulators. The Cancer Genome Atlas
(TCGA) provides such a database, in which RNAseq and
clinical data from all popular cancer types (36 types of
cancers) are publicly available. Regulators inferred from this
wide spectrum of cancer types should represent all cancers.
We developed a software named ISURVIVAL (19) that can
accurately infer an important regulator from its expression
value and corresponding clinical variables, time and death
status. ISURVIVAL inserts stability-selection into the
conventional Cox proportional-hazards regression model
(coxph), and the ISURVIVAL models increase inference
accuracy. In contrast, the conventional coxph model lacks
random sampling, leading to low accuracy.

We downloaded all available clinical and RNAseq
samples (11,574) from a total of 36 cancer types. After
applying quality control and filtering out samples that do not
have clinical data matching RNAseq data, we obtained 9,457
samples, including 8,825 cancer and 632 normal samples.
We applied ISURVIVAL model 1 (19) to estimate the
significance of each gene from a cancer data matrix (8,825
samples) containing clinical data (time and status) and gene
expression data. With a cutoff absolute coefficient >1 and a
p-value<0.001, we selected 428 genes as the top most
important regulators of all cancers. These 428 regulators
were ranked on the basis of their absolute coefficients (coef).
A regulator with a higher coefficient was more important in
regulating cancer death. Details were deposited in our online
database (20).

To further understand the composition of these 428
regulators, we calculated the proportion of inducers and
repressors and their gene annotated categories. Among 428

44

regulators, 394 (92%) were cancer inducers (coef > 1,
HR>2.72), and only 34 (<8%) were cancer repressors (coef<
-1, HR< 0.37) (Figure 1A). Furthermore, 100% of the top 30
regulators were cancer inducers. Interestingly, among 394
inducers, more than 80% were processed-pseudogenes (p-
pseudogenes) (Figure 1B). The top 10 inducers included 6
(60%) p-pseudogenes (Figure 1B and C). Among cancer
suppressors, 40% and 30% were lincRNAs and antisense
RNA, respectively (Figure 1D and E). This suggested that
noncoding RNAs are the most important cancer regulators
and pseudogenes are primary inducers. This is consistent
with our recent study on cancer mechanisms revealing
pseudogenes as the core drivers for all types of cancer (21).

Activation Variability in Most
Important Cancer Regulators

Genes that are consistently activated across all cancer types
are of great interest because they can help to interpret the
common mechanisms of all cancers and provide basic
guidelines for therapy. To examine the activation consistency
of the most important regulators identified above, we
investigated whether they consistently function as inducers
(positive activation, coef >0) or repressors (negative
activation, coef<0) across different cancer types. After
computing the coefficient of each gene in each cancer type,
we found no consistence, but rather a high variability in
regulator activation. From the top 10 inducers and
suppressors identified above (Figure 1), only <60% and
<67% of inducers and suppressors were, respectively,
activated as inducers (coef>0) and repressors (coef<0) across
different cancer types (Figure 2A, upper and bottom panel).
For example, the top 1 inducer PANDAR (Figure 1C), did
not always function as an inducer, and served as an inducer
in only 57% of cancer types and as a suppressor in the rest.

Factors Contributing to the Variability
of Regulator Activation

To understand the factors contributing to regulator activation
variability, we systematically examined the relationship
between clinical variables and gene activation by employing
canonical correspondence analysis (CCA), which is a
multivariate analysis to elucidate the multiple variable
relationships between a variable matrix (e.g. a gene matrix)
and another variable matrix (e.g. a clinical variable matrix).
For clear illustration, we first run CCA on the top 30
regulators and clinical variables, including character and
digital variables. In a CCA plot, each clinical variable was
plotted as a vector, which carries both the amount of
variance (line length) and the direction (line arrow). Among
the 7-character variables, sample type and alcohol had the
highest impact, the longest lines (Figure 2B), while smoking
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Figure 1. The deadliest cancerous regulators. A, Proportion (%) of inducers and repressors of the most important cancer regulators. B, gene
categories of the most important inducers. For clear illustration, only top gene categories with abundance of >10% are shown here and thereafter
in this study. C, top 10 inducer list. D, gene categories of the top most important suppressors. E, top 10 suppressors list.

and BMI as the digital variables accounted for most of
variances (Figure 2C). Interestingly, we found that PANDAR
was positively correlated with sample type and negatively
with race (Figure 2B), and it was significantly higher in
primary tumors (p=5.8e-9, t-test) and Asian populations
(p=0.00019). However, PANDAR did not seem to respond
very well to cancer type and tissue (Figure 2B). Yet cancer
type was classified based on tissue types, and this explained

its high activation variability (only 57% consistence) in
current classification system-disease type (Figure 2A upper
panel). This also indicated PANDAR as a condition-
dependent inducer instead of a universal cancer inducer.
The observation above encouraged us to extend our CCA
analysis to all genes and all 11 clinical variables. The whole
cancer genome was systematically separated into three clear
sections (Figure 2D). The first was positively affected by
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alcohol and smoking, the second by site, BMI and disease
type, and the third by unidentified factors. Astonishingly,
alcohol served as the strongest factor altering cancer genome
activation, even stronger than smoking and BMI (Figure 2D).
This indicated that cancer genome activation is not only based
on tissue as practiced by the current classification system, but
also, importantly, other epidemiological variables.

Personal epidemiological variables vary, and factors
contributing to cancer genome activation seem countless in
the human population. To understand the systematic variance
distribution caused by these unclear factors and personal
variables, we performed principal component analysis (PCA)
on genome expression of all cancers. Plotting the principal
components (PCs) against the accumulated variance, we
found that the first three PCs contributed to only 16%
variance. PC1, PC2, and PC3 accounted only for 10%, 4%,
2% variance, respectively (Figure 2E). This suggested that
any single metric only represents around 10% variance and
the combination of the first three PCs, PCI1-3, do not
represent the overall variance very well as is the case of
conventional practices; they normally represent >50%
variance. This may explain why the current scheme based on
combined individual metrics has failed so far to identify a
universal cancer driver. Furthermore, the accumulated
variance did not reach 50% until PC80 and was barely stable
at 60% when PCs reached 200 (Figure 2E). This suggested
that the number of factors contributing to cancer genome
activation is much larger than expected and it is unlikely for
any algorithm to uncover a universal cancer driver without
integrating the variances of 200 PCs.

Noncoding RNAs Function as the Most
Important Universal Drivers for all Cancers

After learning the sources of complex variance for cancer
genome activation, we developed the algorithm ISURVIVAL
model 2 to comprise the majority of systems of variance to
identify the most important drivers universal for all cancers
(19). ISURVIVAL model 2 includes the systematic clinical
variables and the first 200 PCs as covariates. To make an
accurate estimation, we also inserted stability-selection with
bootstrap random sampling into coxph model in ISURVIVAL
model 2 (19). Applying ISURVIVAL model 2 to all RNAsegs,
we found 64 significant regulators (p<0.05 and HR>1.1 or
HR<0.9) deposited in (20). The 64 regulators contained 42
(65.6%) inducers (HR>1.1) and 22 (34.4%) repressors
(HR<0.9) (Figure 3A). Among the inducers, noncoding RNAs
dominated all profilings, accounting for more than 80% of the
population. Especially p-pseudogenes represented 40% of the
top 10, and only 1 protein encoding gene was within the top
10 (Figure 3B). As expected, these noncoding inducers were
consistently activated in most cancer types (Figure 3C). The
overall percentage of inducer activation was significantly
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higher than the previous one without incorporating personal
clinic variables and PCs shown in Figure 2A (p=0.03151 for
top 20 inducers, t-test). Strikingly, the top 1 regulator,
antisense RP11-335k5.2, was activated in 83% of cancer
types, and the pseudogenes RP11-402G3 .4 also served as an
inducer in >63% cancer types (Figure 3C). RP11-335k5.2 was
also significantly activated between all cancer samples (8,825
samples) and all normal samples (632 samples) (Figure 3D).
Furthermore, RP11-335k5.2 activation did not depend on any
epidemiological variables according to our algorithm (Figure
3E), indicating RP11-335k5.2 as the most important universal
cancer driver. This also suggested ISURVIVAL model 2 as a
reliable algorithm to identify universal drivers.

Consistently, RP11-335k5.2 was also shown, in our cancer
network, to have a frequency score [total hits/total trails (22)]
>0.95 and interact with CHRNB4 (cholinergic receptor nicotinic
beta 4 subunit) (23). Frequency score normally represents
universality; the high score of RP11-335k5.2 suggests that it is
a universal inducer for all types of cancer. In contrast, TP53 has
been widely reported as a universal regulator, but TP53 was not
in our top 428 regulator list [detailed in (20)]. Consistently,
TP53 does not show up in the cancer network with a frequency
score >0.95, but only in the network with lower frequency
score=0.9 (23), indicating that it is a regulator in most cases but
does not have the universality of RP11-335k5.2.

To further understand the causal difference between
noncoding RNAs and genes encoding proteins, we compared
the HR between them in the 42 inducers selected above for

Figure 2. Personal clinic variables contributing to variations of
cancerous gene activation. A, gene coefficient heatmap of the top 10
inducers (left panel) and suppressors (right panel) across 30 individual
cancer types. Each row denotes a gene and each column a cancer type.
For illustration proposes, red color denotes inducers (coef>0) and blue
repressors (coef <0), while white colors as none (coefficient=0). The
number following gene symbol represents the frequency (%) of this gene
in 30 cancer types. For example, in the inducer panel (left panel),
ACTGI1P11(0.6) means it is an inducer occurring in 60% cancer types,
0.6=18 (red as inducer)/30 (total cancer types). Left bar colors
represent gene categories. In the inducer panel (left), blue: processed-
pseudogenes (p-pseudogene, thereafter), red: lincRNA, green: protein-
coding. In the suppressor panel (right), pink: TEC, red: antisense, blue:
linRNA, green: p-pseudogene, brown: protein-coding gene (protein,
thereafer). B, Canonical correspondence analysis (CCA) plot of the top
30 regulators and 7-character clinic variables from all cancer samples.
C, CCA plot of the top 30 regulators and 4 digital clinic variables from
all cancer samples. D, CCA plot of all genes and total 11 clinic
variables from all cancer samples. Cancer genome was clearly
seperated into 3 clusters based on clinic variables. E, the cumulative
variance represented by each principal component (PC), from PCI1 to
PC200, derived from principal component analysis (PCA) of expression
of all genes and all cancer samples.
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Figure 3. Universal regulators of cancers. A, inducer and repressor proportion in total universal regulators of cancers. B, Gene categories of universal
inducers for all cancers. C, coefficient heatmap of top 10 universal inducers in 30 cancer types. Left bar colors denote gene categories, red: antisense,
brown: p-pseudogene, blue:lincRNA, pink: protein, green: miRNA, yellow: snRNA. D, differential expression of top 2 inducers between cancer and

normal. E, CCA plot of top 2 inducers and clinical variables. F, HR comparison of noncoding RNAs and protein in top 42 inducers.

all cancers. Noncoding RNA inducers had significant higher
HR than protein encoding inducers (Figure 3F). These
inducers were independent from any cancer type and clinical
variable, suggesting noncoding RNAs as the most important

universal drivers for all types of cancer.
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All universal repressors were also noncoding RNAs,
including p-pseudogenes, lincRNAs, TEC, antisense and

sense_intronic. Taken together,

these results suggested

noncoding RNAs as the universal regulators for all

cancers.
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Noncoding RNAs Dominate the Most Important
Hubs in Cancer Regulatory Network

Network hubs play crucial functional roles in a regulatory
network. We investigated the most important hubs in the
cancer regulatory network established by us in our parallel
study of the mechanism (21). We computed the network
centrality to identify the top hubs for all types of cancer and
then filtered these hubs with survival data (p<0.000001 and
HR<0.5 or HR>1.5) to obtain the most important hubs,
resulting in a total of 692 deadliest hubs. Among these 692
hubs, more than 85% (590 hubs) were inducers and only
15% (102 hub) were repressors (Figure 4A). Among the 590
inducers, 82% (483 hubs) were p_pseudogenes (Figure 4B),
and only 4% protein coding genes. Thus, noncoding RNAs
represented a total of 96% of inducers. Moreover, noncoding
RNAs also comprised 82% of the strongest repressors,
including lincRNAs, antisense, and protein encoding genes
only accounted for 18% repressors (Figure 4C). These results
further suggested noncoding RNAs, especially pseudogenes,
as the most important drivers for all types of cancer.

Noncoding RNAs as Cancer Biomarkers

We next examined whether noncoding RNAs can be used as
biomarkers to discriminate cancer and normal samples. We
treated a total of 632 normal samples from the TCGA project
as the control group and then used this normal group to
discriminate cancer samples of each cancer type, and
employed elastic-net with stability-selection to select
biomarkers for each cancer type. Typically, around 50
noncoding RNAs could discriminate cancer from normal
with misclassification error around 0 (Figure 5A). We used
the top 50 noncoding RNAs in each cancer type as
biomarkers to calculate the discrimination accuracy by
computing AUC (area under the curve) of ROC (receiver
operating characteristics). Beginning with the top 2
biomarkers, the AUC of each cancer type reached >90%, and
with the top 20 biomarkers, the AUC reached a stable state
(>96%) for all cancer types (Figure 5B). This indicated that
noncoding RNAs can be used as biomarkers to discriminate
cancer types.

Discussion

This study revealed the most important universal regulators
for all types of cancers. The universal regulators have been
widely studied and various strategies have been developed
for their identification. Most recent efforts have focused on
identifying common mutations across cancers, but such
mutations have been found with <2% consensus in cancers
(6). Here, we found that RP11-335K5.2 was consistently
induced in >83% of all cancer types regardless of any other

A Hub categories

Inducer 85%(590)

Repressor 15%(102)

B Hub inducer categories

p_pseudogene 82% (483

other 9%(51)

lincRNA 2%(13)
antisense 3%(19)
protein_coding 4%(24)

C Hub repressor categories

lincRNA 27%(28)
antisense 26)

other 21%(21)
protein_coding 18%(18
p_pseudogene 8%(8)

Figure 4. Noncoding RNAs served as the primary hubs in cancer
regulatory network. A, inducer and repressor proportion in network
hubs. B, gene category proportion in inducer hubs. C, gene categories
of repressor hubs.

condition. We have also found that RP11-335K5.2 also
functioned as an inducer in a systems regulatory network
(21), suggesting that it is a systems cancer universal driver.
RP11-335K5.2 is more universal than TP53, which has been
widely reported as a universal suppressor. TP53 did not show
up on our top regulator list and our parallel mechanism study
(21), indicating that TP53 is a regulator for most cases but
it is not as universal as was previously thought. In addition,
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recent epigenetic sequencing technology has provided a
powerful strategy to identify noncoding RNAs as universal
regulators (24, 25). For example, PANDAR has been found
as a regulator in several cancer types. However, our data
showed that PANDAR served as an inducer only in 57% of
cancer types, and PANDAR is a condition-dependent
regulator; it depends on sample type and race, suggesting
that PANDAR is not a universal cancer driver. Taken
together, these results suggested that the real universal cancer
drivers have not been identified with the exemption of
RP11-335K5.2 that was uncovered here.

Numerous studies have been performed on the biology of
noncoding RNAs, which are associated with cancers through
different suspectedness (26-28). Mutations in pseudogenes
have also been identified in cancer (29), and a few
pseudogenes have been recognized as cancer regulators (30).
However, the current studies are biased to specific conditions
and the systems role of noncoding RNAs on cancer genome
remains unclear. This study and our systems network study
revealed a clearer picture of the roles of noncoding RNAs in
cancers, especially that of pseudogenes, which function as the
most important cancer drivers (21), instead of protein-encoding
genes as conventionally thought. Although we do not know the
specific functions of RP11-335K5.2, our results, indicating that
noncoding RNAs function as cancer drivers, advance our
understanding of the mechanisms of tumorigenesis.

Noncoding RNAs comprise a significant fraction of the
human genome and function as a flexible and energy-saving
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class of molecules. We are starting to recognize their importance
in the genome, but understanding of their biological roles is still
in an infant stage (30). The present study revealed that
noncoding RNAs are the most important cancer drivers and
suppressors, opens a field exploring their biological potentials
in various physiological conditions as well as in therapy.

The failure of current studies to uncover universal cancer
drivers results from the complexity of cancer phenotype, which
is contributed by numerous factors, not only DNA sequences,
but also complex epidemiological variables. These complex
factors result in genome activation variation and measurement
variability. Understanding the variance distribution that derives
from these complex factors is essential for capturing the
universal core from such complex data. However, current
studies usually ignore this variance and only use individual
metrics to identify cancer drivers. Our results showed only
10% variance for PC1. This 10% should be the maximum
variance for any individual metric. The individual metrics
could lose 90% variance, leading to biased results. To avoid
biases resulting from the individual metrics strategy, recent
studies combined several metrics to select cancer regulators
(18). Combining metrics can slightly improve estimation, but
the accumulated variance of PCI1-3 only reached 16%.
Therefore, improvement from the combination strategy is
limited. This can be overcome by using 80 non-overlapped and
complementary single metrics, in which variance could reach
50%, as shown in our data, but these 80 metrics are usually
unavailable, and it is hard to develop such metrics. Therefore,
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all cancer drivers resulting from current strategies should still
be biased and be condition-dependent. To solve this problem,
we systematically studied the variation of genome activation,
learned the variance distribution and then developed the
algorithm ISURVIVAL model 2 to systematically combine
clinical variables and 200 PCs with >60% variance plus
stability-selection. This algorithm takes into account most of
the variance in cancer genome activation and can produce
unbiased universal drivers for all cancers.
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