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Abstract

OBJECTIVES—The purpose of this study was to determine the relationship between body
composition, N-terminal B-type natriuretic peptide (NT-proBNP) levels, and heart failure (HF)
phenotypes and outcomes.

BACKGROUND—Abnormalities in body composition can influence metabolic dysfunction and
HF severity; however, data assessing fat distribution and skeletal muscle (SM) size in HF with
reduced (HFrEF) and preserved EF (HFpEF) are limited. Further, whether NPs relate more closely
to axial muscle mass than measures of adiposity is not well studied.

METHODS—We studied 572 adults without HF (n = 367), with HFrEF (n = 113), or with HFpEF
(n = 92). Cardiac magnetic resonance was used to assess subcutaneous and visceral abdominal fat,
paracardial fat, and axial SM size. We measured NT-proBNP in 334 participants. We used Cox
regression to analyze the relationship between body composition and mortality.

RESULTS—Compared with controls, pericardial and subcutaneous fat thickness were
significantly increased in HFpEF, whereas patients with HFrEF had reduced axial SM size after
adjusting for age, sex, race, and body height (p < 0.05 for comparisons). Lower axial SM size, but
not fat, was significantly predictive of death in unadjusted (standardized hazard ratio: 0.63; p <
0.0001) and multivariable-adjusted analyses (standardized hazard ratio = 0.72; p = 0.0007). NT-
proBNP levels more closely related to lower axial SM rather than fat distribution or body mass
index (BMI) in network analysis, and when simultaneously assessed, only SM (p = 0.0002) but not
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BMI (p = 0.18) was associated with NT-proBNP. However, both NT-proBNP and axial SM mass
were independently predictive of death (p < 0.05).

CONCLUSIONS—HFpEF and HFrEF have distinct abnormalities in body composition. Reduced
axial SM, but not fat, independently predicts mortality. Greater axial SM more closely associates
with lower NT-proBNP rather than adiposity. Lower NT-proBNP levels in HFpEF compared with
HFrEF relate more closely to muscle mass rather than obesity.

Keywords
heart failure; muscle mass; natriuretic peptides; obesity; sarcopenia

It has been traditionally thought that symptom development in heart failure (HF) is
predominantly related to low cardiac output and/or elevated left ventricular (LV) filling
pressures. Amassing evidence suggests, however, that the pathophysiology of symptoms in
HF involves a complex interplay between not only cardiac and vascular organ systems, but
also with adipose and skeletal muscle (SM) tissue beds. Obesity is particularly common in
HF, both in preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF)
populations (1,2). Obesity can worsen HF symptoms through several mechanisms. Adipose
tissue, for instance, is metabolically active and is associated with worsening inflammation,
hypertension, insulin resistance, abnormal ventricular-vascular coupling, cardiac mechanics,
and endothelial dysfunction (3-5). In addition, given that exercise intolerance is a key
clinical symptom in patients with HF, it is not surprising that abnormalities in the peripheral
skeletal musculature and mitochondrial dysfunction are common and contribute to
symptoms (6).

However, not all adipose tissue beds are created equal. Visceral, as opposed to subcutaneous
fat, for instance, is thought to be more metabolically toxic. Pericardial fat has paracrine
activity and may affect different signaling pathways, including sympathetic nervous system
activity (7). Few studies have investigated the distribution of fat in patients with HF and the
relative significance of each adipose bed. Further, the prevalence and significance of
sarcopenia, often seen in conjunction with adipose accumulation in musculature (so-called
“sarcopenic obesity”) in HFpEF and HFrEF remains poorly understood (8,9). Finally,
exploring how the relationship between obesity and natriuretic peptides (NPs) is influenced
by muscle mass, and thus may help elucidate the obesity paradox in HF, is of interest.

In this study, we sought to determine the distribution of adipose tissue (subcutaneous and
visceral abdominal fat as well as paracardial fat) and SM size, and their prognostic
significance in adults with HFrEF and HFpEF. Further, we sought to describe the
relationship between fat depots, N-terminal B-type natriuretic peptide (NT-proBNP), and
muscle mass, and whether the association between adiposity and lower NT-proBNP might
more closely relate to greater muscle mass.

METHODS

We enrolled 572 subjects without HF (n = 367), HFrEF (n = 113), or HFpEF (n = 92),
referred for a cardiac magnetic resonance (CMR) study at the Corporal Michael J. Crescenz
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VA Medical Center. The protocol was approved by the Philadelphia VA Medical Center
Institutional Review Board, and written informed consent was obtained from all participants.
HF definitions and exclusion criteria are available in Supplemental Appendix.

AXIAL SM MASS.

At baseline, a cardiac CMR study was performed. The imaging protocol included sagittal
and axial stacks of the chest and upper abdomen, which were used for assessments of axial
muscle mass, paracardial, subcutaneous, and abdominal visceral fat. We used a 1.5 Tesla
whole-body MRI scanner (Avanto or Espree, Siemens, Malvern, Pennsylvania) equipped
with a phase-array cardiac coil. An axial stack of steady state free precession (SSFP) images
was obtained, as per our routine cardiac CMR protocol, spanning the entire thorax. Typical
acquisition parameters were as follows: repetition time = 30.6 ms; echo time = 1.2 ms; Flip
angle = 80; slice thickness = 5 mm; space between slices = 5 mm; matrix size = 256 x 208;
parallel image (IPAT) factor = 2.

Measurements of axial SM size were performed as previously described (10). Briefly, CMRs
were analyzed using Horos software version 1.2.1. The level of the carina was established as
a reference point for measurements of SM cross-sectional area on all axial chest CMRs.
Thoracic SM was then manually traced bilaterally for pectoralis major, pectoralis minor,
latissimus dorsi, paraspinal and trapezius muscles (Figure 1A). A previous study in this
cohort identified a single latent factor that underlies the shared variability in the cross-
sectional area of these muscles (10). This underlying factor was used as a continuous
measure of axial SM size. We also assessed the pectoralis major cross-sectional area, which
was identified as the single muscle with the highest prognostic value in our prior study (10).

SUBCUTANEOUS AND VISCERAL ABDOMINAL FAT.

Subcutaneous and preperitoneal fat thickness were measured from stored DICOM images in
the upper abdomen using axial 2-dimensional SSFP imaging. We measured subcutaneous
and visceral fat thickness using a mid-sagittal image (Figure 1B). We measured the upper
abdominal preperitoneal fat thickness, which has been shown to strongly correlate with
visceral abdominal fat measured by computed tomography (11). The preperitoneal fat
thickness was defined as the maximum anteroposterior thickness measurable in the upper
abdominal images, anterior to the left lobe of the liver. The subcutaneous fat thickness was
defined as the thickness of the fat tissue between the skin-fat interface and the linea alba
(11). Adequate measurements for visceral and subcutaneous fat thickness were available in
528 and 531 participants, respectively.

PARACARDIAL FAT THICKNESS AND VOLUME.

We measured epicardial and pericardial adipose tissue thickness anterior to the right
ventricle, in enddiastole, in the 3-chamber long axis LV view. Epicardial fat was defined as
the fat depot between the outer myocardial border and the visceral pericardium, whereas
pericardial fat was defined as the fat depot external to the visceral pericardium (12).
However, because epicardial fat is prominent near the interventricular and the
atrioventricular grooves and its distribution exhibits considerable individual variability (12),
epicardial/pericardial fat thickness measured at a single point may not fully represent the
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pericardial fat volume. We therefore also measured total epicardial/pericardial fat volume
from the atrioventricular groove to the apex, using a stack of SSFP short-axis cardiac cine-
images in enddiastole. We contoured the outer myocardial border. A second contour was
traced including all the fat surrounding the heart (Figure 1C). Because epicardial and
pericardial fat can often not be clearly distinguished in all areas around the heart, these 2 fat
depots were measured together as paracardial fat volume, calculated using the summation of
disc method, analogous to the method utilized for measurements of LV mass. Adequate
images for enddiastolic pericardial fat thickness and volume were available in 552 and 536
participants, respectively.

STATISTICAL ANALYSIS.

We stratified participants into non-HF, HFrEF, and HFpEF groups. Descriptive statistics are
presented as mean x SD, median (interquartile range), or counts (percentages) as
appropriate. Continuous variables are presented as mean and 95% confidence interval of the
mean. Categorical variables were compared using chi-square or Fisher’s exact test.
Unadjusted and multivariable-adjusted analyses were performed between groups of
participants. We performed linear regression to assess relationships between various
measures of body composition and NT-proBNP. We examined residuals via histograms and
log-log plots and performed Box Cox transformation of variables, as appropriate, to improve
normality in regression models. Beta-coefficients are standardized (i.e., represent the relative
risk per standard deviation change in the predictor), to facilitate an intuitive comparison of
the association between different indices. We confirmed lack of multicollinearity in linear
regression models via inspection of the variance inflation factors. We also performed formal
statistical mediation analyses (13) to assess whether an intermediate variable mediates a
relationship between body mass index (BMI) and NT-proBNP. Mediating variables are
“intermediate” factors that act as a link between a dependent variable and an independent
variable. Mediation analyses quantify direct and indirect effect sizes that contribute to an
observed relationship between the independent variable (in this case, BMI) and a dependent
variable (in this case, NT-proBNP), and examine the role of the potential statistical mediator
(such as axial SM (13). Estimates of the total, direct, and indirect effect size were computed.
Significant mediation is established when the indirect effect is significantly different from
zero. Standardized regression coefficients and effect sizes are presented for easier
comparison of the magnitude of the relationships of different predictors. A description of a
complementary network analysis is available in Supplemental Appendix.

We used Cox proportional hazards regression to assess the relationship between various
muscle mass indicators and latent factors and time to death. We initially adjusted for: 1) age,
sex, race, and body height; then 2) additionally adjusted for HF status and MAGGIC (Meta-
Analysis Global Group in Chronic Heart Failure) risk score (14). All hazard ratios are
standardized as well. Statistical significance was defined as a 2-tailed p value <0.05.
Statistical analyses were performed using the Matlab statistics and Machine Learning
toolbox (Matlab 2019b, the Math-works, Natick, Massachusetts) and the M3 mediation
toolbox (15,16) within Matlab v2019b.
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We enrolled patients without HF patients (n = 367), as well as patients with HFrEF (n = 113)
and HFpEF (n = 92) (10). Compared with patients without HF, patients with HF were older,
more likely to be African American, had higher NT-proBNP levels, had greater comorbidity
burden with use of relevant medications, and had several echocardiographic indices
indicating remodeling (larger left atrial volume index) and elevated filling pressures (greater
E/e’) (p < 0.05 for all comparisons) (Table 1). BMI was lower in patients with HFrEF (29.0
kg/m?) and higher in patients with HFpEF (35.8 kg/m?2) compared with controls (29.5 kg/
m?2). The EF was 34% in patients with HFrEF, 61% in patients with HFpEF, and 58% in
controls.

Table 2 demonstrates unadjusted and adjusted comparisons of body composition by group,
with adjusted comparisons and relationships also reflected in Figure 2. Compared with
patients without HF, patients with HFrEF had reduced axial muscle mass, whereas patients
with HFpEF had more pericardial, subcutaneous, and visceral fat (p < 0.05 for all
comparisons). Adjusting for age, sex, race, and height yielded similar findings. A radar plot
and heatmap are shown in the Central Illustration demonstrating key differences in body
composition between the groups.

Table 3 shows Cox regression models for death using stepwise models. On nonadjusted
analyses, only axial muscle mass, but no measurements of fat, was associated with mortality
(standardized hazard ratio: 0.63, 95% confidence interval: 0.52 to 0.75; p < 0.0001). Full
multivariable adjustment mildly attenuated the association, but it remained robust (hazard
ratio: 0.72; p = 0.0007).

RELATIONSHIP BETWEEN FAT DEPOTS, AXIAL MUSCLE MASS, AND NT-proBNP LEVELS.

Figure 3A shows a heatmap representing the correlation between fat depots, muscle mass,
and NT-proBNP in the substudy population (N=334). Figure 3B shows a plot of the network
connectivity backbone, also representing these relationships. These analyses indicated that
NT-proBNP is primarily related to measures of axial muscle mass, rather than adiposity.

These relationships were also assessed with standard linear regression. In an unadjusted
linear model, BMI was significantly associated with NT-proBNP (standardized beta = —0.16;
p = 0.0031). This association persisted after adjustment for age and sex (standardized beta =
-0.14; p = 0.0046). However, after the addition of axial SM factor, the relationship between
BMI and NT-proBNP was not significant (standardized beta = —0.08; p = 0.10), whereas the
axial SM factor was independently associated with NT-proBNP (standardized beta = —0.22;
p = 0.0002). The addition of other measures of adiposity and HF status did not appreciably
change these relationships. In a model that included BMI, HF status, age, sex, and other
measures of adiposity (abdominal visceral fat thickness, subcutaneous fat thickness, and
paracardial fat volume) (Figure 4), the axial SM factor (standardized beta = -0.19; p =
0.0012), but not BMI or other measures of adiposity, was independently associated with NT-
proBNP. The alternative inclusion of other measures of pericardial adiposity (epicardial
and/or pericardial fat thickness) did not appreciably change the relationship between the
axial SM factor or BMI with NT-proBNP.
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Figure 5 shows statistical mediation analyses in which the direct and indirect (axial SM—-
mediated) effects of BMI on NT-proBNP were examined. In this model, BMI demonstrated
a significant total effect on NT-proBNP. There was a significant effect of BMI on axial SM,
as well as a significant effect of axial SM on NT-proBNP. The direct effect of BMI on NT-
proBNP, however, was nonsignificant, whereas its indirect (axial SM-dependent) effect was
significant. This analysis was performed solely to assess statistical mediation of cross-
sectional associations and does not imply causality.

DISCUSSION

In a large study using CMR to quantify measures of adiposity and axial SM mass in patients
with HF compared with unselected controls, we found a significant differential distribution
of adipose tissue in HFrEF and patients with HFpEF. After multivariable adjustment for a
significant number of potentially confounding variables, only low muscle mass was
associated with an increased mortality risk. We also report a significant independent inverse
relationship between axial muscle size and NT-proBNP, which subsequently demonstrated
that the resulting relationship between adiposity (both BMI and various fat depots) and NT-
proBNP was nonsignificant. These data highlight: 1) the feasibility of gathering significant
prognostic data in patients with HF using readily available images from standard CMR
protocols; 2) the importance of low muscle mass in HF; and 3) an important relationship
between axial muscle mass and NPs, which may help elucidate the “obesity paradox” in HF
and may partially explain the important clinical paradox of lower NT-proBNP levels in
patients HFpEF, who exhibit less sarcopenia/cachexia than patients with HFrEF.

We found patients with HFpEF had higher amounts of subcutaneous, visceral, and
pericardial fat than both HFrEF and control patients, whereas patients with HFrEF exhibited
a marked reduction in SM compared to HFpEF and control patients. Although the increase
in adipose tissue is not a surprise in HFpEF (2), we show that HFpEF is characterized by
diffuse adipose deposition without specific predilection for 1 tissue bed. Thus, each tissue
bed via its specific metabolic and endocrine effects may contribute to the pathophysiology of
HFpEF. Our findings are largely concordant with a recent analysis in HFpEF compared to
healthy controls, though in the previous study, HFpEF participants exhibited lower
epicardial fat (17). Interestingly, increasing amounts of adiposity in each tissue bed,
however, was not associated with an increased risk for death. Only axial SM mass was
associated with mortality in multivariable analysis, similar to other findings showing the
importance of muscle mass in relation to prognosis (18). These findings may partially
underlie the obesity paradox in HF, whereby overweight or obese individuals with HF tend
to exhibit a lower mortality (19,20). Larger muscle mass in obese individuals may allow for
a more active lifestyle and also provide metabolic substrate in times of stress. Alternatively,
muscle degradation precedes adipose loss in chronic HF, and therefore muscle mass may be
a more sensitive indicator of adverse prognosis (21,22). It is possible, moreover, that adipose
tissue still partially mediates the relationship between sarcopenia and adverse events, given
that adipose infiltration of the muscle beds is common in HF (8,9) and sarcopenic obesity
may be more malignant than nonsarcopenic obesity. Adipose infiltration can exert paracrine
and vasocrine effects on the adjacent muscle bed, including impairment of perfusion,
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reduction of systemic blood from muscle through a “steal phenomenon,” reduction of
capillary density, and impaired mitochondrial function (3,8,9).

Notably, we demonstrated a strong inverse relationship between axial muscle mass and NT-
proBNP, whereas no relationship between BMI or fat depots with adverse events was found
when adjusted for axial muscle size. Because BMI does not discriminate between lean and
fat mass (23,24), further work has clarified that lean mass (assessed by dual-energy X-ray
absorptiometry scanning), but not fat mass, is associated with lower NPs among non-HF
participants (25). Our study extends these findings of the interaction between muscle mass,
fat composition, and NPs to HF participants. The mechanisms underpinning how muscle
mass may relate to NPs are unclear. However, it has been postulated that sex steroid
hormones, which influence body composition, also influence NPs (25). Further research
regarding potential mechanisms linking muscle mass to NPs is needed.

Metrics of body composition (muscle mass and fat depots) can be obtained from thoracic
images obtained routinely in cardiac CMR studies (26). Therefore, although dedicated
imaging of the lower extremities has been performed for this purpose previously (9), we
demonstrate that it is feasible to obtain significant prognostic information from CMR of the
thoracic musculature alone. Given the lack of validated cutoffs for thoracic axial muscle
mass in a healthy population, we did not define low muscle mass in our study according to
specific cutpoints, but rather used muscle areas as a continuous measure of axial muscle
mass.

Sarcopenia is common in HF (27) and has been shown to occur with the development of HF,
particularly in men (28). Sarcopenia is closely associated with reduced strength and
independently predicts reduced exercise capacity (27). Muscle wasting in HF is likely the
result of several insults, including sympathetic activation, renin-angiotensin-aldosterone
system upregulation, and release of proinflammatory cytokines (29). Our findings
demonstrating the importance of sarcopenia in HF are concordant with the results of a
randomized controlled trial to increase muscle mass and strength in HFpEF. Exercise
training improved peak VO, and was significantly correlated with improvement in lean body
mass and thigh muscle:intermuscular fat ratio (30). Therefore, exercise training remains an
important and effective part of the HF treatment armamentarium (31), and exercise training
in HF remains a class | indication in professional society guidelines (32).

STUDY STRENGTHS AND LIMITATIONS.

Strengths of the current study include a detailed assessment of different compartments of
adiposity, use of CMR (the noninvasive gold standard of LV EF and mass), and
comprehensive collection and adjustment for important, potentially confounding variables.
There are some limitations. First, we used an alternative index for assessing muscle mass in
our study than has been traditionally used in the published reports, studying axial as opposed
to appendicular muscle mass. However, lower extremity muscle mass may be more subject
to deconditioning, whereas axial muscle mass may be more representative of underlying
neurohumoral pathology. Further, a recent study in patients with advanced HF undergoing
LV assist device implantation also showed a powerful relationship between axial muscle
mass and adverse outcomes (33). In addition, our method of quantification using CMR is
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readily available in individuals undergoing scanning for other purposes and still shows
significant prognostic information. Second, we do not have information on alteration of
cellular morphology (such as the density of type | and Il fibers or reduction in functioning
mitochondria) that can be analyzed on muscle biopsy nor are functional data (i.e., grip
strength, exercise capacity) available. Finally, consistent with population of patients cared
for in the Veterans Affairs medical system, our population was predominantly male.

CONCLUSIONS

HFpEF and HFrEF are associated with distinct abnormalities in body composition. Patients
with HFpEF have an overall increase in adipose tissue throughout all beds, whereas patients
with HFrEF have reduced axial muscle mass. Reduced axial muscle mass, but not
subcutaneous, pericardial, or visceral fat, independently predicted death. We observed a
strong, inverse relationship between muscle mass and NT-proBNP that explained the
relationship between BMI and NPs. Reducing muscle wasting in HF, either through exercise
training or therapeutic inhibition of pathogenic mediators, may not only produce significant
symptomatic benefit, but may have an impact on neurohormonal regulation and the risk of
death. These important issues need to be addressed in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS AND ACRONYMS

BMI body mass index

HF heart failure

HFpEF heart failure with preserved ejection fraction
HFrEF heart failure with reduced ejection fraction
LV left ventricular
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CMR cardiac magnetic resonance

NP natriuretic peptide

NT-proBNP N-terminal B-type natriuretic peptide

SM skeletal muscle

SSFP steady state free precession
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PERSPECTIVES
COMPETENCY IN MEDICAL KNOWLEDGE:

Patients with HFrEF and HFpEF have distinct abnormalities in body composition. NT-
proBNP levels relate more strongly to muscle mass rather than obesity.

TRANSLATIONAL OUTLOOK:

Future research into mechanisms by which NT-proBNP relates to sarcopenia is
warranted.
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A

FIGURE 1. Methods for Axial Muscle, Pericardial, Subcutaneous, and Visceral Fat
Measurements

(A) Segmentation of axial muscle groups; (B) measurement of abdominal visceral and
subcutaneous fat thickness; (C) segmentation of pericardial fat.
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FIGURE 2. Differences in Body Composition in Patients With HF Compared With Controls
Comparisons are adjusted for sex, age, race, and body height. Compared with patients

without heart failure (HF), patients with HF with preserved ejection fraction (HFpEF) had
greater pericardial, subcutaneous, and visceral fat, whereas patients with HR with reduced
ejection fraction (HFrEF) had reduced axial muscle mass (p values shown in Table 2). CSA
= cross-sectional area.
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FIGURE 3. Heatmap and Network Analysis of Fat Depots, Axial Muscle Mass, and Natriuretic
Peptides

Correlation matrix heatmap (A) and network connectivity backbone (B) of fat depots,
measures of axial muscle mass, and NT-proBNP. In B, node size represents eigenvector
centrality (which depends both on the number of neighbors and the strength of its
connections). Eigenvector centrality measures a node’s importance while giving
consideration to the importance (number of connections) of its neighbors. The node color
represents betweenness centrality (which quantifies the number of times a node acts as a
bridge along the shortest path between 2 other nodes). BMI = body mass index; CSA =
cross-sectional area; NT-proBNP = N-terminal pro-B-type natriuretic peptide.
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Predictors of NT-proBNP
Model R? = 0.43; p < 0.00001
1

Visceral Fat Thickness —]—0— - 0.5359
Subcutaneous Fat Thicknness 4 —) - 0.3351
Paracardial Fat Volume - —_———— - 0.1500
Axial Muscle Mass Factor - —_————— " - 0.0013
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FIGURE 4. Adjusted Relationship Between Fat Depots, Muscle Mass, and Heart Failure With
NT-proBNP

Standardized effect sizes shown for axial muscle mass, various fat depots, HF status, and
body mass index (BMI) are shown in relationship to N-terminal pro-brain natriuretic peptide
(NT-proBNP). All effect sizes are simultaneously adjusted for the presence of other
variables presented in the figure. HF = heart failure; HFpEF = heart failure with preserved
ejection fraction; HFrEF = heart failure with reduced ejection fraction.
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Axial SM
-0.071 (0.021)
p =0.0003

0.234 (0.058)
p = 0.0002

-0.305 (0.051)
p = 0.0001

NTproBNP

-0.093 (0.057)
p=0.08

Path Coefficients SE p value
Effect of BMI on Axial SM 0.234 0.058 0.0002
Effect of Axial SM on NT-proBNP -0:305 0.051 0.0001
Direct (axial SM-independent) effect of BMI on NT-proBNP  -0.093 0.057 0.0801
Indirect effect of BMI on NT-proBNP (through axial SM) -0.071 0.021 0.0003

FIGURE 5. Statistical Mediation Analyses to Quantify Direct and Indirect (Axial SM—mediated)
Effects of BMI on NT-proBNP

Regression coefficients, SE, and p values are shown in the path graph as well as in the
mediation table. BMI = body mass index; NT-proBNP = N-terminal pro-B-type natriuretic
peptide; SM = skeletal muscle.
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CENTRAL ILLUSTRATION. Relative Differences in Body Composition in Heart Failure
Patients Compared With Controls

A radar plot (top) and heatmap (bottom) demonstrating key differences in z-scores in
various parameters of body composition between the groups is shown. In the radar plot,
variables are compared in a normalize scale (z-score) between the groups, and the mean z-
score of each group is plotted from low (center) to high (periphery) of the plot. The
thickness of the dashed radial lines are proportional to the magnitude of the maximum
standardized difference between the groups (maximum minus minimum z-score value) and
the shade of the dashed radial lines is proportional to the statistical significance of the
differences between the groups (i.e., the —log10 of the analysis of variance p value).
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