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Abstract

Purpose—To develop a convolutional neural network (CNN) that can directly estimate material 

density distribution from multi-energy CT images without performing conventional material 

decomposition.

Methods—The proposed CNN (denoted as Incept-net) followed the general framework of 

encoder-decoder network, with an assumption that local image information was sufficient for 

modeling the non-linear physical process of multi-energy CT. Incept-net was implemented with a 

customized loss function, including an in-house-designed image-gradient-correlation (IGC) 

regularizer to improve edge preservation. The network consisted of two types of customized multi-

branch modules exploiting multi-scale feature representation to improve the robustness over local 

image noise and artifacts. Inserts with various densities of different materials (hydroxyapatite 

(HA), iodine, a blood-iodine mixture, and fat) were scanned using a research photon-counting-

detector (PCD) CT with two energy thresholds and multiple radiation dose levels. The network 

was trained using phantom image patches only, and tested with different-configurations of full 

field-of-view phantom and in vivo porcine images. Further, the nominal mass densities of insert 

materials were used as the labels in CNN training, which potentially provided an implicit mass 

conservation constraint. The Incept-net performance was evaluated in terms of image noise, detail 

preservation, and quantitative accuracy. Its performance was also compared to common material 

decomposition algorithms including least-square-based material decomposition (LS-MD), total-

variation regularized material decomposition (TV-MD), and a U-net based method.

Results—Incept-net improved accuracy of the predicted mass density of basis materials 

compared with the U-net, TV-MD, and LS-MD: the mean absolute error (MAE) of iodine was 

0.66, 1.0, 1.33, and 1.57 mgI/cc for Incept-net, U-net, TV-MD and LS-MD, respectively, across all 

iodine-present inserts (2.0 to 24.0 mgI/cc). With the LS-MD as the baseline, Incept-net and U-net 

achieved comparable noise reduction (both around 95%), both higher than TV-MD (85%). The 

proposed IGC regularizer effectively helped both Incept-net and U-net to reduce image artifact. 

Incept-net closely conserved the total mass densities (i.e. mass conservation constraint) in porcine 

images, which heuristically validated the quantitative accuracy of its outputs in anatomical 

background. In general, Incept-net performance was less dependent on radiation dose levels than 
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the two conventional methods; with approximately 40% less parameters, the Incept-net achieved 

relatively improved performance than the comparator U-net, indicating that performance gain by 

Incept-net was not achieved by simply increasing network learning capacity.

Conclusion—Incept-net demonstrated superior qualitative image appearance, quantitative 

accuracy, and lower noise than the conventional methods and less sensitive to dose change. Incept-

net generalized and performed well with unseen image structures and different material mass 

densities. This study provided preliminary evidence that the proposed CNN may be used to 

improve the material decomposition quality in multi-energy CT.
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Material decomposition; Deep learning; Convolutional neural network; Photon-counting detector 
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1. Introduction

A number of material decomposition (MD) algorithms have been developed for use in dual-

energy and multi-energy CT1–6. A major limitation of these methods is the magnified noise 

in the material-specific images, which is due to the typically ill-conditioned material 

decomposition problem. A variety of iterative-type methods have been developed in an 

attempt to suppress noise while preserving image details by exploiting statistical properties 

of the data7,8, different regularization strategies9–12, or structural information between 

spectral images and material maps13,14. Nevertheless, existing MD methods are challenged 

by the non-linear nature of the measurement system, and further technical advancement is 

required to decrease image noise and improve quantitative accuracy of MD.

Recently, machine-learning-based MD methods have been reported. Lee et al.15 used a 

conventional artificial neural work (ANN) with single hidden layer to decompose simulated 

multi-energy projection data into basis material thicknesses. This method was 

experimentally evaluated with phantom studies by Zimmerman and Schmidt16. Touch et al. 
used a similar ANN with two hidden layers to correct spectral distortion in the projection 

data before conducting MD17. However, these ANN methods are generally limited by image 

noise and artifacts and research efforts are now focused on more complex and robust 

machine-learning algorithms, e.g., CNN. Clark et al. adapted a well-known CNN (U-net18) 

to decompose micro-CT images into material maps19. Lu et al.20 used classical machine 

learning algorithms (e.g., ANN and random forest) to decompose multi-energy projection 

data into material-specific projections (iodine / bone, or biopsy needle / bone); they also 

adapted two well-known CNNs (DnCNN21 and ResNet22). Zhang et al.23 developed a 

butterfly-net that imitated a linear system model based on two basis materials (bone and 

soft-tissue). These CNN-based methods are, however, limited in several aspects. For 

instance, the U-net used in19 still yielded strong image noise in simulation data, e.g., the 

pixel-wise iodine concentration deviated up to 3 mgI/cc (see the scatter plots of Fig. 4 in19); 

the DnCNN and the ResNet used in20 yielded a mean structural similarity index ≤ 0.77 for 

the decomposed iodine images (see Table 3 in20). Second, the networks in20,23 were trained 

using images with anatomical background; the material labeling procedure performed during 

training is challenging; it is susceptible to registration / quantification errors that propagate 
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to the material-specific images. For example, to generate training labels for butterfly-net23, a 

commercial bone-removal software (Syngo.Via, Siemens Healthcare, Inc., Forchheim, 

Germany) was used to provide initial binary material separation, and then radiologists were 

recruited to empirically correct pixel-wise artifact, e.g., the bone residual in soft-tissue 

images and the blurred boundaries. In addition, by its nature, the butterfly-net cannot be 

readily extended to decompose more than 2 basis materials.

We previously presented an preliminary investigation of an independently-customized CNN 

architecture (denoted as Incept-net for convenience) for MD in 2018 annual meeting of 

American Association of Physicists in Medicine24. The complete Incept-net architecture is 

presented here and comprehensively evaluated to determine its capability to alleviate the 

problems noted with previous work. Briefly, Incept-net is used to directly decompose multi-

energy CT images into multiple material-specific images, without using any explicit imaging 

system model. The network architecture was developed based on a hypothesis that local 

image structure can provide sufficient information for modeling the functional mapping 

between spectral measurements and material compositions. Compared with the prior CNN-

based methods, this network architecture uses customized multi-branch modules to exploit 

multi-resolution features of local image structure, and excludes the pooling / un-pooling 

operations, to improve the robustness against local noise and artifacts while preserving the 

structural details. Additional structural customization was also made to improve the network 

efficiency and stability. Consistent with the above hypothesis, Incept-net can be trained 

using phantom images with uniform background alone, while still yielding reasonable 

generalizability on unseen material density and complex anatomical structure. Further, a 

gradient-correlation based regularizer was incorporated into the loss function for CNN 

training, to further improve the edge delineation. In this work, we evaluated Incept-net on a 

set of phantom and animal datasets that were acquired using a research whole-body photon-

counting-detector (PCD) CT25–28. The major technical contribution of this work includes the 

proposed network architecture and gradient-correlation based regularizer. We aim to 

demonstrate that the proposed method can improve multi-material decomposition compared 

to conventional methods.

2. Method

2.1. CNN architecture

Based on the universal approximation theorem29, the functional mapping between multi-

energy CT images and material-specific images may be approximated by a CNN with 

arbitrary accuracy. The CNN-based reconstruction of material-specific images can be 

formulated as a deep convolutional framelets expansion30, and the perfect reconstruction of 

true material-specific images fGT could be approximated by a stack of optimized local and 

non-local bases. In this work, a customized encoder-decoder CNN was developed to predict 

material-specific images, using multi-energy CT images as the inputs (Figure 1a). We 

hypothesized that the local image information would be sufficient to enable an implicit 

modeling of the non-linear physical process of spectral CT and thus achieve a high-quality 

approximation of fGT. That said, the non-local bases can be fixed as Identity matrix, and thus 
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the pooling / un-pooling operation (i.e. a type of non-local bases) was excluded from the 

proposed CNN architecture. The details of the CNN architecture are introduced below.

The batch-normalization (BN) layers were used to address the internal covariate shift issue, 

i.e. the change in the statistical distribution of the inputs to each layer during the training, 

which notoriously results in a degraded CNN model with saturating nonlinearity31. The 

leaky rectified linear units (i.e. leaky ReLU)32 were used as the activation layers instead of 

standard ReLU, to suppress the “dying ReLU” problem which can irreversibly deactivate a 

substantial amount of neurons and ultimately degrade CNN performance. Further, the multi-

branch modules (i.e. Inception-B / -R modules in Figure 1b–c) were modified from the 

previously-published Inception modules33,34 that were originally designed for object 

classification / detection tasks in computer vision. Inception-B modules were used to boost 

image feature representation, while Inception-R modules were symmetrically placed in the 

deeper layers to gradually reduce the feature dimensionality and convert the image feature to 

material-specific images. Both Inception-B and Inception-R used the factorized convolution 

as was implemented in the prior ones33,34. For instance, one convolution layer with 5×5 

filters can be decomposed into two linearly-stacked convolution layers with 3×3 filters. The 

factorized convolution was used to reduce the parameter count and accelerate the training. 

The major modifications used in our Inception-B and Inception-R modules are briefly 

summarized as follows. In Inception-B, a bypass connection was added to concatenate the 

module inputs to the outputs of the other branches, to drastically boost the image feature 

representation. In the meantime, the bypass connection provided an additional path for 

gradient back-propagation toward the previous layers, and thus the vanishing gradient issue 

could be further suppressed. Then, in both modules, the BN layer was added to each branch 

that was coupled with convolutional layers, to further suppress the internal covariate shift in 

these branches. Further, both modules excluded the branch with the max pooling layers 

which was used in the previously-published Inception modules. In addition, both modules 

avoided the use of the factorized convolution with 7×7 or larger filters. The specific 

configuration of the proposed CNN is listed in Table 1. The total number of CNN 

parameters was approximately 160, 000. Finally, a customized loss function was formulated 

for training the CNN:

L= 1
N ∑

i, j, k
fCNN − fGT 2

2 + 1
ρ ∇fCNN, ∇fGT + ϵ (1)

∇fi, j, k = fi + 1, j, k − fi, j, k + fi, j + 1, k − fi, j, k (2)

where the fidelity term is the mean square error between the CNN output fCNN and the 

ground truth fGT, and the regularization term is the reciprocal of the correlation ρ(∙) between 

the corresponding image gradient. Of note, the regularization term was used to improve the 

edge preservation. ∇fi,j,k denotes the anisotropic form of the image gradient of the voxel at 

the ith row and jth column in the kth material-specific image. ∈ is a small constant number to 

prevent the denominator from being zero, and it was empirically fixed at 1.0e−4. A further 

discussion on the network architecture is presented in Sec. 4.
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2.2. Data preparation

2.2.1. CT exam data collection—All data used in this study were acquired from a 

research whole-body PCD-CT system installed at our institution. The PCD-CT was 

constructed based on a 2nd-generation clinical dual-source CT system (SOMATOM 

Definition FLASH, Siemens Healthineers, Forchheim, Germany). Specifically, the PCD was 

coupled with one source (referred to as the PCD subsystem), while a conventional energy-

integrating detector (EID) was coupled with the other source (referred to as the EID 

subsystem). The field of view (FOV) of the EID and PCD subsystems is 500 mm and 275 

mm in diameter, respectively. To image objects larger than the PCD FOV, a low-dose data 

completion scan using the EID subsystem is performed. A detailed description of this PCD-

CT system can be found in the reference25.

An abdomen-sized water phantom (anterior-posterior dimension of 27 cm; lateral dimension 

of 35 cm) was used to hold inserts containing common materials (e.g., iodine, calcium, 

blood, and fat) (Figure 2): the concentration and size of each insert is listed in Table 2. We 

prepared iodine inserts with concentrations from 3 mg/cc to 24 mg/cc to evaluate 

quantitative generalizability (see Sec. 2.5). Of note, the typical range of iodine concentration 

in adult’s aorta is roughly 3 to 18 mgI/cc, with a general > 15 seconds scan delay35. The 

phantom was scanned at three dose levels (CTDIvol of 23, 13 and 7 mGy), from which 

energy-bin images were reconstructed using a commercial iterative reconstruction algorithm 

(SAFIRE, Siemens Healthcare). Of note, the routine dose (RD) for adult abdomen CT 

exams at our institute is approximately of 13 mGy CTDIvol. The high dose (HD, 23 mGy 

CTDIvol) and low dose (LD, 7 mGy CTDIvol) provided additional noise levels in the training 

data to improve the robustness of the CNN against varying noise levels. To take into account 

statistical variations from scan to scan, the phantom scans were repeated five times at each 

dose level. Then, phantom images were processed to prepare a part of training and testing 

datasets (see Sec. 2.2.2. for details). In addition to the phantom data, we retrospectively 

selected a porcine abdominal CT scan from our data registry to test the CNN performance in 

an anatomical background. Briefly, the iodine-based contrast agent was administered 

intravenously and the scan was performed with a 17 sec delay. The scanning protocol was 

the same as was used in the phantom studies. Major scanning and reconstruction parameters 

are listed in Table 3.

2.2.2. Image preprocessing—Due to limited configurations of insert materials and 

mass densities, we used both real insert materials and numerically-generated inserts to 

prepare training, validation and testing sets. The insert materials are clinically-validated 

standard contrast-agent and tissue-mimicking materials. Such insert materials have been 

used for routine clinical dual-energy CT quality assurance / performance evaluation and the 

validation of dual-energy CT techniques in many previous studies14,36–38. As for real inserts, 

we only used the images of standard iodine inserts with 2, 10, and 15 mgI/cc (with 30 mm 

diameter) as a part of training set, while the remaining real insert materials (including iodine 

inserts with other concentrations) were reserved for testing (Table 2). This is because there 

were relatively more concentrations available for iodine inserts than other insert materials, 

and we aimed to reserve as many real insert materials for testing as possible. Patch-based 

training strategy was used: small image patches (64×64 pixels, i.e. 34.4×34.4 mm2) were 
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extracted from the original CT images to boost the number of training samples (Figure 2). 

The patches were extracted from pre-selected position to avoid including the holder of 

inserts, since the specific composition of holder material was unknown and the holder 

material was not the material of interest. Noise-free material-specific images of phantom 

patches were numerically synthesized as the “ground truth” for CNN (Figure 2), i.e. the 

nominal mass densities of insert materials (HA, iodine, blood-iodine mixture, water / solid 

water, and fat). The materials were grouped into three categories, with material-specific 

images created for each, including a HA image, iodine image, and soft-tissue image 

(comprising water, solid water, blood, and fat). To ensure image registration, different 

materials per patch were labeled via thresholding-based segmentation wherein the mean CT 

number between inserts and water background was used as the threshold. Mirroring and 

artificial Gaussian noise were also applied to image patches of real inserts to generate 

additional training samples. The Gaussian noise was added to efficiently increase the 

diversity of noise levels, so that the network robustness against noise permutation could be 

improved. Then, numerical inserts were generated as random-shaped polygon (64×64 pixels) 

with different concentrations. The corresponding CT numbers were estimated by applying 

linear fitting to the experimentally measured CT numbers of real inserts, as PCD-CT 

maintained a strong linear relationship between CT numbers and the concentrations of the 

same material26. For instance, iodine concentration was numerically increased from 2 mg/cc 

to 30 mg/cc (with 0.05 mg/cc per step), and the corresponding CT numbers were estimated 

from a linear fitting across the CT numbers measured from real iodine inserts (w. 2, 5, 10, 

and 15 mg/cc, 30 mm diameter). Additional numerical inserts of HA, iodine-blood mixture, 

and fat were synthesized in the very similar way. Briefly, the mass density range of the 

simulated HA, iodine-blood mixture, and fat inserts was [190, 1000] mgHA/cc, [1.9, 30] 

mgI/cc, and [950, 960] mg/cc, respectively. For each insert material, random splitting was 

used to split the set of concentrations to generate training (95%) and validation subsets (5%). 

Of note, the numerical concentration that coincided with that of real testing inserts (shown in 

Table 2) were excluded from training and validation subsets. For each concentration per 

insert material, random polygon was repeatedly generated to augment the diversity of insert 

structure. To mimic real CT noise texture and augment the noise texture diversity, random 

noise patches extracted from water phantom background were added to the random-shaped 

numerical inserts (Figure 2). Of note, these random patches involved local image artifacts 

(e.g. partial beam-hardening and noise streak) and radiation-dose- / location-dependent CT 

number bias (e.g. this was well-analyzed in references39–41), which had already induced true 

non-linear physical process-related CT number perturbation to the simulated inserts. 

Meanwhile, the formation of the above-mentioned water patches and iodine patches had 

already involved the complete non-linear physical process of PCD-CT system and vendor’s 

proprietary non-linear pre-/post-processing procedure. Thus, the non-linear process was 

already involved in the proposed training dataset, and thereafter was implicitly approximated 

by the proposed CNN. In total, the image preprocessing procedure generated approximately 

110,000 paired training samples: for real inserts, the number of original paired samples was 

3 (training iodine inserts per scan) × 102 (images per scan) × 3 (radiation dose levels) × 4 

(training scans per dose level), and then further boosted by one realization of random 

mirroring and Gaussian noise; for numerical inserts, the set of paired samples involved 
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approximately 1, 600 insert material / concentration configurations and 60 realizations of 

random polygon / noise texture per insert / concentration configuration.

2.3. CNN training

The parameters of Incept-net were initialized by using Xavier normal initializer with default 

setting. The number of training epochs was fixed at 50, with 100 image patches per mini-

batch. The mini-batches were randomly shuffled across consecutive training epochs. The 

stochastic gradient descent method was used to optimize the parameters of Incept-net. The 

learning rate was initially set to 0.1, subject to a decay rate of 0.001 across all training 

epochs. The norm of the gradient was empirically limited to be no greater than 1.0 during 

the back-propagation (i.e. gradient clipping) to suppress the potential overshooting of 

gradient which could result in unstable CNN models. Incept-net was implemented using 

Keras 2.2.4 and Tensorflow 1.13. In addition, we did not apply additional hyper-parameter 

optimization, and the validation set was used to monitor the occurrence of overfitting in 

CNN training.

2.4. Evaluation and Comparison

Incept-net performance was compared to two conventional methods, using full-FOV images 

from the phantom testing cases and porcine scan. The standard least-square based material 

decomposition (LS-MD) was implemented with volume conservation constraint6,42, and 

served as the baseline for comparison. In addition, total-variation regularized material 

decomposition (TV-MD) was also included. TV-MD was implemented as was shown in our 

prior study14. Briefly, the corresponding objective function included the data fidelity term 

and the TV regularization term dedicated for the material maps (see eq. (7) & (8) in 

reference14), and then it was minimized using the alternating direction method of 

multipliers43. The relaxation parameter λ, i.e. the parameter that controls the preference 

between data fidelity term and TV term, was empirically fixed at 5×103 as was used in the 

reference14. The original outputs of the TV-MD and LS-MD were linearly blended to 

alleviate patchy look of the original TV-MD results. Thus the final results of TV-MD XTV′

can be simply formulated as follows:

XTV′ = α ⋅ XTV + 1 − α ⋅ XLS (3)

where XTV and XLS denotes the original outputs of the TV-MD and LS-MD, respectively, 

and α is a weighting factor which was empirically fixed at 0.9. Both LS-MD and TV-MD 

were performed with volume conservation constraint, assuming HA, iodine, and water as the 

three basis materials. To determine the coefficients of decomposition matrix used in LS-MD 

and TV-MD, a separate calibration scan was performed to measure the CT numbers of the 

basis material (HA and iodine) of known concentrations. These measurements were then 

used to generate the coefficients of decomposition matrix based on a least-square parameter 

estimation approach44. Besides the comparison with conventional methods, a pilot 

comparison with additional deep learning based method was also presented. We 

implemented the same U-net architecture as used in reference19, except that the output layer 

was modified to generate three material maps. U-net training used the same loss function as 

the proposed Incept-net. To achieve a fair comparison, U-net was trained using the same 
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dataset, and the setting of optimizer was consistent to that used in our method. Of note, the 

selected U-net had roughly 40% more parameters than the proposed Incept-net.

In the evaluation, visual inspection was performed to assess perceived noise levels and 

structural details, especially on the smaller iodine inserts that were unseen during the 

training of the CNN, i.e., the 5 mgI/cc iodine inserts with 2, 5, and 10 mm diameter. 

Material density accuracy across routine and low dose levels was evaluated using nominal 

material concentration as the reference. The specific composition and the corresponding 

concentration of the standard CT inserts were provided by the Vendor (Sun Nuclear, Inc.). 

Bias was assessed using mean absolute error (MAE) of material concentration measured in 

material maps, i.e. the absolute difference between the averaged material concentration per 

insert and the corresponding reference. Noise was assessed using the standard deviation of 

material concentration measured in material maps. Especially, quantitative generalizability 

of the CNN was evaluated on real insert materials that were not included in training dataset 

(Table 2).

Further, a pilot evaluation of the effects of the image-gradient-correlation based regularizer 

(eq. (2) and (3)) on edge preservation was carried out in porcine anatomical background, by 

comparing the proposed method with two modified implementations. First, the same Incept-

net architecture and the comparator U-net was re-trained without the IGC regularizer. 

Second, an additional branch of the factorized 7×7 convolutional filters was added to each 

Inception-B / -R module of Incept-net, and the modified Incept-net was also re-trained 

without the regularizer. The delineation of blood vessels and soft-tissues was qualitatively 

compared across the corresponding material images. Finally, due to the absence of ground 

truth, quantitative accuracy of CNN outputs in porcine images was heuristically validated 

using mass conservation constraint:

fCNN
w =

ρCNN
HA

ρpureHA +
ρCNN

Iodine

ρpureIodine +
ρCNN

Soft−tissue

ρpure
Soft−tissue (4)

Where fCNN
w  denote the summed mass fraction, ρCNN

HA , ρCNN
Iodine, and ρCNN

Soft−tissue denote 

material maps from Incept-net, ρpureHA , ρpureIodine and ρpure
Soft−tissue denote the corresponding mass 

densities of the same basis materials in the pure form, i.e. HA 3,160 mg/cc, iodine 4,933 

mg/cc, and soft-tissue 1,000 mg/cc (approximated by water). CNN outputs would perfectly 

satisfy mass conservation constraint if fCNN
w = 1.0.

3. Results

3.1. Loss curves of Incept-net and U-net with IGC

For both CNNs, the loss curves entered plateau region before 50th epoch, and no obvious 

overfitting was observed (Figure 3).

3.2. Phantom studies

Incept-net presented superior performance than the LS-MD and TV-MD, in terms of noise, 

artifact suppression, and detail preservation. For instance, the iodine image from the LS-MD 
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was heavily corrupted by image noise, while the TV-MD failed to properly delineate the 

edge of iodine and blood-iodine inserts with lower concentrations (Figure 4). Both CNNs 

appeared to reduce image noise level. However, Incept-net provided relatively better image 

quality than the selected U-net, as the latter network yielded observable artifact at insert 

edge. The mass density of adipose was accurately estimated using both CNNs, while it was 

overestimated by the other methods (Figure 4). This phenomenon was caused by the fact that 

fat was not used as a basis material for the conventional methods. The negative CT numbers 

of fat yielded negative mass densities in HA and iodine images and falsely raised the mass 

density in soft-tissue images since the conventional methods enforced a linear system model 

with a volume conservation constraint. In contrast, CNN was capable of correctly assessing 

fat by directly learning the mapping between CT numbers and mass density. At the lowest 

radiation dose level (7 mGy), Incept-net still reasonably recovered the smallest iodine insert 

(5 mgI/cc and 2 mm diameter), which was not used during the training of Incept-net (Figure 

5). The comparison of line profiles confirmed that Incept-net provided a better edge 

preservation at different radiation dose levels (Figure 6). The quantitative evaluation is 

presented in Sec. 3.3.

3.3. Quantitative generalizability

Compared to TV-MD and LS-MD, both Incept-net and U-net robustly suppressed image 

noise across different radiation dose levels (Figure 7), while improving quantitative accuracy 

(MAE for iodine concentration: Incept-net 0.66 mgI/cc, U-net 1.0 mgI/cc, TV-MD 1.33 

mgI/cc, LS-MD 1.57 mg/cc). Of note, the improvement on iodine quantification accuracy is 

very meaningful for the clinical dual-energy CT tasks that request the differentiation of 

pathology with low iodine-enhancement (e.g. metastatic lesions)45–48. The mean percent 

noise reduction of Incept-net, U-net and TV-MD was 96%, 96% and 82% on HA inserts, 

respectively, compared to LS-MD. Similarly, the mean percent noise reduction of Incept-net, 

U-net, and TV-MD was 94%, 93% and 86% on iodine inserts. The noise level remained 

relatively constant for CNN-processed images acquired at different dose levels (e.g. iodine 

noise up to approximately 0.7 mgI/cc for both routine and low dose, respectively), which is 

quite different than the results from the standard LS-MD, where noise substantially 

increased at lower dose levels (e.g. iodine noise up to approximately 4.0 mgI/cc and 11.0 

mgI/cc for routine and low dose, respectively).

3.4. Animal studies

Compared with LS-MD and TV-MD, both Incept-net and U-net improved performance on 

the animal datasets. Both CNNs were capable of suppressing the soft-tissue residual in the 

HA image (Figure 8). Both CNNs also provided better visualization of small blood vessels 

while suppressing the false enhancement of adipose tissue in the iodine image. However, 

edge artifact was prominent in U-net outputs (mainly for the high-contrast structure). The 

CNN-synthesized iodine image presented noticeable signal in the tissue / muscle region 

around the contrast-enhanced blood vessels and kidney, which was partially attributed to the 

iodine uptake that occurred in the tissue / muscle. The comparison with true non-contrast 

abdominal CT had at least qualitatively validated the iodine decomposition results (Figure 

9). A further discussion is presented in Sec. 4. More interestingly, the Incept-net improved 

the delineation of anatomical structures in the soft-tissue images compared to TV-MD and 
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LS-MD (Figure 8). Similar to the results of the phantom study (Sec. 3.1), TV-MD and LS-

MD reversed the density of the muscle and adipose. TV-MD and LS-MD presented strong 

signal of table pad in the HA image. The possible reason is described as follows. Table pad 

was not used as a basis material, and its dual-energy CT number ratio was lower than that of 

HA and iodine. Since conventional methods used linear system with volume constraint, table 

pad decomposed strong negative value in iodine map and raised strong positive value in HA 

map and water map. An additional comparison over the animal thorax region is illustrated in 

Figure 10. In the iodine map, the comparator “U-net” yielded strong bone residual at the 

chest wall. This is an apparent decomposition error, as HA was already used as a basis 

material in CNN training.

For both CNNs, the removal of the IGC regularizer caused observable aliasing at some soft-

tissue and air boundary in material maps (e.g. the arrows in Figure 11). As for Incept-net, the 

use of additional 7×7 convolutional filters had no effects of ameliorating the aliasing artifact. 

As for U-net, subtle checkerboard artifact was observed when IGC was removed, while the 

use of IGC appeared to reduce checkerboard artifact at the relatively uniform region yet 

slightly amplify the edge artifact at high contrast blood vessels. Of note, the checkerboard 

artifact can be typically attributed to the well-known challenges in the up-convolutional 

operation, max-pooling and gradient artifacts in back-propagation49–51. A further discussion 

about these findings is presented in Sec. 4. Finally, the material maps from Incept-net 

closely conserved the total mass densities (Figure 12), although no explicit mass 

conservation constraint was implemented. For example, the mean weighted sum of mass 

densities fCNN
w  was 1.04 (±0.01), 1.03 (±0.01), and 1.02 (±0.01), in liver, kidney, and bonny 

structure, respectively. The slight discrepancy between the measured and ideal value of 

fCNN
w  could be attributed to the fact that water mass density was used to approximate the 

mass density of pure soft-tissue in eq. (5). This heuristic validation indicated that the use of 

nominal basis material densities as the ground truth have possibly provided an implicit mass 

conservation constraint during CNN training.

4. Discussion

In this study, a custom Incept-net was developed to perform image-domain-based material 

decomposition with two energy-bin data sets acquired using a research whole-body PCD-

CT. Incept-net was trained with augmented small image patches acquired from phantom 

scans, and then evaluated using the full-FOV CT images from independent phantom and 

animal scans. Incept-net demonstrated improved performance and detail-preserving 

capabilities, robustness against noise amplification and the quantitative accuracy for the 

materials of interest, even at the lower radiation dose levels. Especially, Incept-net 

maintained relatively consistent noise level compared to LS-MD at different dose levels. 

Although the Incept-net was only tested with two energy-bin data, it can be easily adopted to 

multiple (>2) energy bin data.

Based on universal approximation theory29, a CNN could be used to approximate the 

functional mapping between multi-energy CT data and material densities. The accuracy of 

the approximation depends on the learning capacity of the CNN. The learning capacity is 

Gong et al. Page 10

Med Phys. Author manuscript; available in PMC 2021 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determined by the network architecture. To date, there is still a lack of theoretical guideline 

or consensus on the optimal design of CNN architecture for the purpose of solving general 

inverse problems. Nonetheless, recent studies have attempted to explore the theoretical link 

between the CNN and inverse problems in imaging. For example, Mousavi et al.52 provided 

a probabilistic interpretation that the training of the stacked denoising autoencoders 

minimized the energy of the compressed signal representation, i.e. the reconstruction error 

would also be minimized when the signal was de-compressed. Then, Jin et al.53 

demonstrated that the unrolled regularized iterative algorithms exerted the repeated 

operations of convolution and pointwise non-linearity, i.e., a form similar to the standard 

CNN architecture, when the forward model involved a normal-convolutional operator. 

Especially, Ye et al.30 showed that the deep encoder-decoder neural network can be 

interpreted as the multi-layer deep convolutional framelets expansion in which the input 

signal would be represented by the stacked convolution of local and non-local bases. Based 

on this work, the local bases can be optimally learned from the training dataset, for a given 

design of non-local bases. The improvement on the design of non-local bases is beyond the 

scope of this study, but a follow-up study is warranted.

The proposed Incept-net was designed following the general form of encoder-decoder 

networks, instead of using the standard U-net or ResNet. With the fix-sized convolutional 

filters and max pooling, standard U-net can rapidly enlarge the receptive field to explore the 

feature representation of multi-scale non-local image context, which effectively improves the 

accuracy of object classification and detection. Standard U-net with average pooling still 

does not guarantee the perfect reconstruction of true signal, and it overly-emphasizes low-

frequency components despite the use of skip connection, i.e. the high-frequency detail like 

edges and tissue interfaces is likely to be smoothed out30. Thus, such networks are likely to 

demonstrate a strong denoising capability at the cost of smoothing out the fine low-contrast 

details, when they are used for modeling the point-wise image transformation, e.g., material 

decomposition in image domain. Furthermore, the standard up-convolutional layer and max 

pooling could yield the checkerboard artifact49,50, which would require additional 

architectural changes for artifact suppression. Of note, despite the “average un-pooling”, the 

comparator “U-net” still involves un-convolution operation, which occurs in the back-

propagation of the gradient of CNN parameters. The contracting path of the comparator “U-

net” consists of standard convolutional and max pooling operations. Such contracting path 

becomes equivalent to the standard up-convolution, when the gradient of CNN parameter 

was propagated backward to the input layer (this was systematically explained in Odena et 

al’s work49). As a result, any noise in the gradient of CNN parameters would raise 

checkerboard-like artifact49. Additionally, there is no consistent evidence showing that 

average un-pooling could robustly maintain image quality, e.g. the reference54 demonstrated 

the counter example showing that the paired max-pooling and average un-pooling does not 

prevent the occurrence of blurring and checkerboard-like image artifacts. It is also important 

to note the following fact. The study on checkerboard artifact is an active research area. 

Compared to average un-pooling, a number of advanced methods have been continuously 

proposed, and none of these methods has been validated to be the ultimate solution49,50,55,56. 

Meanwhile, the proposed Incept-net can still learn the multi-scale signal representation 

without the standard pooling layers (i.e. max, average, and global max / average pooling), by 
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using the different-sized convolutional filters (i.e., multi-scale filtering) in the customized 

multi-branch modules, i.e., Inception-B / -R modules. Intuitively, these modules enabled 

Incept-net to learn the image features at different scales and further enhance the network 

robustness against local noise and artifact perturbation. Of note, the exclusion of standard 

pooling and up-convolutional layers from Incept-net was mainly based on the 

aforementioned hypothesis that the local image context shall be sufficient for modeling the 

inverse mapping from multi-energy CT images to material-specific images. This hypothesis 

also motivated the strategy of training the CNN using simplistic phantom images and 

applying the CNN for anatomical images thereafter. Despite the simple insert structure used 

in training, the CNN output has largely maintained the anatomical structure in animal CT 

images. The CNN was mainly tasked to perform pixel-to-pixel regression in material-

decomposition, and it could readily explore image structure redundancy between the labels 

and CT images. In this sense, the training for material decomposition task could involve 

simpler objects compared to several common applications that require CNNs to learn high-

level features for perceptual tasks, e.g. image classification and segmentation, in which 

complex objects are necessary.

The comparison between true non-contrast and contrast-enhance CT exams (Figure 9) had at 

least qualitatively validated the iodine quantification of our method in anatomical 

background. Meanwhile, it is also possible that some un-enhanced dense muscle could be 

partially decomposed into iodine map, as the CT number of the animal’s un-enhanced dense 

muscle may be close to that of iodine-blood mixture inserts which were involved in CNN 

training. However, this is not necessarily a limitation or decomposition error of the proposed 

method. As was already pointed out in previous studies36,38, the objects containing materials 

other than the pre-selected basis materials will still be decomposed into the same set of basis 

materials. Of course, any reliable material decomposition methods should yield accurate 

results when the objects are only made up with basis materials. Furthermore, the two 

conventional methods largely decomposed iodine-enhanced soft-tissue to the bone map 

(Figure 8), and also obviously underestimated iodine concentration in iodine-blood mixture 

inserts (Figure 7). These findings suggested that conventional methods yielded worse iodine 

quantification accuracy in the mixture of contrast-media and tissues used in this study. In 

addition, we did not use the commercial material-decomposition software or the simulation 

of patient anatomy in evaluation, mainly because such tools were not yet available for the 

research PCD-CT system. These tools are typically very useful for qualitative evaluation. 

However, we consider that extra caution should be taken, if one would like to use them in 

quantitative evaluation. It is impractical to use the commercial software to establish the 

ground truth of real anatomy, as commercial software has been reported to yield systematic 

iodine quantification error which varied across different configurations of CT systems and 

clinical scanning protocols37,38. The simulation of human anatomy and CT systems can 

provide a self-consistent CNN training and testing scenario, as the training and testing 

dataset is in the same domain. Yet, it is still very challenging to realistically simulate all 

physics effects during data acquisition, processes involved in image reconstruction and 

tissue complexity. In contrary, with standard CT phantom materials, we can ensure that the 

same CT systems, clinical scanning protocols, reconstruction settings, and especially the 

vendors’ proprietary pre-/post-processing procedure were used in both phantom and patient 
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data. Meanwhile, those phantom materials have been well-validated and widely-accepted as 

good surrogate of real human tissues. It is important to note that: the phantom-based 

validation has been used in numerous clinical and technical studies, as the major method, to 

validate the quantification accuracy of the commercial software36–38,57,58 or in-house 

algorithms5,7,14,16,59,60. Although validation using patient images would be preferred in an 

ideal situation, it is extremely challenging to obtain ground truth in patient images in most 

scenarios. One potential feasible clinical scenario is multiple-phase CT scans involving both 

non-contrast and contrast CT scans, where virtual non-contrast images from dual energy 

material decomposition may be compared with true non-contrast images, although most 

comparisons are qualitative rather than quantitative58,61.

One may expect to expand the network width and depth to further enhance performance by 

adding additional branches with larger convolutional filters in the multi-branch modules or 

stacking more layers in the network. In doing so, additional care must be taken to properly 

manage the network width and depth. From the perspective of deep convolutional framelets 

theory30, the number of filter channels needs to be multiplicatively increased along the layer 

direction to guarantee the perfect reconstruction, and meanwhile the filter size and the 

intrinsic rank structure of the signal determine the minimal number of filter channels at each 

layer and the minimal number of CNN layers. In other words, for a given complicated 

signal, the use of a larger filter size could result in the exponentially-increased number of 

CNN parameters. In fact, it is typically not practical to fulfill this “sufficient condition” of 

perfect reconstruction. This is partially due to the extremely challenging requirement for 

computer memory. Moreover, it is also difficult to acquire sufficient statistics to determine 

the rank structure of the patient anatomy from a general population. When the configuration 

of the CNN does not satisfy the perfect reconstruction condition, the shrinkage behavior of 

the CNN starts to emerge, and may result in the loss of signal information and / or the rise of 

new artifacts. The use of proper regularization strategy could suppress the potentially-

adversarial effects of shrinkage behavior (Figure 11). However, the shrinkage behavior could 

still be exploited to achieve an appropriate CNN performance for the material decomposition 

problem, by adjusting the configuration of filter channels and network layers with a given 

design of the non-local bases. For example, the shrinkage behavior could be controlled to 

reach a proper trade-off between the detail preservation and the noise suppression.

In the evaluation of quantitative generalizability, Incept-net consistently yielded smaller 

MAE than that of the other two methods across varying radiation dose levels. As the 

corresponding iodine concentration was within the concentration range used in CNN 

training, this finding indicated that Incept-net had good interpolation generalizability. Due to 

the highly non-linear nature of the CNN, it could be challenging to configure the network 

architecture to achieve good extrapolation generalizability especially on the unseen 

concentration that is far away from the training data manifold62. To bypass this challenge, a 

straightforward solution is to further increase the width and density of the training dataset, 

i.e., using more iodine concentration from a wider range.

We acknowledge several limitations in this preliminary study. First, the proposed method 

was only evaluated with CT data acquired from a specific type of research CT system. For 

other types of clinical CT scanners, the proposed CNN may need to be re-trained to achieve 

Gong et al. Page 13

Med Phys. Author manuscript; available in PMC 2021 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



optimal performance for different CT tasks (e.g. head / chest CT exams), using phantom 

data acquired with the corresponding scanning / reconstruction protocols. Second, the 

generalizability of CNN in anatomical background was only evaluated using single porcine 

exam, without human subject studies. Further validation of CNN generalizability over 

different human body parts and clinical applications would be needed in follow-up studies. 

One potential direction is to compare CNN generated virtual non-contrast images from 

contrast enhanced scans to the true non-contrast images in multi-phase CT exams. Despite 

these limitations, a systematic evaluation of the proposed method for varying CT tasks in a 

larger patient cohort is warranted in further studies.

5. Conclusion

A CNN with the customized architecture (Incept-net) was developed to directly model the 

functional mapping from multi-energy CT images to material-specific images. Incept-net 

was trained using only the small patches of phantom images having a uniform background, 

but it demonstrated robust quantitative accuracy and detail-preserving capability on phantom 

materials with unseen concentrations and complex animal anatomical structures. Compared 

with the conventional LS-MD and TV-MD, the proposed Incept-net demonstrated superior 

capabilities in preserving fine details and suppressing image noise. Data from multiple dose 

levels demonstrated that Incept-net is less sensitive on radiation dose and image noise 

change compared to standard methods. The experimental results provided preliminary 

evidence that Incept-net could be a promising tool to further improve the quality of material 

decomposition in multi-energy CT.
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Figure 1. 
Schematic illustration of the proposed convolutional neural network (CNN) which follows 

the general Encoder-decoder framework. (a) The overall architecture of the proposed CNN. 

(b) The architecture of the Inception-B block. (c) The architecture of the Inception-R block. 

The Inception-B and Inception-R blocks were modified from the naïve Inception blocks. 

“BN” denotes batch-normalization layer. “Conv” denotes convolution layer. “Concat” 

denotes concatenation. “Leaky ReLU” denotes leaky rectified linear unit layer.
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Figure 2. 
(a) – Example inserts used in the phantom scans. The dashed square region-of-interest 

(64×64 pixels) indicates the location where CT image patches of a pre-selected iodine insert 

(i.e. 2 mg/cc, with 30mm diameter; see Table 2 for details) were extracted for training 

convolutional neural network. The other region of the image was spared from image patch 

extraction. The range of display window for CT images were [-160, 240] HU. “HA” – 

hydroxyapatite inserts. “I” – iodine inserts. “I + B” – iodine and blood mixture inserts. The 

digits within parentheses indicate the nominal density (mg/cc) of inserts. (b) – Example 

image patches and the corresponding material maps (i.e. ground truth for training neural 

network) for a numerical random-shaped iodine insert and a real insert. The columns #1 to 

#5: Energy bin CT image at [25, 65] keV, Energy bin CT image at [65, 140] keV, HA map, 

iodine map, and soft-tissue map. Display window: [0 500], [0 5], and [850 1100] mg/cc for 

HA, iodine, and soft-tissue maps, respectively. Please refer to Sec. 2.2.2 for the details of 

data preparation method.
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Figure 3. 
Loss curves of Incept-net and U-net trained with mean-square-error and the proposed image-

gradient-correlation (IGC) regularizer. “Train-loss” – training loss curves. “Val-loss” – 

validation loss curves.
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Figure 4. 
Example material-specific images from the testing hydroxyapatite (HA), iodine / blood 

mixture, and fat inserts (see Figure 2 and Table 2), using Incept-net, U-net, total-variation 

(TV-MD), and least-square (LS-MD) based methods. The spatial distributions of HA, iodine 

and soft-tissue from each method are shown in the top, middle and bottom rows, 

respectively. Both Incept-net and U-net were trained with mean-square-error and the 

proposed image-gradient-correlation based regularizer (IGC). The CTDIvol of regular dose 

(RD) was 13 mGy. The zoomed inserts are 2.5 times the size of the square region-of-interest. 

The arrows indicate the examples of edge artifact.
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Figure 5. 
Iodine images from iodine inserts at regular radiation dose (RD) and lower radiation dose 

(LD) levels, using Incept-net, U-net, total-variation (TV-MD) and least-square (LS-MD) 

based material decomposition. The inset CT image illustrates the insert configuration (the 

range of display window [-160 240] HU). “I” – iodine. The digits within parentheses 

indicate iodine mass densities (mg/cc). Of note, the top two inserts (i.e. 10 and 15 mg/cc) 

were involved in CNN training, but the remaining inserts (5 mg/cc) were reserved for 

testing. The dashed arrows indicate the location of the 5 mgI/cc iodine inserts with 2 mm 

and 10 mm diameter, respectively. The display window for the full field-of-view iodine 

images is [0, 16] mgI/cc. The zoomed inserts are 2.5 times of the size of the rectangular 

region-of-interest, and the corresponding display window is narrowed down to [0, 5] mgI/cc 

for the convenience of illustration. The solid arrows indicate the edge artifact in U-net 

outputs. The CTDIvol values for the regular dose (RD) and low dose (LD) scans were 13 

mGy and 7 mGy, respectively.
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Figure 6. 
Line profiles from the iodine images (see Figure 5) at routine radiation dose (RD) and low 

radiation dose (LD) levels, using Incept-net, U-net, total-variation-minimization (TV) and 

least-square (LS) based material decomposition. The inset image shows the location of line 

profiles in CT image, i.e. the 5 mgI/cc iodine insert (with 10 mm diameter) that was not used 

in CNN training. The range of display window for CT image was [-160, 240] HU.
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Figure 7. 
Material mass densities of testing inserts estimated at routine and low dose levels, using 

Incept-net, U-net, total-variation (TV), and least-square (LS) based methods. The top two 

charts: routine dose (RD: CTDIvol 13 mGy) level. The bottom two charts: low dose (LD: 

CTDIvol 7 mGy) level. The error bars indicate the standard deviation of the estimated 

concentration.
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Figure 8. 
Material-specific images from the porcine abdominal CT scan, using Incept-net, U-net, total-

variation (TV-MD), and least-square (LS-MD) based material decomposition methods. The 

spatial distribution of hydroxyapatite (HA), iodine and soft-tissue are shown in the top, 

middle and bottom rows, respectively. The CTDIvol was 16 mGy. The zoomed insets are 3 

times the size of the square region-of-interests. The arrows in the zoomed iodine insets 

indicate the location of blood vessels. The arrows in the zoom-in soft-tissue insets indicate 

the boundary of kidney. The range of display window for CT images were [-160, 240] HU.
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Figure 9. 
The comparison between true non-contrast (left column) and contrast-enhanced CT (right 

column) shows apparent CT number enhancement in soft-tissue, i.e. iodine uptake. The 

digits next to each circular region-of-interest (ROI) represent the measured mean CT 

numbers from the same ROI. Due to continuous bowel motion, we can only perform rigid 

alignment of relatively static major structure (e.g. ribs, spinal cord, and major abdominal 

muscle). However, those ROIs (range of diameter: ~24mm to ~30mm) were still placed in 

close proximity to the same tissues or organs. Display range: [-160, 240] HU.
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Figure 10. 
Material-specific images from a porcine chest CT scan (at a randomly-selected slice), using 

Incept-net, U-net, total-variation (TV-MD), and least-square (LS-MD) based material 

decomposition methods. The spatial distribution of hydroxyapatite (HA), iodine and soft-

tissue are shown in the top, middle and bottom rows, respectively. The CTDIvol was 16 

mGy. The zoomed insets are 2.2 times the size of the square region-of-interests. In the 

zoomed iodine insets, the solid arrows indicate the location of blood vessels. In the iodine 

map of U-net outputs, the dashed arrow indicates strong bone residual at chest wall. The 

range of display window for CT images were [-160, 240] HU.
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Figure 11. 
Iodine images showing the effects of the proposed image-gradient-correlation (IGC) based 

regularizer in both Incept-net and U-net, and the effects of additional factorized convolution 

with 7×7 filters in Incept-net. The arrows indicate the aliasing at the bottom boundary of the 

animal. The zoom-in insets are 2.5 times the size of the square region-of-interests. The 

ranges of display window for full field-of-view iodine images, the zoom-in iodine images, 

CT images were [0, 10] mg/cc, [0 4] mg/cc, and [-160, 240] HU.
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Figure 12. 
Example of heuristic validation of mass conservation for Incept-net outputs in porcine scan. 

Left subfigure: low-threshold (i.e. [25, 140] keV) CT image from coronal plane. Right 

subfigure: pixel-wise weighted sum of mass densities (eq. (5)) across all material maps 

acquired from the same coronal plane (display window: [0, 2]). The method for calculating 

the weighted sum is described in Sec. 2.4. The mean value of the weighted sum of mass 

densities at the three region-of-interests (ROIs #1 – 3, radius 11, 16, and 8 mm) was 1.04 

(±0.01), 1.03 (±0.01), and 1.02 (±0.01), respectively. The range of display window for CT 

images was [-160, 240] HU.

Gong et al. Page 29

Med Phys. Author manuscript; available in PMC 2021 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gong et al. Page 30

Table 1.

The configuration of the proposed convolutional neural network

Components Configuration

Input 2-channel images:
#1 channel – CT image from lower energy bin
#2 channel – CT image from higher energy bin

1st Convolution (Conv) 3×3 filters w. 60 channels
60 output channels

Inception-B #1 1×1 filters w. 20 channels
3×3 filters w. 20 channels
120 output channels

Inception-B #2 1×1 filters w. 40 channels
3×3 filters w. 40 channels
240 output channels

Inception-R #1 1×1 filters w. 40 channels
3×3 filters w. 40 channels
120 output channels

Inception-R #2 1×1 filters w. 20 channels
3×3 filters w. 20 channels
60 output channels

Last convolution 1×1 filters w. 3 channels
3 output channels

Output 3-channel images:
#1 channel – hydroxyapatite image
#2 channel – iodine image
#3 channel – soft-tissue image

Zero padding was applied to all convolution layers
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Table 2.

The concentration and size of real phantom inserts used in CT scans

Inserts Concentration

Hydroxyapatite 200 mgHA/cc (25 mm in DIA) †

400 mgHA/cc (25 mm in DIA) †

Iodine 2 mgI/cc (30 mm DIA) ††

5 mgI/cc (2, 5, 10, 30 mm DIA) †

10 mgI/cc (30 mm DIA) ††

15 mgI/cc (30 mm DIA) ††

3 mgI/cc (7.5 mm DIA) *

6 mgI/cc (7.5 mm DIA) *

12 mgI/cc (7.5 mm DIA) *

18 mgI/cc (7.5 mm DIA) *

24 mgI/cc (7.5 mm DIA) *

Iodine + blood 2 mgI/cc (30 mm DIA) †

4 mgI/cc (30 mm DIA) †

Fat 956 mgFat/cc (30 mm DIA) †

DIA – diameter

†
these inserts were not included in training dataset

††
these iodine inserts were used to generate a part of training dataset

*
the in-house-made iodine insert that were used as a part of testing dataset

Except for the in-house iodine inserts, the other phantom inserts are standard CT phantom inserts fabricated by the vendor (Sun Nuclear, Inc.); the 
concentration of the other materials (e.g., the blood mimicking material in the blood-iodine mixture) are available in the technical specifications 
from the vendor.
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Table 3.

The major parameters of the scanning and image reconstruction protocols

Thoracic / Abdominal CT

Tube voltage (kV) 140

Energy bins (keV) #1: [25, 65]
#2: [65, 140]

CTDIvol (mGy) Phantom scans:

• HD – 23

• RD – 13

• LD – 7

Animal scans: 16

Number of scans per dose level 5

Field-of-view (mm) 275

Reconstruction algorithm SAFIRE, D30 kernel
Strength 2

Image matrix 512×512

Image thickness (mm) Phantom: 3
Animal: 1.5

HD = high dose, RD = routine dose, LD = low dose
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