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Abstract

Purpose: Long-term exposure to ambient fine particle (PM2.5) concentrations has been 

associated with an increased rate or risk of neurodegenerative conditions but individual PM 

sources have not been previously examined in relation to neurodegenerative diseases.

Methods: Using the Statewide Planning and Research Cooperative System database, we studied 

63,287 hospital admissions with a primary diagnosis of either Alzheimer’s disease (AD), 

dementia, or Parkinson’s disease (PD) for New York State (NYS) residents living within 15 miles 

from six PM2.5 monitoring sites. In addition to PM2.5 concentrations, we studied seven specific 

PM2.5 sources: secondary sulfate, secondary nitrate, biomass burning, diesel, spark-ignition 

emissions, pyrolyzed organic rich, and road dust. We estimated the rate of neurodegenerative 

hospital admissions associated with increased concentration of PM2.5 and individual PM2.5 

sources average concentrations in the previous 0–29, 0–179, and 0–364 days.

Results: Increases in ambient PM2.5 concentrations were not consistently associated with 

increased hospital admissions rates. Increased source-specific PM2.5 concentrations were 
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associated with both increased (e.g., secondary sulfates and diesel emissions) and decreased rates 

(e.g., secondary nitrate and spark-ignition vehicular emissions) of neurodegenerative admissions.

Conclusions: We did not observe clear associations between overall ambient PM2.5 

concentrations or source apportioned ambient PM2.5 contributions and rates of neurologic disease 

hospitalizations.
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INTRODUCTION

Ambient air pollution, in particular exposure to particulate matter (PM), has repeatedly been 

associated with increased risk of cardiovascular and pulmonary morbidity and mortality. In 

our previous studies in New York State, we reported that increases in PM2.5 concentrations 

were associated with hospital admissions due to cardiovascular diseases (Zhang et al., 2018) 

and respiratory conditions (Croft et al., 2019). Recent studies have reported adverse effects 

of air pollution on neurodegenerative outcomes, including Parkinson’s disease, Alzheimer’s 

disease and dementia, mild cognitive impairment, white matter loss, and decreased total 

cerebral brain volume (Bejot et al., 2018; Chen et al., 2017c). Proposed underlying 

mechanisms for the neurotoxic effect of air pollution include increased systemic and 

neuroinflammation, oxidative stress, loss of nigral dopaminergic neurons, or altered 

expression of micro-RNA (Allen et al., 2017; Bejot et al., 2018; Costa et al., 2017; Shou et 

al., 2019), and pollution effects on the cardiovascular system, could increase susceptibility to 

dementia, especially vascular dementia (Bejot et al., 2018).

Most epidemiologic studies of air pollution and cognitive outcomes or neurologic diseases 

have been either cross-sectional in nature, or utilized existing, relatively small cohorts to 

study these associations in secondary analyses. Nevertheless, a few studies have taken 

advantage of large population-based databases of diagnoses or hospitalizations that can 

provide a larger sample size and allow examination of associations over periods of five years 

or more (Kioumourtzoglou et al., 2016; Linares et al., 2017). Previous studies have 

consistently identified PM2.5 associations with Alzheimer’s disease, dementia, and cognitive 

function than with Parkinson’s disease (Chen et al., 2017b; Kioumourtzoglou et al., 2016; 

Linares et al., 2017; Wu et al., 2015). These studies focused on either long-term (e.g. annual 

average) pollutant concentrations (Kioumourtzoglou et al., 2016) or short-term (e.g. average 

within previous few days) exposures (Guo et al., 2018; Linares et al., 2017) but have not, 

within an individual study, examined different exposure time windows. Furthermore, 

different air pollution constituents or specific sources of PM2.5 may differentially influence 

neurodegenerative diseases, and but this possibility has not yet been explored.

Source apportionment analyses analyze ambient particulate chemical species and their 

spatial and temporal patterns of their mass concentrations to identify individual sources of 

ambient PM. Positive matrix factorization (PMF), a method of source apportionment, has 

been used to apportion the measured mass of an atmospheric pollutant at a given site to 

potential emission sources by solving a mass balance equation (Hopke, 2016b). Source 
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apportionment analyses have been conducted in numerous regions and cities around the 

world (Amato et al., 2016; Hopke, 2016a; Hopke, 2016b; Khare and Khanna, 2016; Zheng 

et al., 2016), with some examining whether individual PM sources were individually 

associated with the total, respiratory, and cardiovascular morbidity and mortality (Halonen et 

al., 2009; Thurston et al., 2005). Squizzato et al. (Squizzato et al., 2018) identified 13 

possible sources of PM2.5 at six urban sites across New York State (Bronx, Queens, 

Manhattan, Buffalo, Rochester, and Albany) from 2005 to 2016 with 7 sources being 

common to all 6 sites. Using the mass contributions of these PM2.5 sources at each urban 

site, increased rates of acute cardiovascular hospitalizations were associated with increased 

concentrations of spark ignition vehicle emissions (GAS), diesel vehicle emissions (DIE), 

road dust (RD), residual oil (RO), and secondary nitrate (SN) particulate matter in the 

previous 1 to 7 days (Rich et al., 2019). The possibility that individual PM sources may 

contribute differently to neurodegenerative diseases has not been comprehensively examined 

previously, although some studies have reported associations with ambient black carbon 

(Colicino et al., 2014; Power et al., 2011), a marker of traffic pollution and toxic airborne 

metal concentrations (antimony, arsenic, cadmium, chromium, lead, manganese, mercury, 

and nickel) (Finkelstein and Jerrett, 2007; Palacios et al., 2014a).

Using ambient PM2.5 measurements made at six monitoring sites across New York State 

(NYS), and the NYS Department of Health Statewide Planning and Research Cooperative 

System (SPARCS), a legislatively mandated database of NYS hospital discharges, we 

evaluated associations between increases in PM2.5 and source specific PM2.5 concentrations 

averaged over the previous 0–29, 0–179 and 0–364 days and daily hospital admissions for 

dementia, Alzheimer’s disease, and Parkinson’s disease, both individually and combined. 

We hypothesized that increased PM2.5 concentrations over extended periods of up to a year 

were associated with increased rates of neurologic disease hospitalizations. Based on the 

previously cited studies, we hypothesized that increased concentrations of the source 

specific PM2.5 (GAS, DIE, RD, and RO) that are likely to include oxidants or induce the 

formation of oxidants in the respiratory tract would also be associated with these same 

neurologic hospitalizations.

MATERIALS AND METHODS

Study Population and Hospital Admissions Data:

Information on hospital admissions (inpatient care) and emergency room visits (outpatient 

care) were obtained from the SPARCS database, which has been described previously (Jones 

et al., 2015; Lin et al., 2016; Zhang et al., 2018). Briefly, SPARCS is a legislatively 

mandated database that covers about 95% of hospitals in NYS, excluding federal (e.g. 

Veterans Affairs Hospitals) and psychiatric facilities. It contains billing and medical 

information on over 2.5 million discharges for NYS hospitals, 1.5 million ambulatory 

surgery center visits, and 6.5 million emergency department (ED) visits per year. SPARCS 

data include patient information on the principal diagnoses and up to 24 other diagnoses at 

the time of hospital admission, as well as demographic characteristics, event/hospital 

information, and the patient’s residential address. We geocoded the residential address for 

each hospital admission using ArcGIS 10.3.1 (The NYS GIS Program Office 2017).
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We retained hospital admissions from January 1, 2005 to December 31, 2016, for adult (≥18 

years) residents of New York State with a “principal” diagnosis of dementia (ICD9=290 and 

ICD10= F03.9, F05, F01.50, F01.51), Alzheimer’s disease (ICD9=331 and ICD10=G30.9, 

G31.01, G31.1, G91.0, G91.1, G93.7, G31.83, G31.84, G31.9), or Parkinson’s disease 

(ICD9=332.0, 332.1, 333.0; ICD10=G20, G21.11 G21.19, G21.8, G23.0, G23.1, G23.2, 

G23.8). ICD-9 codes were used for the period January 2005 to September 2015, and ICD-10 

for the subsequent time period. We defined overall neurodegenerative disease 

hospitalizations as the sum of the three individual admissions. We included only those 

admissions for people within 15 miles from the closest of the PM2.5 monitoring sites in 

Buffalo, Rochester, Albany, Bronx, Manhattan, and Queens (identified as described below), 

resulting in N=63,287 hospital admissions being available for analysis.

Using these admissions, we calculated daily admission rates for each urban center in the 

following manner. To account for changes in population size over time, for each monitoring 

site we estimated the population size (denominator for the daily admission rate) within a 15 

mile buffer around the monitoring station (for ≥18 age and 8 race categories for males and 

females separately) for each day during the study period, using population size estimates 

from each census tract from the 2000 and 2010 Census data and the 2011–2015 American 

Community Survey (ACS). For those census tracts not completely within the buffer, we 

scaled the population size from that census tract by the proportion of the census tract within 

the buffer. We then estimated the population size for each day by linear interpolation 

between the 2000 and 2010 Census, and between the 2010 Census and 2011–2015 ACS 

data; this latter trend was extrapolated until December 2016. The spatial analyses of census 

tracts were performed using ArcGIS 10.4.1 (ESRI), with linear interpolations computed 

using R 3.4.0 (R Core Team 2018). For each day at each urban site, we then divided the 

daily count of neurologic hospital admissions for that site by that center’s daily population 

estimate. The study was reviewed and approved by the Institutional Review Board at the 

State University of New York at Albany.

Air Pollution and Weather Data:

PM2.5 data: We retrieved PM2.5 measurements from the USEPA Air Quality System 

(https://aqs.epa.gov/api) from each of six urban sites: Buffalo, Rochester, Albany, Bronx, 

Manhattan, and Queens (Zhang et al., 2018). At each site, hourly PM2.5 concentrations were 

measured using tapered element oscillating microbalance (TEOM) monitors (DEC 2017). 

We computed 24-hour daily averages for each site and each day for which measurements 

were available for at least 18 hours (75% of a day) of that day in that site. We adjusted the 

TEOM PM2.5 concentrations to the Federal Reference Method (FRM) measurements to 

account for seasonal bias in TEOM data (Felton, 2005; Schwab et al., 2006). Missing 

TEOM data were substituted with FRM concentrations if available. For each day of our 

2005–2016 study period at each site, we estimated the average PM2.5 concentration in the 

previous 29 days (lag days 0–29), 6 months (lag days 0–179), and 1 year (lag days 0–364). 

We focused on these lags because the plausible biological mechanisms are likely most 

relevant for longer-term exposures. Nevertheless, for exploratory analyses we also computed 

average PM2.5 concentrations for the previous day (lag 0) and previous 2 weeks (lag 0–13).
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PM2.5 sources: We retrieved chemical speciation data for PM2.5 from 2005–2016 from the 

EPA Chemical Speciation Network (CSN; AQS, www.epa.gov/aqs) for the six NY urban 

sites. Samples were collected for 24 hours every third or sixth day and analyzed for species 

that provide mass closure. Elemental carbon (EC) and organic carbon (OC) were determined 

by thermo-optical analysis, major inorganic ions by ion chromatography, and elements by 

energy-dispersive X-ray fluorescence. Details of the sampling methods, analytical protocols, 

and quality assurance/quality control are summarized in Solomon et al. (Solomon et al., 

2014). Positive matrix factorization (PMF) using U.S. EPA PMF version 5, was used to 

identify PM2.5 sources at each site, with complete details provided by Squizzato et al. 

(Squizzato et al., 2018). Seven PM2.5 sources were resolved at all sites: secondary sulfate 

[AS], secondary nitrate [AN], biomass burning [BB], diesel [DIE], spark-ignition emissions 

[GAS], pyrolyzed organic rich [OP], and road dust [RD]. Three sources were identified only 

at the New York City sites (Bronx, Manhattan, Queens) (aged sea salt [AGS], fresh sea salt 

[FSS], and residual oil [RO]). Road salt [RS] was identified only in Buffalo, Rochester, and 

Albany and an industrial source [IND] was identified only in Buffalo. Details of these 

analyses and results were described previously (Squizzato et al., 2018). For the current 

analysis, we included only those PM2.5 sources common to all sites to ensure statistically 

precise effect estimates: AS, AN, BB, DIE, GAS, OP and RD. For each day of the 2005–

2016 study period at each site, we estimated the average source-specific PM2.5 concentration 

in the previous 29 days (lag days 0–29), 6 months (lag days 0–179), and 1 year (lag days 0–

364).

Weather data: Hourly temperature and relative humidity data were obtained from the 

National Weather Service (National Climate Data Center, https://www.ncdc.noaa.gov/cdo-

web/datatools/lcd) for the nearest major airport (BUF - Buffalo, ROC - Rochester, ALB - 

Albany, LGA - Bronx, and JFK - Queens) or the closest weather station (Central Park for 

Manhattan). For each study subject living within 15 miles of our six monitoring stations, we 

assigned PM2.5 source contributions, temperature, and relative humidity measurements from 

the nearest monitoring site. If a person lived <15 miles from more than one monitor (e.g. 

Bronx vs. Manhattan), we assigned concentrations/values to that person from the closest 

monitor.

Statistical Analyses:

We conducted descriptive analyses of hospital admission for all three primary neurologic 

diagnoses separately, including distributions by sex, age, race and ethnicity, year and season 

of admission, and length of stay. We also evaluated the distribution of PM2.5 concentrations 

for different lags by study site. We examined associations for three different primary lags 

(previous 0–29, 0–179, and 0–364 days) and two exploratory lags (previous day and 

previous 0–13 days) across the entire 2005–2016 study period.

We used generalized additive quasi-Poisson models to estimate the rate of neurologic 

hospital admissions (total and cause-specific) associated with interquartile range increases in 

PM2.5 concentration and source specific PM2.5 contribution. The quasi-Poisson model 

extends the Poisson model to allow the variance of the outcome to be larger than its mean. 

Models adjusted for long-term non-cyclical (secular) time trends that also account for 
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seasonality, day of the week (as 6 dummy variables), public holidays (yes/no), temperature, 

and relative humidity. Smoothing natural splines used 4 degrees of freedom per year for time 

trend, 3 degrees of freedom for temperature, and 3 degrees of freedom for relative humidity. 

Degrees of freedom (df) were selected for the overall study area after examining QAIC 

statistics to determine model fit for a range of degrees of freedom and considering model 

parsimony. We used the estimated population size within each 15 km buffer around the 

monitoring site, as described above, as an offset. Missing pollutant data were handled by 

excluding the hospitalization, and only hospitalizations with complete data were included.

To evaluate whether PM2.5 associations with hospitalizations across all sites were robust, we 

first ran separate models for each site to obtain site-specific relative rate estimates and their 

standard errors. We then pooled the 6 site-specific estimates of association into an overall 

estimate using fixed-effect meta-analyses with an inverse-variance weighting method. 

Results from random effects models were similar and so are not reported here. We evaluated 

heterogeneity of PM2.5 associations with hospitalizations across study sites. Because 

statistical heterogeneity (p<0.05) across sites was observed for only a few associations, in 

the main text we reported overall estimates only, but indicated where heterogeneity was 

observed. Site-specific estimates are presented in Supplemental materials.

We selected the lag-specific interquartile ranges (IQR) for the Albany site to scale our 

estimates of association across all analyses, as used in our previous studies (Croft et al., 

2019; Hopke et al., 2019; Zhang et al., 2018). Associations with P<0.05 were considered 

statistically significant. All data management and statistical analyses were done using R 

version 3.4.1 (https://www.r-project.org/).

RESULTS

Characteristics of hospital admissions are shown in Table 1. Of the 63,287 hospital 

admissions during the study period, 35,706 (56.4%) were due to Alzheimer’s disease, 

16,366 (25.9%) were due to dementia, and 11,215 (17.7%) due to Parkinson’s disease. Of all 

neurological hospital admissions, over 86% were in NYC (Bronx, Manhattan, and Queens). 

The average age at admission was 77 years, with the Parkinson’s disease patients being 

slightly younger. The majority of patients were white, although less so in NYC sites (39.8%

−61.1%) as compared to the other three sites (~85%). Hospitalizations were similarly 

distributed across years and seasons, although dementia hospital admissions were 

substantially greater in 2016 compared to previous years. Length of stay was longest for 

dementia hospitalizations (13 days) and shortest for Parkinson’s disease hospitalizations (6 

days). Across the study period, the incidence rate/year decreased for all neurologic disease 

hospital admissions combined, with 4.9 admissions/1000 people per year from 2005–2007 to 

4.2 admissions/1000 people per year from 2014–2016. This trend was primarily due to a 

reduction in Alzheimer’s disease hospital admissions (from 2.8 to 2.0 admissions/1000 

people, respectively). Trends for dementia (about 1.3/1000 people per year) and Parkinson’s 

disease (about 0.8/1000 people per year) remained relatively stable. The most common co-

morbidities were essential hypertension (49.8%−52.5% across sites), persistent mental 

disorders due to conditions classified elsewhere (42.8%−55.6%), and disorders of lipoid 

metabolism (23.3%−32.8%) (Supplemental Table S1).
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Table 2 displays trends in daily PM2.5 concentrations across sites and lag times (previous 29, 

159, and 364 days). Generally, PM2.5 levels were lower in Rochester and Albany compared 

to other sites. PM2.5 concentrations decreased by as much as 4–5 μg/m3 over the study 

period, depending on the site (Figure S1). Descriptive statistics for source specific PM2.5 

contributions for the different lags are shown in Table 3. The majority of total PM2.5 mass 

(~67%) was comprised of secondary sulfate, secondary nitrate, and spark-ignition emissions 

sources. For each source specific PM2.5, concentrations were similar for the three lag 

periods. Correlations between PM2.5 and source specific PM2.5 concentrations are shown in 

Supplemental Table S2. Generally, correlations were weak to moderate, ranging from almost 

null (e.g. for several AS correlations) to about 0.7 (e.g. correlation between PM2.5 and AS).

Rate ratios (RR) and 95% confidence interval (CI) of total and cause-specific neurological 

disease hospital admissions visits associated with each IQR increase in PM2.5 concentration, 

by lag time and outcome, are shown in Table 4. Most RR estimates were small and 

indicative of no association with PM2.5 concentrations. Nevertheless, each IQR increase in 

PM2.5 concentration in the 29 days up to and including the day of admission were 

significantly associated with an increased rate of hospitalizations for all neurologic diseases 

(RR=1.03; CI=1.00–1.05), and hospital admissions for Parkinson’s disease (RR=1.06; 

CI=1.00–1.12). Although not statistically significant, an increased rate of hospital 

admissions for Alzheimer’s disease was associated with increased PM2.5 concentrations in 

the 365 days up to and including the day of admission (RR=1.16; CI=0.91–1.46), while an 

increased rate of dementia was associated with each IQR increase in PM2.5 concentration in 

the 180 days up to and including the day of admission (RR=1.11; CI=0.92–1.34). Because 

20% of neurologic hospitalizations (n=12,841) were among patients with two or more 

hospitalizations during the study, we re-ran the model described above using the first 

hospitalization only and then again with patients with only one hospitalization during the 

2005–2016 study period. After doing so, elevated rates found with two or more 

hospitalizations included were lowered after considering the first hospitalization only and 

they were no longer statistically significant for any lag-outcome combination. Site-specific 

estimates for all lags are presented in Supplemental Table S3, and results for lag 0 and 0–13 

days across all sites are shown in Supplemental Table S4.

Rate ratios (RR) and 95% confidence intervals (CI) of total and cause-specific 

neurodegenerative disease hospital admissions associated with each IQR increase in source-

specific PM2.5 concentration, by lag time and outcome, are shown in Table 5. For all 

neurologic admissions combined, some statistically significant associations were observed, 

but there were also some protective associations. For example, while an increased rate of 

neurologic hospitalizations was associated with each IQR increase in secondary sulfate 

contribution in the past 6 months (RR=1.09; CI=1.00–1.19) and each IQR increase in diesel 

contribution in the previous year (RR=2.02; CI=1.17–3.47), decreased hospital admission 

rates were associated with IQR increases in the contribution of secondary nitrate in the 

previous 29 days (RR=0.93; CI=0.88–0.99), and spark-ignition emissions (RR=0.81; 

CI=0.66–0.99) and biomass burning (RR=0.58; CI=0.31–1.06) in the previous 6 months. 

The directions and magnitudes of association were similar for Alzheimer’s disease hospital 

admissions since they constitute the majority of total neurologic admissions, although the 

associations were less frequently statistically significant due to a smaller sample size. 
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Patterns for hospital admission rates of dementia and Parkinson’s disease were inconsistent, 

with both adverse and protective associations, but none were statistically significant. Results 

for lag 0 and 0–13 days for each source specific PM2.5 are shown in Supplemental Table S4.

DISCUSSION

For NYS residents living within 15 miles from PM2.5 monitoring sites in six urban areas 

from 2005–2016, our study found little evidence to support the hypothesis that increased 

ambient PM2.5 concentrations or individual source specific ambient PM2.5 contributions 

were associated with increased rates of hospital admissions for neurodegenerative diseases. 

Among the many comparisons across lags and outcomes, elevated hospitalization rates were 

observed for all neurologic outcomes combined and Parkinson’s disease in relation to PM2.5 

exposure in the previous 29 days but only when patients with two or more hospitalizations 

were considered, potentially suggesting a role of PM2.5 in exacerbation of disease. However, 

analysis of individual source-specific ambient PM2.5 contributions showed inconsistent 

results. Increased contributions of secondary sulfates and diesel were associated with 

increased rates of total neurodegenerative hospital admissions, but increased contributions of 

secondary nitrate, spark-ignition emissions, and biomass burning PM2.5 were associated 

with decreased hospitalization rates.

Multiple interconnected pathophysiologic mechanisms may explain associations between 

PM2.5 concentrations and adverse neurological outcomes, such as the activation of microglia 

and neuroinflammation through direct (e.g. translocation to the brain) and indirect (e.g. 

peripheral inflammation) pathways (Jayaraj et al., 2017), alterations of dopamine and 

glutamate neurotransmitter systems (Allen et al., 2017), neuronal injury including white 

matter damage (Allen et al., 2017; Chen et al., 2015), lower total cerebral brain volume and 

covert brain infarcts (Wilker et al., 2015), and adverse vascular effects (Babadjouni et al., 

2017; Weuve, 2014). Some studies of PM2.5 and PM10 have reported an increased risk of 

Parkinson’s disease associated with PM10 (Chen et al., 2017a; Liu et al., 2016) or PM2.5 

(Kioumourtzoglou et al., 2016; Kirrane et al., 2015; Lee et al., 2016; Liu et al., 2016), but 

other studies did not observe such associations (Guo et al., 2018; Palacios et al., 2017; 

Palacios et al., 2014b). Studies of cognitive decline in relation to particulate matter include a 

range of outcomes such as Alzheimer’s disease (Jung et al., 2015; Kioumourtzoglou et al., 

2016), dementia (Chen et al., 2017b; Kioumourtzoglou et al., 2016; Linares et al., 2017; Wu 

et al., 2015), mild cognitive impairment (Tzivian et al., 2016), and sub-clinical cognitive 

function (Ailshire and Clarke, 2015; Ailshire and Crimmins, 2014; Power et al., 2011). Most 

studies reported an adverse association with PM2.5 (Ailshire and Clarke, 2015; Chen et al., 

2017b; Jung et al., 2015; Tzivian et al., 2016), PM10 (Wu et al., 2015). However, some did 

not show a consistent exposure-response pattern (Ailshire and Crimmins, 2014) and one did 

not find an association between PM2.5 and neurologic disease (Linares et al., 2017). Recent 

meta-analyses have summarized the evidence regarding air pollution and neurological 

disorders providing support for adverse associations (Fu et al., 2019; Kasdagli et al., 2019).

Perhaps most relevant to the current analysis are prospective population-based studies 

evaluating rates of either hospital admissions (Cerza et al., 2019; Kioumourtzoglou et al., 

2016) or emergency department visits (Guo et al., 2018; Linares et al., 2017) due to 
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neurological diseases. Kioumourtzoglou and colleagues (Kioumourtzoglou et al., 2016) used 

hospital admission data from 1999–2010 for almost 10 million Medicare enrollees 65 years 

and older, living in 50 cities in the Northeastern United States. For each city, annual PM2.5 

averages (mean = 12.0 μg/m3) were estimated using data from the U.S. EPA’s Air Quality 

System which were then used to examine associations with hospital admission rates for 

Parkinson’s disease (total number of admissions N=119,425), Alzheimer’s disease 

(N=266,725), dementia (N=203,463), as well as cardiovascular and respiratory conditions. 

After hazard ratios were estimated for each city, they were pooled using random effects 

meta-analysis similar to procedures used in our study. For each 1 μg/m3 increase in PM2.5, 

an 8% increased rate of Parkinson’s disease was observed (hazard ratio [HR] = 1.08; CI = 

1.04–1.11). Adverse associations were also reported for Alzheimer’s disease (HR = 1.15; CI 

= 1.11–1.19) and dementia (HR=1.08; CI=1.05–1.11). Linares and colleagues studied daily 

dementia-related emergency hospital admissions (N=1175) in Madrid, Spain from 2001–

2009 in relation to noise pollution, air pollution, and daily temperature (Linares et al., 2017). 

Daily average PM2.5 concentrations (mean = 17.1 μg/m3) were obtained from the Madrid 

Municipal Air Quality Monitoring Grid, a network consisting of 27 urban monitoring sites. 

No association with PM2.5 was found (no risk estimates were reported). Guo et al. examined 

162,771 emergency department visits from 65 hospitals from the Emergency Medical 

Command Center in Guangzhou (2013–2015) (Guo et al., 2018). Daily average PM2.5 

concentrations (mean = 45.8 μg/m3) were obtained from the Daily Quality Report of the 

Guangzhou Environmental Protection Bureau. They reported a 2.2% (95% CI = 0.63%

−3.74%) increased rate of neurologic emergency department visits (ICD-10: codes G00–

G99) associated with each 33.8 μg/m3 increased PM2.5 concentration at lag day 0 although 

this association did not remain after accounting for other pollutants. Unfortunately, no 

disease-specific associations were examined. Finally, Cerza and colleagues (Cerza et al., 

2019) in a large administrative cohort in Rome identified 350,844 subjects without dementia 

(65–100 years of age) and followed them for 12 years to investigate the association between 

first hospitalization with primary or secondary diagnoses of dementia and air pollution 

concentrations (PM10, PM2.5, NOx, NO2, and ozone) estimated from land use regression 

models. Mean exposure levels of the population at the time of inclusion into the study were 

36.9 μg/m3 for PM10 and 19.7 μg/m3 for PM2.5. PM2.5 was not associated with an elevated 

rate of dementia (HR = 0.99; CI = 0.98–1.02 per 5 μg/m3), Alzheimer’s disease (HR = 0.91; 

CI = 0.85–0.97 per 5 μg/m3), or senile dementia (HR = 0.98; CI = 0.92–1.03 per 5 μg/m3), 

but was associated with an elevated rate of vascular dementia (HR = 1.07; CI = 1.01–1.12 

per 5 μg/m3). It should be noted that while ambient PM2.5 exposure was not clearly 

associated with increased rates of neurologic hospital admissions in our study, the magnitude 

of associations where rates were elevated was similar to, and sometimes larger than, those 

reported in previous studies.

No previous studies have specifically examined associations between multiple source-

apportioned PM2.5 contributions and neurodegenerative or neurocognitive outcomes 

(Colicino et al., 2014; Finkelstein and Jerrett, 2007; Palacios et al., 2014a; Power et al., 

2011). In the Normative Aging Study of older men, Power et al. (Power et al., 2011) used 83 

monitoring sites to estimate daily concentrations of ambient black carbon, and from those 

measurements estimated annual average ambient black carbon concentrations for each study 
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participant. For each doubling of black carbon concentration, the odds of having a mini-

mental state examination score ≤ 25 (suggestive of cognitive impairment) increased by 30% 

(Power et al., 2011). In a follow up study in this population, Colicino and colleagues 

observed that this association appeared to be mostly confined to participants in a few 

specific mitochondrial haplotype groups that may confer susceptibility to oxidative stress 

induced by air pollution (Colicino et al., 2014). In a Nurses Health Study of Parkinson’s 

disease, Palacios and coworkers used the National Air Toxics Assessment database to 

estimate annual average concentrations of airborne metals including arsenic, cadmium, 

chromium, nickel, manganese, antimony and lead (Palacios et al., 2014a). They found no 

statistically significant associations with any of the metals examined, although there was a 

suggestive positive dose-response trend for mercury exposure (Hazard Ratio [HR] = 1.33 

[95% CI=0.99, 1.79] in the highest exposure quartile vs. the lowest exposure quartile; 

ptrend=0.10 based on linear model through quartile medians). Finkelstein and Jerrett linked 

neighborhood levels of ambient manganese in Hamilton, Canada as measured by the 

manganese fraction of total suspended particulate, to the risk of Parkinson’s disease as 

identified from administrative databases of medication prescriptions and physicians’ 

diagnoses (Finkelstein and Jerrett, 2007). They reported a 3% increase in odds of 

Parkinson’s disease associated with each 10 ng/m3 increase in total suspended particulate 

manganese concentration (Finkelstein and Jerrett, 2007). While we were not able to confirm 

the findings of these studies, together they suggest that source apportionment of PM in 

health studies may be useful in understanding what PM sources or components impact 

population health effects, which can be used to guide public health policies.

Previously, we observed increased rates of cardiac arrhythmia, ischemic stroke, and 

congestive heart failure hospitalizations associated with increased diesel, spark-ignition 

vehicle, road dust, secondary nitrate, and residual oil contributions, but not secondary sulfate 

or other source-specific PM2.5 contributions (Rich et al., 2019). These findings suggest a 

role of New York State traffic emissions, residual oil, and non-traffic emissions such as 

brake and tire wear in the triggering of acute cardiovascular events. Although any air 

pollution effects on the cardiovascular system could increase susceptibility to dementia, our 

lack of associations between any source specific PM2.5 contribution and neurodegenerative 

hospitalization rates (including Alzheimer’s disease and dementia) is inconsistent with these 

findings. The role of methodological differences in exposure and outcome assessment in 

explaining inconsistency in study findings needs to be further investigated.

Strengths of our study included a large sample size, the use of uniformly collected and coded 

hospitalization data in New York State from 2005–2016, and a concurrent multi-year source 

apportionment analysis across urban centers in New York State. These strengths allowed an 

assessment of associations with PM2.5 and mean PM2.5 source contributions over 30, 180, 

and 365 days. However, there were also some limitations to consider. First, residential 

history was obtained at the time of hospitalization which may not accurately capture 

residential location for the entire year prior. Furthermore, cases within 15 miles of a PM2.5 

monitoring site were assigned the same exposure values for a specific day, regardless of how 

close they lived to the site. This exposure misclassification likely resulted in bias toward the 

null and underestimates of relative rates (Zeger et al. 2000).
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Next, the PMF analyses of Squizzato et al. (Squizzato et al., 2018) were conducted as a 

single source apportionment across the entire 12 years of the study period (2005–2016), with 

individual sources identified and named based on an assumed common chemical 

composition across these 12 years. It is possible that if the source apportionments had been 

done for each individual time period (e.g. 2005–2007, 2008–2013, and 2014–2016) instead, 

daily contributions of individual source specific mass contributions (e.g. secondary sulfate) 

may have differed from those used in the current study. Any exposure misclassification 

likely resulted in biases toward the null and underestimates of relative rates (Zeger et al., 

2000).

Third, there was a change in the hospital admission diagnosis codes used in SPARCS, from 

ICD9 to ICD10 codes starting Oct 1, 2015. However, this change likely did not greatly affect 

our associations, as the vast majority of our hospital admissions (almost 11 out of 12 years 

of study data) were coded using ICD9. In a sensitivity analysis excluding the 2015 data and 

rerunning the analyses, results remained similar and inference identical to the original 

findings.

Finally, hospitalizations due to neurologic conditions may be due to symptoms directly 

related to the neurologic disease, or they may reflect comorbidities (Arasalingam and 

Clarke, 2014; Bernardes et al., 2018; Lin et al., 2017; Oguh and Videnovic, 2012; 

Ronneikko et al., 2018), especially since about 80% of hospitalizations were among 

individuals age 70 or older. Heterogeneity in exacerbations of either neurologic symptoms or 

common comorbidities (e.g. essential hypertension) may make the index hospitalizations 

different disease events, resulting in outcome misclassification and a bias towards the null.

In conclusion, ambient PM2.5 exposure and source apportioned ambient PM2.5 contributions 

were not clearly associated with increased rates of hospital admissions due to Alzheimer’s 

disease, dementia, or Parkinson’s disease. Further studies with finer spatial resolution of air 

pollution data and less heterogeneity in outcome events, for example by studying spatial 

associations within our study areas, may be needed to detect such subtle associations, if they 

are indeed present.
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Table 2.

Distribution of PM2.5 concentrations (μg/m3) for different lags, by study site, 2005–2016*

Site/Lag Mean(SD) Median IQR

Albany

 0–29 8.6(2.7) 8.1 3.6

 0–179 8.6(1.7) 8.4 2.4

 0–364 8.7(1.6) 8.3 2.4

Buffalo

 0–29 9.8(2.9) 9.5 3.8

 0–179 9.9(1.9) 9.7 2.3

 0–364 10.0(1.7) 9.6 2.3

Rochester

 0–29 8.6(2.6) 8.1 3.3

 0–179 8.6(1.7) 8.3 2.3

 0–364 8.8(1.5) 8.3 2.1

Bronx

 0–29 10.3(3.1) 9.8 4.4

 0–179 10.4(2.1) 10 3.9

 0–364 10.5(2.0) 10 4.1

Manhattan

 0–29 11.7(3.1) 11.2 4.1

 0–179 11.8(2.0) 11.7 3.1

 0–364 11.9(1.9) 11.6 3.1

Queens

 0–29 9.5(2.9) 9.0 3.8

 0–179 9.6(1.8) 9.3 2.9

 0–364 9.7(1.7) 9.4 3.2

*
IQR=Interquartile range, SD=Standard deviation
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Table 4.

Rate ratio (95% confidence interval (CI)) of total and cause-specific neurological disease hospital admissions 

associated with each interquartile range (IQR) increase in PM2.5 concentration, by lag time and outcome, 

2005–2016

Outcome/Lag IQR (μg/m3) Rate Ratio
¥
 (95% CI) p-value*

Total

 0–29 3.6 1.03 (1.00, 1.05) 0.017

 0–179 2.4 1.04 (0.95, 1.14) 0.448

 0–364 2.4 1.06 (0.89, 1.27) 0.512

Alzheimer’s disease

 0–29 3.6 1.02 (0.99, 1.05) 0.182

 0–179 2.4 1.01 (0.90, 1.14) 0.878

 0–364 2.4 1.16 (0.91, 1.46) 0.229

Dementia

 0–29 3.6 1.02 (0.97, 1.06) 0.499

 0–179 2.4 1.11 (0.92, 1.34) 0.259

 0–364 2.4 1.02 (0.71, 1.46) 0.934

Parkinson’ disease

 0–29 3.6 1.06 (1.00, 1.12) 0.035

 0–179 2.4 0.98 (0.79, 1.22) 0.838

 0–364 2.4 0.88 (0.57, 1.35) 0.562

¥
Models adjusted for temperature (4df) and relative humidity using natural splines (3df); RR estimates in italics showed statistically significant 

(p<0.05) heterogeneity in RR estimates across sites

*
P values in bold indicate statistically significant associations at α=0.05

†
Site-specific estimates per IQR: Albany RR=1.07 (CI=0.94–1.22); Buffalo RR=0.91 (CI=0.83–1.01); Rochester RR=0.86 (CI=0.75–0.99); Bronx 

RR=1.04 (CI=0.99–1.10); Manhattan RR=0.97 (CI=0.92–1.03); Queens RR=1.03 (CI=0.98–1.08)

‡
Site-specific estimates per IQR: Albany RR=0.93 (CI=0.85–1.02); Buffalo RR=1.00 (CI=0.91–1.09); Rochester RR=0.99 (CI=0.90–1.09); Bronx 

RR=0.99 (CI=0.95–1.04); Manhattan RR=1.00 (CI=0.91–1.09); Queens RR=1.08 (CI=1.03–1.14)
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