
Reward-related neural predictors and mechanisms of symptom 
change in cognitive behavioral therapy for depressed adolescent 
girls

Christian A. Webb1,*, Randy P. Auerbach2,3, Erin Bondy1, Colin H. Stanton1, Lindsay 
Appleman1, Diego A. Pizzagalli1

1Department of Psychiatry, Harvard Medical School; Center for Depression, Anxiety and Stress 
Research, McLean Hospital

2Department of Psychiatry, Columbia University

3Division of Clinical Developmental Neuroscience, Sackler Institute

Abstract

Background: Approximately half of depressed adolescents fail to respond to cognitive 

behavioral therapy (CBT). Given the variability in response, it is important to identify pre-

treatment characteristics that predict prognosis. Knowledge of which depressed adolescents are 

likely to exhibit a positive vs. poor outcome to CBT may have important clinical implications 

(e.g., informing treatment recommendations). Emerging evidence suggests that neural reward 

responsiveness represents one promising predictor.

Method: Adolescents with major depressive disorder (n = 36) received CBT and completed a 

reward task at three timepoints (pre-treatment, mid-treatment and post-treatment) while 128-

channel electroencephalogram (EEG) data were acquired. Healthy control participants (n = 29) 

completed the same task at three corresponding timepoints. Analyses focused on event-related 

potentials (ERPs) linked to two stages of neural processing: initial response to rewards (reward-

related positivity [RewP]) and later, elaborative processing (late positive potential [LPP]). 

Moreover, time-frequency analyses decomposed the RewP into two constituent components: 

reward-related delta and loss-related theta activity.

Results: Multilevel modeling revealed that greater pre-treatment reward responsiveness, as 

measured by the LPP to rewards, predicted greater depressive symptom change. In addition, a 

Group x Condition x Time interaction emerged for theta activity to losses, reflecting normalization 

of theta power in the MDD group from baseline to post-treatment.

Conclusions: An ERP measure of sustained (LPP)—but not initial (RewP)—reward 

responsiveness predicted symptom improvement, which may help inform which depressed 
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adolescents are most likely to benefit from CBT. In addition to alleviating depression, successful 

CBT may attenuate underlying neural (theta) hypersensitivity to negative outcomes in depressed 

youth.
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Introduction

Depression rates increase substantially during adolescence, and by age 18, an estimated 15% 

of teens will have experienced at least one episode of major depressive disorder (MDD), 

with females twice as likely as males to have developed MDD (1). Despite these alarming 

statistics, approximately 40-66% of adolescents do not receive treatment for their depression 

(1,2). A range of psychotherapeutic and pharmacological treatment options are available for 

depressed adolescents, and cognitive behavioral therapy (CBT) is among the most 

empirically supported intervention (3). However, approximately 40-50% of depressed youth 

fail to respond to CBT (3,4). Given the variability in response, it is important to identify pre-

treatment patient characteristics that predict treatment prognosis, as this may have important 

clinical implications regarding treatment recommendations (e.g., suggesting a more 

intensive, alternative or combination treatment for those individuals predicted to have a poor 

response to CBT)(5,6).

Reward-Related Predictors of Treatment Outcome

Several studies have identified pre-treatment neural response to rewards as a predictor of 

treatment outcome among adults (7,8) and youth (9,10) receiving CBT or SSRI. To assess 

neural reward responsiveness, researchers have utilized the reward positivity (RewP), an 

event-related potential (ERP) most commonly examined within monetary reward tasks (11). 

The RewP, also known as the feedback-related negativity (FRN), is a frontocentral ERP 

component occurring approximately 250-350ms following rewarding feedback (relative to 

losses or the omission of rewards). Studies combining ERPs and functional magnetic 

resonance imaging (fMRI) reveal that the RewP is associated with activation of the 

mesocorticolimbic reward circuit, including the ventral striatum and medial prefrontal cortex 

(12,13). Two initial studies in adults with anxiety and/or depression indicated that a reduced 

pre-treatment RewP (i.e., reflecting blunted reward responsiveness) predicted greater 

depressive symptom improvement to CBT (8) and SSRI (7, but see 14). Similarly, a more 

recent study (9) in a sample of children and adolescents with generalized anxiety disorder 

(GAD) or social anxiety disorder (SAD) receiving CBT or SSRI reported that a reduced 

RewP to monetary rewards predicted greater depressive—but not anxiety—symptom 

improvement. Although sample size was small (n = 16 for CBT; n = 11 for SSRI), 

exploratory analyses suggested that the pattern of reduced RewP predicting depressive 

symptom change was specific to CBT, and not SSRI. Taken together, these findings are 

consistent with a “compensatory” model, such that CBT may be well-suited to those with 

blunted—rather than intact or enhanced—reward responsiveness. However, the first two 

studies (7,8) focused on adults, whereas the latter study (9) included children and 
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adolescents with GAD or SAD, none of whom had current MDD. The extent to which a 

blunted RewP to rewards predicts better outcome in CBT for depressed adolescents is 

unknown. In addition, it may be that depression-related abnormalities in the RewP (11) 

improve or normalize following successful CBT. CBT may exert its beneficial effects at least 

in part through ameliorating depression-related deficits in the neural processing of rewards 

(e.g., via behavioral activation skills aimed at systematically increasing exposure to and 

engagement with rewarding activities and experiences)(15) and/or attenuating neural 

hyperreactivity to negative outcomes (e.g., via cognitive reappraisal skills). Of relevance, 

recent research using time-frequency decomposition approaches reveals that the RewP 

consists of both delta (< 3 Hz) and theta (4-7 Hz) activity (16–18). Critically, these studies 

indicate that, whereas delta activity is more sensitive to rewards than losses, theta activity 

displays the opposite pattern. As a result, time-frequency decomposition may isolate “purer” 

and more distinguishable measures of neural responsiveness to rewards (delta) vs. losses 

(theta) than traditional time-domain ERPs. The extent to which CBT modulates these two 

time-frequency measures of sensitivity to rewards vs. losses is unknown.

Late Positive Potential

In contrast to the RewP, the LPP is a later ERP component (beginning approximately 300 ms 

post-stimulus and lasting several hundred ms or seconds) linked to the elaborative 

processing of emotional or motivationally salient stimuli (including–but not specific to–

rewards). The LPP is initially observed over parietal regions and then propagates to frontal 

electrodes later in its time course (19). Previous research has shown that the LPP is 

enhanced to emotional words, images and rewards, which is consistent with the notion that 

this ERP reflects sustained cognitive processing of motivationally salient stimuli. The LPP 

has been shown to be enhanced to monetary rewards in adolescent (16,20) and young adult 

samples (21). For example, Webb et al.(16) found potentiated LPPs to monetary rewards 

relative to losses in healthy adolescent girls, and the opposite pattern in depressed teens. 

Notably, a recent study indicated that a blunted RewP (to monetary rewards) and LPP (to 

pleasant pictures) are independent predictors of MDD status (i.e., account for unique 

variance in depression)(22). The extent to which the RewP and LPP account for significant 

and unique variance in predicting treatment outcome among depressed youth has yet to be 

examined. Interestingly, and of relevance to CBT, previous research has shown that the LPP 

can be modulated via cognitive reappraisal (23–26). Accordingly, given its emphasis on the 

development of cognitive reappraisal skills, successful CBT may modulate the LPP. In 

addition, pre-treatment LPP may predict depression treatment outcome. For example, Barch 

et al.(14) recently found that a larger pre-treatment LPP to pleasant pictures predicted better 

outcomes for young depressed children (4-7 years of age) who received Parent Child 

Interaction Therapy (PCIT). The latter finding suggests that relatively enhanced elaborative 

processing of rewarding or positive stimuli among depressed youth may signal an increased 

likelihood of benefiting from psychotherapy.

The Present Study

The present study tested (1) whether the RewP and/or LPP, assessed at pre-treatment, predict 

symptom change among depressed adolescents receiving CBT; and (2) the extent to which a 

course of CBT modulates the RewP and LPP, while addressing several limitations in the 
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literature. First, none of the abovementioned studies (7–9,14) testing the RewP as a predictor 

of treatment outcome examined whether these effects were attributable to reward-related 

delta and/or loss-related theta activity. As described above, the latter two components of the 

RewP can be disaggregated via time-frequency decomposition. Second, with the exception 

of one study (14), prior research testing neural predictors of treatment response in 

depression focused on either initial (RewP)(7–9) or later (LPP)(27) neural stages of 

processing. To test whether early or later neural responsiveness to rewards predicts outcome, 

we simultaneously examined an ERP probing initial neural responsiveness to rewards 

(RewP) and later, elaborative processing of rewards (LPP). Given their excellent temporal 

resolution, ERPs can distinguish between initial vs. later stages of reward responsiveness 

(28). Finally, with the exception of one recent study of PCIT in young children which 

included three EEG timepoints (29), prior studies have relied on a single pre-treatment 

neural assessment (8,9) or pre- and post-treatment measures (7,14). These designs do not 

allow for the examination of the time course of change in neural abnormalities. For example, 

similar to the commonly observed curvilinear pattern of depressive symptom change (i.e., 

greater change early in treatment) in psychotherapy and pharmacotherapy (30–33), neural 

changes may not be linear. To address a gap in the treatment literature, in the present study 

we included pre-, mid- and post-treatment EEG assessments.

In summary, based on prior literature (e.g., 7, 8, 9, 14), we hypothesized that blunted delta 

power to rewards during the timeframe of the RewP and potentiated LPP to rewards will 

predict greater depressive symptom improvement in CBT for depressed adolescents. In 

addition, we expected pre- to post-treatment increases in neural sensitivity to rewards (i.e., 

reflected by increased delta power) and decreased reactivity to losses (i.e., decreased theta 

power).

Methods and Materials

Participants

Female adolescents (MDD = 36; Healthy Controls [HC] = 33) ages 13-18 years were 

recruited from the local greater Boston area via community and internet advertisements. All 

participants were fluent in English and right-handed. Participants in the MDD group were 

required to meet DSM-IV criteria for a current major depressive episode according to the K-

SADS-PL (34). Exclusion criteria for HC participants included a history of MDD, bipolar 

disorder, psychosis (including mood disorder with psychotic features), anxiety disorders, 

eating disorders, substance use disorders, attention-deficit/hyperactivity disorder, mental 

retardation, organic brain syndrome, and head injury with loss of consciousness for ≥5 min 

or seizures. Similarly, MDD participants could not meet current criteria for any of the above 

diagnoses (other than MDD [without psychotic features]), with the exception of a secondary 

diagnosis of generalized anxiety disorder (GAD; n=12). With regards to medications, four 

participants were prescribed a selective serotonin reuptake inhibitor (SSRI). See Supplement 

for additional details.
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Procedure

Study approval was provided by the Partners Health Care Institutional Review Board. The 

baseline assessment was conducted over 2 days. On Day 1, adolescents were administered 

the K-SADS-PL to assess lifetime mental disorders and completed self-report measures of 

depressive and anxiety symptoms. On Day 2, adolescents completed a monetary reward 

gambling task while 128-channel EEG data were recorded. Following Day 2, the MDD 

group were offered 12 weekly sessions of CBT (one 50-minute session per week) based on 

the following manual (35)(for additional details, see (16)). The EEG assessment and 

monetary reward task were re-administered 5 weeks after the initial assessment and at post-

treatment. The HC participants, who did not receive treatment, completed EEG assessments 

and the reward task at three corresponding timepoints (n=4 were excluded due to poor EEG 

quality). For simplicity and consistency of terms across groups, we henceforth refer to these 

EEG assessments as “initial”, “mid” and “final”. Baseline (i.e., pre-treatment) clinical and 

EEG data have previously been published on a subset (51/65) of these participants (16,36).

Measures

Depressive symptoms were assessed via the Beck Depression Inventory-II (BDI-II)(37). 

Both the MDD and HC participants completed the BDI-II at each assessment. The MDD 

group completed additional BDI-II assessments at the start of each therapy session. Anxiety 

symptoms were assessed via the Multidimensional Anxiety Scale for Children (MASC)(38), 

and administered every other session in the MDD group and at each assessment in the HC 

group.

Experimental Task.—Participants completed a 180-trial monetary reward gambling task 

while EEG data were recorded (39–41,16). On each trial, participants were presented with 

three black boxes and instructed to guess which box contained a green ball (the other boxes 

contained red balls) using a button box. If participants identified the correct box, the green 

ball was presented for 2,500 ms along with a rising tone (500 ms), which indicated a 

monetary gain of 30 cents. If a participant selected a box with a red ball, the red ball would 

appear for 2,500 ms alongside a falling tone (500 ms) and a monetary loss of 15 cents. There 

were 90 win and 90 loss trials. For additional details, see Supplement and (16).

EEG Recording and Data Reduction

EEG data were recorded using a 128-channel HydroCel Geodesic Sensor Net (Electrical 

Geodesics, Inc., Eugene, OR) in an electrically and acoustically shielded room. BrainVision 

Analyzer 2.1.1 (Brain Products, Munich, Germany) was used for EEG data processing. For 

time-domain analyses, EEG data were segmented from 200 ms before stimulus onset (win or 

loss feedback) up to 1,000 ms after stimulus onset. A baseline correction was applied using 

the average amplitude over 200 ms prior to stimulus onset. Consistent with prior work (16), 

RewP values were computed as the mean amplitude from 250-350 ms post-stimulus at 

electrode FCz (see Figure 1, Panel A), and the LPP was assessed using the average of 

frontocentral midline electrode sites (Fz, FCz, and Cz) between 600-1,000 ms post-stimulus 

(16,36,42,43)(Figure 2). For time-frequency analyses, and consistent with prior work 

isolating RewP-linked theta and delta power (16), a complex Morlet wavelet transformation 
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was applied (Morlet parameter c = 3.5) from 0.5 to 20 Hz using 30 frequency steps 

distributed on a logarithmic scale (44)(Figure 1, Panel B). See Supplement for additional 

details.

Analytic approach

Given the longitudinal, multilevel data structure (i.e., repeated depressive symptom 

assessments nested within patients), we used a multilevel modeling (MLM; via lme4 (45) 

and lmerTest (46) packages in R) approach to test whether pre-treatment time-domain 

(RewP & LPP) and time-frequency (theta and delta power) variables predict depressive 

symptom improvement. Specifically, to test whether the RewP to wins and/or losses predict 

symptom change, an MLM simultaneously including RewPWins x Time and RewPLosses x 

Time interactions was modeled (Time centered to represent estimated post-treatment BDI-II 

scores, while adjusting for pre-treatment BDI-II scores).1 Corresponding models were run 

for the LPP, theta power, and delta power (i.e., similar to the above RewP model, including 

the win and loss interactions in the same model). As stated above, our primary hypotheses 

focused on whether (1) the delta power to rewards (during the timeframe of the RewP) and 

(2) the LPP to rewards predicted depression outcome (BDI-II total score). In each model, 

intercepts and slopes were treated as randomly varying across patients. To adjust for the 

effect of age, antidepressant medication (on SSRI vs not), and task version (versions A, B or 

C), Age x Time, Medication x Time, and Task Version x Time interactions were included in 

all models. All available data were used, including from dropouts, rendering these intent-to-

treat analyses. However, patients missing baseline EEG/ERP data or who dropped out prior 

to completing at least 3 weeks of CBT were excluded (n=4). To examine change in time-

domain or time-frequency variables over the course of treatment, we tested Group 
(MDD/HC) x Time (Initial/Mid/Final) x Condition (Wins/Losses) interactions, separately for 

the RewP, LPP, theta, and delta (adjusting for age and medication). (In contrast, Group was 

not included as a factor in the analyses presented in the below CBT Outcomes and 

Prediction of CBT Outcomes sections given that these analyses pertained only to the MDD 

group). As described in our hypotheses, we expected significant pre- to post-treatment 

increased delta power to rewards and decreased theta power to losses in the MDD group 

(relative to the HC group). All analyses were conducted in R with the exception of the latter 

Group x Time x Condition interactions which were conducted in SPSS Version 24.

Results

Internal (split-half) reliability and test-retest reliability for time-domain and time-frequency 

measures, as well as their intercorrelations, are reported in the Supplement.

1A subtraction-based difference score approach (i.e., RewP to wins minus losses) was not used given recent evidence of its relatively 
poor psychometric properties (47–49). Instead, and similar to recent treatment outcome prediction efforts using the RewP (9), we 
included the RewP to wins and losses as separate variables, entered simultaneously in the same model. In other words, the resulting 
parameter estimate for the RewP to wins x Time interaction adjusts for the RewP to losses x Time interaction (and vice-versa) (see 47–
49).
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CBT Outcomes

Intent-to-treat MLM analyses revealed that depressive (BDI-II) symptoms improved 

significantly over the course of treatment for the MDD group, Time: b = 1.08, t(28.2) = 4.52, 

p < .001. Among treatment completers, mean pre-treatment BDI-II scores were in the severe 

range (M = 30.35; SD = 11.57), whereas post-treatment scores were in the mild range (M = 

16.93; SD = 14.24). This pre- to post-treatment change represents a large effect (Cohen’s d = 

1.00)(Figure 3).

Prediction of CBT Outcomes

The pre-treatment RewP did not predict depressive symptom change (i.e., RewPWins x Time 
and RewPLoss x Time interactions were not significant; ps >.61). When using the 

conventional subtraction-based difference score approach (see Footnote 1), the RewP x Time 
interaction was not significant, p = 0.62). However, a pre-treatment LPPWins x Time 
interaction emerged, b = 0.81, t(27.6) = 2.38, p = .024, indicating that adolescents with a 

larger LPP response to wins had greater depressive symptoms improvement (Table 1 & 

Figure 4). A pre-treatment deltaLosses x Time interaction emerged, b = 0.53, t(27.1) = 2.49, p 
=.019, indicating that adolescents with a larger delta response to losses had greater 

depressive symptoms improvement (see Table 2, Figure 5). Corresponding pre-treatment 

theta x Time interactions were not significant (ps >.86). When both the significant LPPWins x 

Time and deltaLosses x Time interactions are included in the same model (residualized to 

adjust for LPPLoss and deltawins, respectively) both remained significant: (b = 0.40, t(27.0) = 

2.15, p =.041; b = 0.41, t(25.6) = 2.06, p =.049, respectively).

Changes in Neural Response Following CBT

No significant Group x Time x Condition interactions emerged for the RewP, LPP or delta 

power (all ps > .08). A Group x Time x Condition interaction emerged for theta power, 

F(2,37) = 4.00, p =.027, η2 = 0.18, such that the MDD group exhibited greater pre- to post-

treatment reductions in theta response to losses relative to the HC participants (Figure 6). 

Greater pre- to post-treatment reductions in theta to losses were non-significantly associated 

with greater anxiety symptom improvement over the course of treatment, r = .44, p = 0.052 

(depressive symptoms: r = .01; p = 0.971). Similarly, early reductions in theta to losses (i.e., 

from pre- to mid-treatment) were non-significantly associated with greater pre- to post-

treatment anxiety symptom improvement, r = .43, p = 0.060, (depressive symptoms, r = .05; 

p = 0.828). Sensitivity analyses excluding the mid EEG assessment (i.e., only including data 

from initial and final EEG assessments), including number of days between EEG 

assessments as a covariate, and with imputed missing values yielded the same pattern of 

findings (see Supplemental Results).

Discussion

The present study evaluated whether the RewP and/or LPP, assessed prior to the start of 

treatment, predicted symptom change among depressed adolescent girls receiving CBT. In 

addition, we tested whether CBT modulated the RewP and LPP. Strengths of the study 

include (1) the use of time-frequency decomposition to isolate reward-related (delta power) 

and loss-related (theta power) neural signals, (2) simultaneous examination of ERPs linked 
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to initial response to rewards (RewP) vs. later, elaborative processing (LPP), and (3) 

incorporation of pre-, mid- and post-treatment ERP assessments. Multilevel modeling 

revealed that the pre-treatment LPP, but not RewP, to rewards predicted symptom 

improvement during CBT. Similarly, Barch et al.(14) showed that larger pre-treatment LPP 

to pleasant pictures, but not the RewP to rewards, predicted better outcomes for young 

depressed children receiving PCIT. Although our findings are generally consistent with the 

latter study, they diverge from two initial studies in adults with depression and/or anxiety 

indicating that a reduced pre-treatment RewP to monetary rewards predicted greater 

depressive symptom improvement to CBT (8) and SSRI (7). In other words, in contrast to 

the latter two studies, our results do not support a “compensatory” model whereby 

individuals with more blunted—as opposed to intact or enhanced—neural reward 

responsiveness exhibit greater depressive symptom improvement. Additional research is 

needed to determine whether these inconsistencies may be due, at least in part, to differences 

in sample (adolescent girls vs. adults of both genders), diagnosis (MDD vs. depressive or 

anxiety disorders) and the variant of monetary reward task. It is also important to note that 

the average adolescent in our sample had severe levels of depression (mean pre-treatment 

BDI-II = 33), which may have influenced findings.

A consideration of the distinct neural generators of the RewP and LPP may help account for 

their differential pattern of prediction. Specifically, the RewP has been linked to activity 

within the mesocorticolimbic reward circuit (e.g., ventral striatum and medial prefrontal 

cortex) (12,13) and dACC (17); conversely, the LPP has been associated with a more 

distributed set of cortical and subcortical regions linked with visual, attentional and emotion 

processing, including occipital, parietal, inferotemporal and lateral prefrontal regions, as 

well as the amygdala and insula (50–54). In addition, in contrast to the RewP which reflects 

initial reactivity to the receipt of rewards (but see studies linking the RewP/FRN to 

unexpected outcomes or feedback indicating safety)(e.g.,56), the LPP reflects more 

sustained attention towards and engagement with emotional or motivationally salient content 

(and not specific to only rewards). Although speculative, depressed adolescents exhibiting 

more sustained neural engagement to rewarding or motivationally salient feedback may be 

relatively more likely to successfully engage in and benefit from cognitive and behavioral 

activities prescribed in CBT. Subsequent research including active comparison conditions 

(e.g., an SSRI or a different psychotherapy modality) are needed to test whether an enhanced 

LPP to rewards is a prescriptive (i.e., treatment-specific) or prognostic (i.e., treatment non-

specific) predictor of outcome among depressed adolescents.

With regards to neural changes in treatment, only theta activity exhibited a significant Group 
x Time x Condition interaction. As displayed in Figure 6, the elevated pre-treatment theta 

activity to losses in the MDD group (relative to HC) is attenuated over the course of CBT. 

Importantly, the inclusion of a mid-treatment EEG assessment revealed that the majority 

(88.9%) of this pre- to post-treatment reduction occurred early in CBT (i.e., by the time of 

the mid-treatment EEG assessment). These findings suggest that CBT may attenuate neural 

hypersensitivity to negative feedback among depressed adolescents (16). In addition, both 

overall (pre- to post-treatment) and early (pre- to mid-treatment) reductions in theta activity 

to losses correlated moderately (rs =.43-.44) with pre- to post-treatment improvement in 

anxiety symptoms, but exhibited weak associations (rs =.01-.05) with depressive symptom 
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improvement. Previous studies indicate that frontal midline theta power is more strongly 

associated with anxiety than depressive symptoms (56,57,57–59). Frontal midline theta 

activity is elicited not only by tasks involving negative or loss feedback, as in the present 

study, but by a range of paradigms requiring the deployment of cognitive control (e.g., tasks 

involving the commission of errors, stimulus-response conflict and novelty)(56,60). As 

others have argued, frontal midline theta elicited during these tasks is most likely generated 

from frontocingulate regions, in particular the ACC, which may be signaling the need to 

increase cognitive control in the service of adjusting behavior adaptively (56,60). In addition 

to being correlated with anxiety symptoms, enhanced theta response to aversive/incorrect 

feedback has been linked to heightened avoidance learning (59,61), suggesting one 

mechanism through which neural (theta) hypersensitivity to negative feedback may 

contribute to maladaptive behavior (e.g., anxiety-related avoidance)(56). Research is needed 

to test whether CBT-related reductions in theta power to negative outcomes are associated 

with normalization of avoidance learning.

In contrast, we did not observe increases in neural markers of reward sensitivity (RewP and 

delta power) over the course of CBT. These findings may reflect the fact that anhedonia and 

associated reward-related deficits in depression are among the most common residual 

symptoms following psychotherapy or pharmacotherapy and are particularly challenging to 

successfully target (62–64). Treatments that more directly target anhedonia, such as 

Behavioral Activation (BA) (15) and positive affect-focused treatments (64), may be more 

likely to modulate reward related-circuitry (e.g., for a relevant BA example, see (65)). 

Although CBT includes BA interventions, a substantial proportion of treatment is devoted to 

teaching patients cognitive skills to identify and modify maladaptive thinking patterns. In 

contrast, BA may be more likely to target reward circuitry function given its greater focus on 

teaching depressed individuals an array of behavioral strategies aimed at gradually and 

systematically increasing their exposure to and engagement with rewarding experiences and 

activities. Ultimately, a comparative trial is needed in which depressed adolescents are 

randomly assigned to BA vs. CBT to test for treatment group differences in “target 

engagement” of reward circuitry function. Finally, the fact that neural markers predicting 

treatment outcome (LPP to rewards) did not exhibit significant pre- to post-treatment change 

(relative to HCs), and vice versa (i.e., theta to losses did not predict outcome but did 

demonstrate significant change from pre- to post-treatment) suggests a dissociation between 

neural markers predicting symptom improvement vs. neural mechanisms of change.

Several limitations should be noted. First, sample size was small, in particular for detecting 

interactions, and thus replication in a larger cohort is required. Second, the inclusion of a HC 

group who completed ERP tasks at three timepoints corresponding to the MDD group 

controlled for the effect of repeated EEG assessments and task practice effects. However, an 

active control condition is needed to test the specificity of findings to CBT vs. relevant 

alternative interventions (e.g., BA or SSRIs) for the treatment of MDD in adolescents. Third, 

although EEG is a relatively low-cost imaging approach (i.e., compared to fMRI) and has 

excellent temporal resolution (e.g., allowing us to isolate ERPs linked to initial vs. later, 

elaborative stages of neural processing), it suffers from poor spatial resolution (e.g., cannot 

isolate neural activity within relevant subcortical reward-related and emotion-related 

regions). Fourth, a relatively large number of statistical tests were conducted. Fifth, CBT 
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fidelity was not measured. These limitations notwithstanding, the present study provides 

initial evidence that an ERP measure of sustained responsiveness to rewards predicts 

depressive symptom change in CBT. In addition, findings indicate that neural (theta) 

hypersensitivity to negative outcomes among depressed youth may be attenuated within the 

first few weeks of CBT. Ultimately, such research may help inform which depressed 

adolescents are better suited to CBT and may clarify the neural mechanisms underlying 

depressive symptom improvement.
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Figure 1. 
(A) Event-related potentials (Reward Positivity; RewP) elicited by monetary rewards (black) 

and losses (gray) for healthy controls (left panel) and adolescents with major depressive 

disorder (MDD) (right panel) shown in the time-domain at electrode FCz at baseline. (B) 
Time-frequency plots for monetary losses (top panel) vs. rewards (bottom panel) for both 

groups highlighting theta and delta power. (C). Scalp distribution for theta power (top panel) 

and delta power (bottom panel) at 300ms for both groups and conditions (wins and losses).
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Figure 2. 
Plots of Late Positive Potential (LPP) for healthy controls (A) and adolescents with major 

depressive disorder (MDD) at baseline (B) in response to monetary wins (black) and losses 

(gray). The LPP was averaged across electrodes Fz, FCz and Cz from 600-1,000ms. Scalp 

distribution of the difference wave from 600-1,000ms are displayed.
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Figure 3. 
Session-by-session Beck Depression Inventory-II (BDI-II) scores for MDD participants 

(blue). Thicker blue line represents the regression line. HC participants’ BDI-II scores (gold) 

are also plotted for comparison (at 2 timepoints corresponding to pre- and post-treatment)
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Figure 4. 
Plot of pre-treatment LPP by time interactions from the model. LPP to wins by time 

interaction is shown in the top panel, and LPP to losses by time interaction in the bottom 

panel.
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Figure 5. 
Plot of pre-treatment delta power by time interactions from the model. Delta to wins by time 

interaction is shown in the top panel, and delta to losses by time interaction in the bottom 

panel.
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Figure 6. 
Change in theta power to losses (top panel) and wins (bottom panel) in the MDD 

participants (blue) vs. HC participants (gold) over time (model-derived estimated marginal 

means). Error bars represent standard error
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