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Abstract

Staphylococcus aureus is a common cause of invasive and life-threatening infections that are often 

multidrug resistant. To develop novel treatment approaches, a detailed understanding of the 

complex host–pathogen interactions during infection is essential. This is particularly true for the 

molecular processes that govern the formation of tissue abscesses, as these heterogeneous 

structures are important contributors to staphylococcal pathogenicity. To fully characterize the 

developmental process leading to mature abscesses, temporal and spatial analytical approaches are 

required. Spatially targeted proteomic technologies such as microliquid extraction surface analysis 

offer insight into complex biological systems including detection of bacterial proteins and their 

abundance in the host environment. By analyzing the proteomic constituents of different abscess 

regions across the course of infection, we defined the immune response and bacterial contribution 

to abscess development through spatial and temporal proteomic assessment. The information 

gathered was mapped to biochemical pathways to characterize the metabolic processes and 

immune strategies employed by the host. These data provide insights into the physiological state 

of bacteria within abscesses and elucidate pathogenic processes at the host–pathogen interface.

Graphical Abstract
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Staphylococcus aureus is one of the leading causes of bloodstream infections worldwide.1 In 

the United States alone, this bacterium is responsible for more than 600,000 hospitalizations 

annually,2 and patients with S. aureus bacteremia have a 30-day mortality rate of 20%.3 S. 
aureus bacteremia often spreads to other body sites, leading to the formation of abscesses, 

most commonly affecting the liver, kidneys, brain, and heart tissues.4

The formation of organ abscesses is a critical strategy to ensure S. aureus survival within the 

host.5 Abscesses offer a temporary refuge for S. aureus, allowing the enclosed bacteria to 

resist the actions of the immune system, thereby securing persistence within host tissues.6,7 

In a murine model of systemic infection, the formation of soft tissue abscesses follows 

distinct phases (stages I–IV),5 driven by the recruitment of immune cells (e.g., neutrophils) 

~2 days post infection (dpi)7 and the development of a bacterial nidus in the center of the 

abscess ~4–5 dpi (staphylococcal abscess colony, SAC).7 The developing SAC is surrounded 

by necrotic tissue, a fibrin pseudocapsule,7,8 and an outer microcolony-associated 

meshwork.6 At the end of abscess development (~15–30 dpi), the persistent and increasingly 

larger lesions rupture and release bacteria that seed new abscesses or cause secondary 

infections.7

Abscess formation requires the involvement of both host and bacterial factors. Several 

staphylococcal proteins, including both coagulases Coa and vWbp, are essential for fibrin 

pseudocapsule formation and abscess development.9 Additionally, a few other S. aureus 
proteins associated with virulence (e.g., Emp, Eap, Hla, IsdA, IsdB, SdrC, SrtA, Spa) have 

been found to be required for abscess formation.6–8,10,11 The majority of these data 

describing bacterial contributions to abscess development were generated from histological 

stains or characterization of isogenic S. aureus mutants and their ability to persist within host 

tissues. However, unbiased studies that aim to assess the bacterial abscess proteome are 

sparse. This is similarly true for proteinaceous host factors in proximity to the abscess. 

While it is established that specific cell types (e.g., fibroblasts and neutrophils12) or immune 

proteins (e.g., the metal scavenging protein calprotectin13) play essential roles during the 

immune response to S. aureus, we lack a detailed understanding of specific cellular 

processes involved in the host response to tissue colonization by S. aureus. Although a 

previous study from our laboratory addressed some of these shortcomings by assessing the 

proteinaceous composition of kidneys infected with S. aureus,14 the current study also 

examines the temporal and spatial aspects of abscess development.

Various proteomic technologies offer insight into complex biological systems, including the 

interplay between host and pathogen during infection.15,16 Recent technological advances 

have enabled pairing of spatially targeted surface sampling with high-performance mass 

spectrometry for molecular analysis of tissue. Imaging mass spectrometry (IMS) technology, 

such as matrix-assisted laser desorption/ionization (MALDI) IMS, offers the unique 

combination of high molecular specificity and high spatial resolution imaging.17–19 

However, the sensitivity of MALDI IMS for analysis of large proteins (>30 kDa) can be 
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limited due to low ionization efficiency of proteins from tissue and the poor transmission 

efficiency of high mass-to-charge ratio (m/z) ions.19,20 The identification of proteins with 

MALDI IMS is also challenging due to inefficient fragmentation of low charge state species. 

To facilitate this process, we have investigated the utility of complementary surface 

sampling technologies for discovery-based proteomic studies.

Traditional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) of 

peptides derived from proteolytic digestion provides the greatest proteomic sensitivity.21 

LC-MS/MS requires liquid samples, usually through homogenization of tissue, limiting 

spatial information from the sample of interest. To address this, we recently introduced a 

spatially targeted, bottom-up proteomics workflow used in analysis of S. aureus kidney 

infection.22 Specific foci were targeted using picoliter-sized droplets of trypsin protease, and 

the resulting proteolytic peptides were sampled using liquid extraction surface analysis 

(LESA). The entire process, termed microLESA, is histologically guided using 

autofluorescence microscopy. Herein, we expand on this work using microLESA to analyze 

regions from the abscess community (SAC), host–pathogen interface surrounding the 

community, and regions of cortical tissue of S. aureus infected kidneys. Spatial and temporal 

proteomic changes were examined by sampling different time points, allowing us to follow 

responses of both the pathogen and the immune system over the course of infection. By 

studying three defined regions, and their dynamics over the course of the infection, changes 

in both host and pathogen can be observed across the organ.

RESULTS AND DISCUSSION

Identification of Bacterial and Host Proteins in Infected Tissue.

To explore the role of host and bacterial proteins throughout the development of 

staphylococcal organ abscesses, we analyzed proteins in the abscesses and surrounding areas 

over time. We focused on kidneys as one of the most commonly utilized model systems for 

staphylococcal abscess formation. Samples were extracted from one of three defined regions 

(SAC, interface, and cortex; shown in Figure 1A) at 4 and 10 dpi (Figure 1B). These 

extractions were guided by fluorescence microscopy images (transgenic fluorophore and 

autofluorescence), which highlights the fluorescent bacterial communities and overall tissue 

morphology that allowed for differentiation between SAC and adjacent regions. The two 

time points were selected to ensure sufficient abscess size for extraction, as at 4 dpi, 

abscesses are consistently large enough for micoLESA extraction, and at 10 dpi, the 

infection has greatly progressed. We hypothesized that the unique spatial and temporal 

proteomic analysis would discern (i) S. aureus physiology and production of virulence 

determinants within the abscess microenvironment (SAC), (ii) onset of the immune response 

including infection-mediated influx and action of immune cells (interface), as well as (iii) 

organ-wide responses to infection (cortex). A total of 2399 proteins were identified across 

all three regions of interest (ROI) and two time points (Tables S1 and S2) with an average of 

1153 proteins per time point and ROI (Figure 1B, Tables S1 and S2). Of the proteins 

detected, 32 were of bacterial origin (Table S2). We identified an additional 30 bacterial 

proteins that were present in only one set of serial sections or one biological replicate and 

are not included in Figure 1B due to lower confidence (Table S3). This variability in 
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detection could result from low protein abundance or heterogeneity among abscesses, a 

known challenge when studying abscess formation.23,24 Nevertheless, we conclude the 

identification of these proteins is a strength of the method, as bacterial proteins from S. 
aureus infections are difficult to detect and measure due to ion suppression effects from 

abundant host proteins within tissues. Since we spatially targeted the abscess region, the 

inherent “chemical noise” from the highly abundant host proteins was reduced, greatly 

improving the sensitivity for the bacterial proteins. Improving the coverage of the bacterial 

proteome detectable within the tissue microenvironment provided a more complete 

description of how S. aureus molecular machinery contributes to abscess formation and 

progression.

Bacterial Factors.

Detection of High Abundance Proteins Related to Translation.—The microLESA 

workflow detected 32 bacterial proteins in the defined SAC and interface regions, several of 

which are involved in the translation process (Figure 2). These include ribosomal proteins 

(50S ribosomal proteins L7/L12 [RplL] and L17 [RplQ]), a tRNA-ligase (ThrS) as well as 

elongation factors Tu (Tuf)25 and Ts (Tsf).26 Several of these intracellular highly abundant 

proteins were detected in the SAC region and also in the abscess interface (Figure 2). While 

we cannot exclude that a small fraction of the bacterial population resides outside of the 

observable SAC or the potential for these proteins to “leak” from the SAC into adjacent 

regions during the sample preparation process, cell death or autolysin (Atl)-mediated lysis of 

a staphylococcal subpopulation may cause the release of bacterial factors into the abscess 

microenvironment.27 It was previously shown that decreased autolysis by S. aureus results in 

a moderate decrease in renal bacterial numbers in a murine model of systemic infection at 7 

dpi,28 supporting the notion that Atl plays a role during spread to or colonization of this 

organ. While our data do not allow us to finally conclude why we detect cellular bacterial 

proteins outside of the SAC, it is intriguing to speculate that (auto)lytic processes are 

important during abscess formation, potentially aiding infection through the release of 

intracellular factors.

S. aureus Heme Metabolism Proteins in the Abscess.—In response to the presence 

of S. aureus in tissue, the host immune system initiates a variety of antibacterial strategies. 

Nutritional immunity is one such approach in which the immune system limits bacterial 

access to essential micronutrients (e.g., transition metals) to hinder bacterial growth and stall 

infection progression.29 Host-imposed Fe-starvation within the abscess was recently shown 

by our group using in vivo imaging and IMS strategies.23,24 Bacterial pathogens have 

evolved a number of mechanisms to overcome this Fe limitation.29 To ensure sufficient 

levels of the Fe-containing cofactor heme, S. aureus imports host heme through the action of 

the Isd heme uptake system.30 Additionally, heme can be synthesized de novo via a 

coproporphyrin-dependent bacterial heme biosynthesis pathway31,32. In our analysis, we 

observed components of the Isd system (IsdA and IsdB: Figure 2, Table S2 as well as ChdC 

(identified with lower confidence, Table S3, a member of the heme biosynthetic pathway, to 

be present within the abscess.33 Identification of proteins involved in heme uptake as well as 

de novo heme synthesis suggests that (i) S. aureus within renal abscesses is indeed heme 

starved and (ii) that multiple strategies are employed to overcome this limitation. These 
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proteins were only detected at 10 dpi (Figure 2), indicating that metal starvation and 

corresponding bacterial responses are likely more abundant at later time points during 

infection.

Bacterial Factors Related to Protein Stress.—Other host-imposed stresses, including 

production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and elevated 

temperatures during fever, can damage the bacterial protein pool.34–37 To protect the 

staphylococcal proteins from host-derived stresses, bacterial inducible heat shock proteins 

(Hsps)38 assist with protein folding and proteostasis.39 Although this study cannot 

distinguish between basal and stress-induced expression of such factors, the detection of the 

major bacterial Hsp DnaK at both the 4 dpi and 10 dpi time points (Figure 2, Table S2) is in 

accordance with the established roles of Hsps during stress and contact with the host. DnaK 

is not only involved in maintenance of cellular protein pools, but also plays a role in the 

folding of de novo synthesized proteins, e.g. when adapting to changing environmental 

conditions.40 This function is performed in concert with other chaperones, such as a 

ribosome-associated intracellular peptidyl prolyl cis/trans isomerase (PPIase),41 referred to 

as Trigger factor (TF, Tig),42 detected in the SAC at 10 dpi (Figure 2, Table S2). The 

cooperative nature of these two proteins during stress conditions is demonstrated by both 

dnak and tig mutants being viable under laboratory conditions, but a DnaK/TF double 

mutant being synthetic lethality at temperatures above 30 °C. This lethality is likely due to 

increased protein misfolding under these conditions.42 In line with the synergism nature of 

these proteins, we also found TF to be associated with the SAC at 10 dpi (Figure 2, Table 

S2). To our knowledge, the importance of DnaK and TF in S. aureus virulence has not been 

investigated in vivo, and it is intriguing to speculate about the importance of these systems 

during abscess development. The roles of TF are of particular interest because another S. 
aureus PPIase, PpiB, was previously shown to impact S. aureus virulence through a potential 

function in secretion of nucleolytic and hemolytic proteins.43

S. aureus Metabolism Is Shaped by the Host Environment.—S. aureus can 

circumvent cellular pathways that have been disrupted by macrophage-derived nitrosative 

stress41,44 or hypoxia at sites of infection.45 Specifically, fermentative pathways46 can be 

employed during glucose catabolism under hypoxia or if oxidative phosphorylation is 

impaired due to the damage of terminal oxidases by radical nitric oxide.47

Fermentation of pyruvate to lactate by S. aureus is facilitated by different lactate 

dehydrogenases (i.e., Ldh1, Ldh2, Ddh).46 We detected Ldh2 in the SAC and interface at 4 

and 10 dpi (Figure 2, Table S2), and Ldh1, a nitric oxide-inducible lactate dehydrogenase, in 

the abscesses at 4 and 10 dpi, as well as in the interface at 10 dpi (Table S3). It was 

previously shown that loss of Idh1 increases staphylococcal sensitivity to nitrosative stress 

and decreases the ability to form renal abscesses.46 Furthermore, the additional loss of ldh2 
was found to augment the latter phenotype,46 highlighting the importance of fermentative 

metabolism for S. aureus pathogenicity. In addition to maintaining the cells ability to 

generate energy under conditions encountered in the abscess, the creation of lactate as a 

byproduct of fermentation was recently shown to aid in staphylococcal immune evasion.48 

Briefly, bacterial-derived lactate causes alterations of gene expression in host immune cells, 
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e.g. stimulates the production of the anti-inflammatory cytokine Il-10, allowing for 

persistence in host tissue. These exciting findings further emphasize how bacterial 

metabolism shapes to its behavior as a pathogen and ultimately its interaction with the 

immune system.

Activity of metabolic pathways in S. aureus is dependent on environmental conditions and 

controlled by a large number of transcriptional regulators.49 Analogously, various regulatory 

proteins govern pathogenesis of the bacterium.50 Because the production of the vast array of 

virulence factors encoded by S. aureus is energetically costly, cellular nutritional status and 

virulence are intimately linked, e.g. through the action of transcriptional regulators that 

sense and respond to alterations in nutrient availability.51 A prime example of such a 

connection is the global transcriptional regulator CodY.52,53 This bifunctional regulator 

senses the availability of branched chain amino acids54,55 and GTP56 and responds by 

controlling a large number of metabolic and virulence-related traits. We detected CodY, as 

only one of two bona fide bacterial transcriptional regulators in our data set, at 4 and 10 dpi 

in the SAC and at 10 dpi in the interface (Figure 2, Table S2). While physical presence of the 

protein itself is not indicative of its regulatory state, the detection of CodY serves as 

reminder that S. aureus pathophysiology is directly affected by the conditions encountered in 

the abscess microenvironment and that sensing of these stimuli guides virulence of the 

bacterium within the abscess.

S. aureus Secreted Proteins.—In addition to the intracellular factors discussed thus far, 

we identified several staphylococcal proteins that are actively secreted into the abscess 

environment. Two adhesins belonging to the group of secretable expanded repertoire 

adhesive molecules (SERAMs)57 were detected: the extracellular matrix binding protein 

(Emp)58,59 and the extracellular adhesion protein (Eap).60 Both proteins were among the 

most consistently observed molecules in the SAC as well as in the interface (Figure 2, Table 

S2). Of note, our data set was manually screened for the presence of Eap as the encoding 

sequence is found in the USA300 LAC genome, but it is not annotated as a protein. Using 

this approach, we identified peptides for Eap, indicating production of this protein within 

host tissue. The presence of Emp and Eap is concurrent with their roles in abscess formation 

and maintenance.61 Detection of both proteins in all samples at 4 and 10 dpi supports the 

notion that these factors are abundant and important in both the early and late stages of 

abscess development.7

The action of neutrophils is essential for the immune system to clear staphylococcal 

infection. Neutrophils are recruited to the site of infection after the recognition of host or 

pathogen derived factors, including C5a, bacterial formylated peptides, or antimicrobial 

peptides. Corresponding receptors for these signals are the neutrophil receptor C5aR, the 

formyl peptide receptor (FPR), and the formyl peptide receptor-like-1 (FPRL1).62,63 To 

decrease the negative impact of neutrophil recruitment, S. aureus secretes chemotaxis 

inhibitory proteins that limit the infiltration of immune cells to the site of infection. These 

secreted factors bind to neutrophil receptors, therefore blocking the recognition of infection-

related signal molecules and ultimately preventing neutrophil recruitment. Staphylococcal 

antichemotactic factors include, among others,64 the chemotaxis inhibitory protein of S. 
aureus (CHIPS) that antagonizes C5aR and FPR65 and the FPRL1 inhibitory protein (FLIPr) 
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that blocks the FPRL1 and FPR receptors66. Both proteins were identified by our analysis 

(FLIPr: high confidence, Figure 2, Table S2; CHIPS: lower confidence, Table S3). Notably, 

we were only able to detect CHIPS and FLIPr at 10 dpi, suggesting that these factors are 

expressed or accumulate at advanced stages of abscess development. To our knowledge, this 

is the first time that production of these chemotaxis inhibitory proteins has been detected by 

an unbiased in vivo screen.

Another staphylococcal strategy to minimize the impact of the recruited immune cells is the 

secretion of pore-forming toxins.67 Upon secretion by S. aureus, these proteins insert into 

and disrupt the plasma membrane of host cells (e.g., neutrophils), ultimately leading to 

immune cell death. We identified both components of the bicomponent leukotoxin 

LukAB68,69 (LukA: high confidence, LukB: lower confidence) at 10 dpi (Figure 2, Tables 

S2 and S3). Presence of these proteins was recently correlated to abscess formation, 

additionally validating our method.68 LukB, as well as several other proteins identified by 

our microLESA approach (i.e., Chp, Emp, and Eap) are expressed under the control of the 

major virulence regulatory system SaeRS,70 whose activity can be modulated in response to 

host-derived signals (e.g., Zn-bound calprotectin or human neutrophil peptides).71,72 These 

results indicate that the SaeRS system may be active during adaptation to the abscess 

microenvironment and further highlight the interconnected nature of the host–pathogen 

interface, where the actions of host and bacteria are inseparably intertwined.

Host-Derived Factors.

Spatial and Temporal Changes in the Host Proteome.—The majority of proteins 

identified in this study were of host origin. The large number of murine proteins detected 

(2368) allowed for the probing of the relationships between different tissue regions as well 

as the determination of the proteomic changes within regions over time. At 4 dpi, the 

majority of identified proteins (676) were common among all three regions. This suggests 

that 4 days may not be sufficient for the full immune response to be observed and 

proteinaceously distinct abscess regions to form. The most unique region at this time point is 

the SAC (Figure 3). The SAC region also displayed the least changes over the course of 

infection, where the vast majority of proteins in the region were present at both time points 

(964, Figure 3B). This indicates that once an abscess community has been formed, the 

makeup of this region appears to remain fairly stable. At 4 dpi, the interface and SAC show 

high degrees of similarity with an overlap of 211 proteins. As the infection progresses this 

overlapping region becomes one of the most prominent groups represented in our data set 

(635) after proteins unique to the cortex (657), while the overlap between all three regions is 

less than at 4 dpi (441 vs 676). This indicates that as the infection continues, the site of 

infection (SAC and interface) and the cortex grow increasingly more distinct. As depicted in 

Figure 3B, only half of the proteins detected in the cortex were found at 4 and 10 dpi, which 

is in stark contrast to the trend seen in the SAC. These large-scale changes in the cortex 

suggest organ-wide effects of infection by S. aureus. We hypothesize that this increase in 

unique proteins in the cortex is likely due to the resolution of the immune response, in 

regions that are not in direct contact with the pathogen. This hypothesis is discussed further 

in the host response section regarding metabolism.
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Among the investigated regions, the most notable trends are in the interface. The number of 

proteins detected only in the interface showed dramatic change over the course of the 

experiment, increasing greater than 10-fold from 4 dpi (36 proteins) to 10 dpi (384 proteins) 

as shown in Figure 3. Additionally, many of the proteins found in the SAC at 4 dpi are 

shared with the interface by 10 dpi (635 proteins), suggesting that the interface becomes a 

major site of the competition between host and pathogen. The finding that many proteins 

were uniquely detected at the interface suggests that we are able to assess the proteome of 

this region without unwanted contamination from neighboring regions. If the host proteins 

were largely shared between the two regions, then unintended cross-contamination between 

the SAC and the interface would be a concern. This was not observed, however, in this data 

set. These findings also support the observation of bacterial cytosolic proteins detected at the 

interface indeed is biologically relevant and not merely an artifact of sample acquisition. Our 

results indicate that the interface is a unique and deeply informative tissue environment for 

understanding staphylococcal pathogenesis.

Immune Cell Distributions.—Similar to the rich biology seen from our analysis of 

bacterial proteins, thousands of identified murine proteins characterize the host response to 

S. aureus infection. A summary of all identified host-derived proteins, including information 

about localization and time of identification, can be found in Table S1. Consistent with a 

predicted presence of immune cells in the abscess, the panleukocyte marker Receptor-type 

tyrosine-protein phosphatase C (Ptprc or CD45) is present in the SAC and interface at 4 and 

10 dpi (Figure 4). Curiously, other proteins thought to be specifically expressed by cells of 

hematopoietic lineages do not follow the same pattern as CD45. Lymphocyte-specific 

protein 1 (Lsp1) is also found in the cortical regions of the kidney both 4 and 10 dpi, while 

dedicator of cytokinesis protein 2 (Dock2) is only found in the abscess and interface 10 dpi 

(Figure 4). This suggests subtle spatial and temporal differences in the leukocyte populations 

during infection.

During abscess formation, neutrophils are recruited to the site of infection in high numbers.
73–75 We identified the myeloid cell marker CD14 and neutrophil marker CD177 within the 

abscess and interface (Figure 4). Coinciding with the neutrophil surface markers, multiple 

neutrophil-specific antimicrobial factors are also found in the abscess and interface regions 

including myeloperoxidase (Mpo), cathepsin G (Ctsg), and neutrophil elastase (Elane) 

(Figure 4). In addition, neutrophils use NADPH oxidase to generate high levels of ROS in 

response to S. aureus, and an abundance of NADPH oxidase proteins are also specifically 

within the abscess and interface. The inducible nitric oxide synthase (Nos2), however, is 

only found in the abscess 4 dpi (Figure 4). While it is not possible to fully exclude that Nos2 

is present in low concentrations below our limit of detection at this later time point, Nos2 

was reliably detected in nearly all samples at the 4 dpi time point. This suggests that even if 

Nos2 is not absent from the abscess at 10 dpi, the concentration decreases over time.

Relative to neutrophils, macrophages make up a smaller percentage of the immune cells in 

the abscess.76 Nevertheless, the presence of integrin alpha-M (Itgam or Mac-1) indicates that 

activated inflammatory macrophages are found in the abscess and interface (Figure 4). The 

expression of apolipoprotein B receptor (Apobr) by macrophages is critical to combating S. 
aureus, as it suppresses activation of the Agr system, a major component of the 
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staphylococcal regulatory landscape76 (Figure 4). Consistent with an integral role in 

combating S. aureus, Apobr is present both within the abscess and interface at 4 and 10 dpi. 

The presence of sortilin-related receptor (Sorl1), and mannose-6-phosphate receptor (M6pr) 

at 10 dpi in the cortex suggests the presence of alternatively activated M2-like macrophages 

involved in tissue repair and remodeling outside of the abscess (Figure 4). The classical M2-

like macrophage marker arginase-1 (Arg1) is not detected in the cortex and is present 

ubiquitously in the abscess and interface (Figure 4). Despite Arg1 being linked to M2 

polarization, Arg1 is only produced by a quarter of all M2-like macrophages77 and is 

furthermore up-regulated in inflammatory M1-like macrophages.78,79 Arg1 is necessary for 

the production of spermine and spermidine, which are uniquely toxic to most methicillin-

resistant S. aureus (MRSA) strains and integral to killing S. aureus during the tissue 

resolution phase of skin infections.80 The presence of spermidine synthase (Srm) in the 

abscess at 4 dpi suggests spermine and spermidine production may play a critical 

antimicrobial function within abscesses in the kidney81 (Figure 4). These data suggest that 

during S. aureus infection of kidneys, Arg1 may be present in M1 macrophages in the 

abscess and might not be a reliable marker for the M2 macrophages associated with tissue 

repair in the cortex 10 dpi.

Heme Distribution.—Heme acts as a critical source of iron for S. aureus at the site of 

infection.82 While hemoglobin subunit alpha (Hba) and beta-1 (Hbb-b1) are ubiquitously 

present during infection, hemoglobin subunit beta-2 (Hbb-b2) and beta-H0 (Hbb-b0) are 

only found in the cortex at 10 dpi (Figure 4). Importantly, the host can restrict free heme and 

hemoglobin from S. aureus through binding and sequestration by hemopexin (Hpx)83 and 

haptoglobin (Hp),84 respectively. Both Hpx and Hp were found in the abscess, interface, and 

cortex at 4 dpi, but not in the cortex at 10 dpi (Figure 4). This suggests that while free heme 

and hemoglobin may be present at the site of infection in the kidney, the simultaneous 

presence of Hpx and Hp may render heme and hemoglobin biologically unavailable to S. 
aureus. The presence of host factors that limit heme availability to S. aureus also serves as 

an explanation for the previously discussed presence of different staphylococcal proteins 

aimed to counteract heme limitation during infection (i.e., IsdA, IsdB, and ChdC) (Figure 2). 

Another heme-containing protein, cytoglobin (Cygb), is exclusively present in the cortex at 

10 dpi. Cygb contributes to oxygen diffusion for collagen synthesis during wound healing,85 

regulating nitric oxide levels86,87 and detoxifying reactive oxygen species88 (Figure 4). 

Cygb mirrors the presence of M2 macrophages in the cortex at 10 dpi, that suggests Cygb 

plays a role in tissue repair and abscess resolution during S. aureus infection.

Host Signaling.—The power of microLESA is not just in confirming the presence or 

absence of proteins, but in allowing for unbiased observations about the regulatory states of 

the cells. NEDDylation and ubiquitylation are post-translational modifications that regulate 

protein degradation by the proteasome, thereby influencing signal transduction,89–94 

inflammasome activation,95–97 autophagy,98,99 and cell death.100,101 The cullin-associated 

NEDD8-dissociated protein 1 (Cand1) regulates NEDD8 activity by sterically inhibiting the 

assembly of cullin-RING ubiquitin ligases and preventing NEDDylation,102 while the 

NEDD8 ultimate buster 1 (Nub1) specifically recruits NEDD8 to the proteasome for 

degradation.103,104 In the abscess, interface (both at 4 and 10 dpi), and cortex (at 4 dpi) 
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Cand1 was present and Nub1 absent, suggesting that NEDDylation is being regulated by 

Cand1 (Figure 4). However, in the cortex at 10 dpi, the phenotype reversed with the presence 

of Nub1, and absence of Cand1, suggesting that NEDDylation is impaired by the Nub1-

mediated degradation of NEDD8. The reduction of total NEDD8 protein would have 

significant implications in multiple signal transduction pathways, including NFκB and 

HIF1α, and suggests the signaling environment within the cortex at 10 dpi is unique. 

Enzymes necessary for ubiquitination and proteasomal degradation of proteins, including the 

ubiquitin activating enzymes (E1) that catalyze the first step in the ubiquitination reaction, 

and ubiquitin ligases (E3) that catalyze the transfer of ubiquitin from the E2 enzyme to the 

protein substrate, show similar spatial and temporal patterns. Because E1 and E3 enzymes 

interact directly with the protein substrate, it is possible that varying complexes of E1, E2, 

and E3 enzymes exhibit unique activities to exert diverse biological functions (Table S1).

Host Metabolism: Glycolysis and Glucogenesis.—Not only does signal 

transduction vary spatially and temporally, but the metabolic niche changes at different renal 

locations when comparing 4 and 10 dpi (Figure 4 and S2). We utilized a systems biology 

pathway analysis tool, SIMONE, to visualize the interactions between proteins of interest. 

These proteins were determined using external pathway mapping tools and entered into 

Reactome,105 and the resulting list of proteins associated with metabolism were input into 

SIMONE106 as seed proteins. This tool constructs networks using the MAGINE framework,
107 which derives protein connection information from multiple databases (Figure S2). By 

uncovering how these proteins are connected, pathways can be predicted from 

spatiotemporal proteomics data. These pathways were summarized and combined in Figure 

5. While we observed alterations in abundance of various proteins related to different 

metabolic processes (discussed below), the enzymes necessary for glycolysis are generally 

present during infection in the abscess, interface, and cortex, suggesting glucose conversion 

to pyruvate. Many of the enzymes necessary for the pentose phosphate pathway that runs 

parallel to glycolysis and enzymes necessary to breakdown fructose that feed into glycolysis 

are not detected in the cortex at 10 dpi. However, the enzyme bisphosphoglycerate mutase 

(Bpgm) is solely present in the cortex. This enzyme is necessary to form 2,3-

bisphosphoglycerate from the glycolysis intermediate 1,3-bisphophoglycerate. The absence 

of Bpgm in the abscess and interface is consistent with a hypoxic environment in the 

abscess, as 2,3-bisphosphoglycerate binds hemoglobin at a high affinity and causes a 

conformational change resulting in the release of oxygen108,109 (Figure 5 and S2).

The enzymes necessary for host gluconeogenesis, a process that converts noncarbohydrate 

substrates into glucose, were only detected in the abscess and cortex at 4 dpi, suggesting that 

gluconeogenesis may not occur late in infection (Figure 5 and S2). The enzymes necessary 

for glycogenolysis are present in the abscess, interface, and cortex; however, glycogen 

synthase kinase-3 alpha (Gsk3a), an enzyme that contributes to glycogenesis, is not detected 

in the abscess and interface (Figure 5 and S2). The lack of enzymes for glucose formation 

and long-term storage in the form of glycogen and the presence of enzymes necessary for 

the breakdown of glycogen into glucose in the abscess and interface are consistent with high 

levels of glycolysis during inflammation (reviewed in ref 110). The presence of Gsk3a 

exclusively in the cortex at 10 dpi suggests a decreased metabolic demand for glucose and 
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possible glycogen formation. In addition, Gsk3a plays a central role in regulating the 

transition between pro-inflammatory and immune-suppressive response to S. aureus by 

controlling cytokine production.111 These results suggest a specific role for Gsk3a in 

altering the metabolic and cytokine landscape of the cortex 10 dpi during S. aureus infection 

of the kidney.

Host Metabolism: Metabolism in the Abscess.—While the metabolic enzymes 

present in the abscess and interface suggest the formation of pyruvate, the complex 

necessary for conversion of pyruvate into acetyl coenzyme A (acetyl-CoA) in the 

mitochondria may not be fully formed. Pyruvate dehydrogenase protein X component 

(Pdhx) tethers the E3 dimers to the E2 core of the pyruvate dehydrogenate complex112,113 

(Figure 5 and S2). Therefore, lacking detectable Pdhx in the abscess and interface suggests 

that the pyruvate dehydrogenase complex would not be functional and that conversion of 

pyruvate into acetyl-CoA in the mitochondria would be impaired. Pyruvate can also be 

converted into acetyl-CoA in the cytosol,114 but the acetyl-coenzyme A synthetase (Acss2), 

which is necessary for transport into the mitochondria, is also not detected within the 

abscess and interface (Figure 5 and S2). Instead, the ubiquitous expression of the lactate 

dehydrogenase (Ldha and Ldhb) suggests that in the abscess and interface, the resulting 

pyruvate from glycolysis is being converted to lactate, consistent with anaerobic glycolysis 

in the hypoxic environment of the abscess (Figure 5 and S2).

Many of the enzymes associated with the tricarboxylic acid (TCA) cycle are present in the 

abscess and interface during infection, but pyruvate does not seem to be fueling downstream 

oxidative phosphorylation and ATP generation due to the lack of Pdhx and Acss2 (Figure 5 

and S2). Many of the enzymes necessary for β-oxidation in the mitochondria are present in 

the abscess and interface, and the resulting formation of acetyl-CoA could fuel the TCA 

cycle (reviewed in ref 115). However, long-chain fatty acids (LCFAs) would likely not be 

able to serve as the carbon source for the TCA cycle. The O-palmitoyltransferase 2 (Cpt2), 

catalyzes the formation of palmitoyl-CoA from palmitoylcarnitine, a necessary step for 

LCFAs prior to β-oxidation (reviewed in ref 115). Thus, the lack of Cpt2 suggests that 

LCFAs cannot undergo β-oxidation in the mitochondria and therefore are not feeding into 

the TCA cycle in the abscess and interface (Figure 5 and S2). This does not exclude the 

possibility that short-chain fatty acids (SCFAs), which passively gain access to the 

mitochondria, could be fueling the TCA cycle. Carnitine O-acetyltransferase (Crat) blunts 

acetyl-CoA from fueling the TCA cycle by forming acetyl-carnitine for transport into the 

cytosol, and once in the cytosol, acylcarnitine hydrolase (Ces2c) liberates fatty acids from L-

carnitine. Both Crat and Ces2c are absent in the in the abscess and interface supporting the 

possibility that SCFAs undergoing β-oxidation could serve as a carbon source for the TCA 

cycle (Figure 5 and S2). Glutamine may also act as an alternative carbon source for the TCA 

cycle.116 Glutamate dehydrogenase 1 (Glud1) catalyzes the oxidative deamination of 

glutamate into α-ketoglutarate, which feeds into the TCA cycle. The presence of Glud1 and 

absence of glutamine synthase (Glul), which converts glutamate into glutamine, in the 

abscess and interface suggests that glutamine may also be fueling the TCA cycle in the 

abscess environment (Figure 5 and S2).
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Host Metabolism: Metabolism in the Cortex.—By contrast, in the cortex at 10 dpi, 

many of the enzymes necessary to run the TCA cycle are not detected. Only isocitrate 

dehydrogenase (Idh2), NAD-dependent malic enzyme (Me2), and malate dehydrogenase 

(Mdh2) are detected (Figure 5 and S2), suggesting that in the cortex at 10 dpi, the full TCA 

cycle may not be used. The cortex at 10 dpi is the only region to contain all the acyl-CoA 

dehydrogenases as well as almost exclusive presence of the enzymes necessary for β-

oxidation in the peroxisome. Unlike the abscess and interface, Cpt2, is detected in the cortex 

suggesting that β-oxidation of LCFAs may occur, but the presence of Ces2c and Crat 

suggest that the resulting acetyl-CoA is shunted out of the mitochondria rather than feeding 

into the TCA cycle. M2 macrophages in the tissue surrounding the abscess (Figure 5 and S2) 

are necessary for the conversion to the resolution phase by cleaning up apoptotic cells and 

cellular debris, and are consistent with previous studies assessing abscess biology in the skin 

and soft tissue.80 Cellular debris contains high concentrations of lipids, thereby requiring β-

oxidation for its degradation. The high presence of lipids in resolving damaged tissue 

outside the abscess could account for the increased presence of proteins necessary for β-

oxidation.

Acetyl-coenzyme A synthetase 2-like (Acss1) and malonyl-CoA decarboxylase (Mlycd) are 

also present in the cortex 10 days postinfection (Figure 5 and S2). These enzymes shunt 

mitochondrial acetate and malonyl-CoA away from lipid synthesis and toward the formation 

of acetyl-CoA. The combined activity of β-oxidation, Acss1, and Mlycd with a limited 

presence of TCA cycle enzymes could cause an accumulation of acetyl-CoA. The presence 

of Crat and Cesc2c may relieve some of the acetyl-CoA burden by exporting acetyl-CoA as 

free fatty acids into the cytosol. Alternatively, many of the enzymes necessary for 

ketogenesis are present in the cortex at 10 dpi suggesting that the abundance of acetyl-CoA 

could also be converted to ketone bodies (Figure 5 and S2).

A byproduct of β-oxidation is oxidative stress, and consistent with increased β-oxidation, 

the cortex at 10 dpi is the only region to express the full array of glutathione S-transferases, 

synthase, reductase, and peroxidase to combat oxidative stress (Table S1). Since oxidative 

phosphorylation from the TCA cycle can create oxidative stress, this could explain the 

absence of TCA cycle enzymes in the cortex at 10 dpi (Figure 5 and S2). Finally, many of 

the downstream enzymes for β-oxidation in the mitochondria and peroxisome are not 

detected in the cortex at 10 dpi that are present at 4 days or in the abscess and interface 

(Figure 5 and S2). This suggests that while β-oxidation of LCFAs is occurring in the cortex 

at 10 dpi, the lipids are not fully broken down. In addition, acyl-coenzyme A thioesterases 

(Acot) are thought to maintain a sufficient CoA pool for β-oxidation by terminating β-

oxidation after a set number of cycles (reviewed in ref 117). The specific presence of Acot4 

in the peroxisome and Acot9 and Acot13 in the mitochondria could result in the formation 

of specific lipid products that is important in maintaining β-oxidation in high lipid 

environments to avoid oxidative stress (Figure 5 and S2). The metabolic environment in the 

cortex at 10 dpi is consistent with an immune response that has altered to a resolving phase 

that is cleaning up lipid-dense apoptotic cells and cellular debris following inflammation.
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CONCLUSION

We performed spatially and temporally targeted proteomics, aided by a robust systems 

biology data processing workflow, to molecularly investigate staphylococcal abscess 

formation and development. This approach is suited for identification of bacterial proteins 

and enables characterization of the host proteome during infection. Such a comprehensive 

assessment of the abscess proteome allows us to molecularly characterize the host–pathogen 

interface over time. By pairing information about the spatiotemporal distribution of bacterial 

proteins with data defining the host proteome, we can elucidate how the pathogen and host 

shape the abscess (micro)environment and how, in turn, both parties react to these 

biomolecular changes.

The current study was specifically designed to assess (i) the proteomic changes between 

early and late phase of infection within each of the three distinct regions as well as (ii) the 

cross-comparison of the proteomes of the three regions throughout the course of 

staphylococcal disease. Using our microLESA workflow, we characterized the metabolic 

niche at the site of infection. Our findings indicate the influx of immune cells (i.e., 

neutrophils and different macrophage populations) while also elucidating specific metabolic 

processes employed by these host cell populations. The action of macrophages was not 

limited to the SAC and interface. We also detected markers for M2 macrophages in the renal 

cortex, suggesting a role in tissue repair and remodeling. In contrast, multiple neutrophil-

specific antimicrobial factors (e.g., Mpo, Ctsg, Elane) were found to be expressed in 

proximity to the staphylococcal abscess. We found S. aureus produces CHIPS and FLIPr, 

which antagonize the host neutrophil receptors to prevent neutrophilic entrance into the 

abscess. Staphylococcal leukotoxins (LukAB) produced during abscess formation were also 

identified, again aiding in immune evasion and persistence in the host tissue. Indicative for 

the onset of nutritional immunity, we observed bacterial heme uptake and biosynthetic 

proteins present in the abscess. This limitation could be explained by the presence of host 

proteins that restrict the availability of heme for S. aureus (Hpx and Hp), particularly in the 

SAC and interface.

We describe several other additional mechanisms of how host and pathogen directly affect 

each other during infection and how both sides counteract the challenges presented to them. 

These data highlight the powerful nature of our experimental setup and offer insights into 

the processes at the host–pathogen interface, beyond the specific examples discussed here. 

The ability to elucidate when, where, and how pathogens and the immune system interact 

during abscess formation and disease progression is an invaluable resource to identify 

potential points of intervention when developing new antistaphylococcal therapeutic 

strategies.

Although microLESA is a powerful technology that provides spatial context to proteomic 

analysis, as with any analytical approach, the method has inherent limitations. These 

challenges are primarily associated with (i) the trade-off between spatial fidelity and 

molecular depth of coverage and (ii) ensuring sampling consistency when probing and 

comparing molecular features from distinct cell types and tissue regions. In our study, we 

identified 57 staphylococcal proteins alongside a myriad of host proteins. The bacterial 
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proteins detected are largely consistent with those reported in S. aureus literature and 

relevant to understanding the pathophysiological state of the bacterium during infection. The 

number of bacterial proteins we detected, though, is relatively small when compared to the 

thousands of proteins in the staphylococcal proteome that went undetected. This is not 

unexpected as sensitivity and depth of coverage are typically sacrificed for improved spatial 

resolution due to fewer molecules being sampled from smaller foci. Still, the ability to 

characterize many staphylococcal proteins within the developing abscess in vivo is a 

significant advancement.

A second inherent challenge of microLESA is sampling consistency due to potential 

variation in extraction and ionization efficiency when probing different tissue regions. This 

is often driven by differences in molecular composition at each sampling location. To ensure 

accuracy of data generation and interpretation, only proteins reliably detected in the majority 

of replicates should be included in downstream analysis, as outlined in the Methods section 

of this paper and utilized for these analyses. Additionally, comparisons between sampling 

locations should be performed conservatively. Here, we based our conclusions on global 

changes in biological pathways rather than individual proteins to arrive at robust and 

reproducible trends in the data set. Further, the use of a systems biology pathway analysis 

workflow allowed us to focus on specific biological processes affected by the proximity to 

the site of infection. The use of such pathway analysis tools and a focus on global data 

trends is an efficient method for mining microLESA data and would be effective for any 

spatial targeted proteomics study. With these considerations in mind, microLESA has 

tremendous potential to be the cornerstone of future investigations attempting to spatially 

resolve the proteinaceous composition of complex tissues, including low abundance proteins 

or those difficult to ionize with other strategies.

METHODS

All sample preparation was completed using the method previously described by Ryan et al.
22 Pathway analysis was conducted using a similar workflow described previously by 

Gutierrez and colleagues.106 Additional information on methods is included in the 

Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This work was funded by the NIH National Institute of Allergy and Infectious Diseases (R01AI138581 awarded to 
E.P.S and J.M.S. and R01AI069233 and R01AI073843 awarded to E.P.S.) and NIH National Institute of General 
Medical Sciences (2P41 GM103391-07 awarded to R.M.C.). A.W. is supported by the American Heart Association 
(18POST33990262) and the NIH National Institute of Environmental Health Sciences (T32ES007028). The funders 
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
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dpi days post infection
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SAC staphylococcal abscess community

LESA liquid extraction surface analysis

MALDI matrix-assisted laser desorption/ionization

IMS imaging mass spectrometry

LC-MS/MS liquid chromatography tandem mass spectrometry
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Figure 1. 
microLESA sampling strategy and results. (A) Schematic of regions selected for collection 

shown using autofluorescence and H&E. (B) Overview of bacterial and host proteins 

identified at different time points and across different regions within infected renal tissue. 

Total host proteins: 2367. Total bacterial proteins: 32.
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Figure 2. 
Overview of S. aureus proteins identified in the different abscess regions. Staphylococcal 

proteins were found in the interface and SAC of renal abscesses at 4 or 10 dpi. Red circles 

denote proteins that were present at the specific time point/region, while gray circles depict 

the absence of a specific protein. General functional categories for proteins and protein 

groups are shown. Further information concerning proteins in this list can be found in S2. 

0816: SAUSA300_0816; 1656: SAUSA300_1656.
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Figure 3. 
Comparison of the proteome from the different regions in and around staphylococcal tissue 

abscesses. Data are combined host and bacterial proteins. (A) UpSet plot displaying unique 

and shared proteins identified from the three sampled locations. (B) Comparison of the 

proteome from individual regions over the course of infections (4 vs 10 dpi).
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Figure 4. 
Spatiotemporal distribution of immune cell markers, hemoglobin components, and 

NEDDylation-associated factors in infected tissue. Host immune proteins were found in the 

interface and SAC of renal abscesses at 4 and 10 dpi. Blue circles denote proteins that were 

present at the specified time point/region, while gray circles depict the absence of a specific 

protein.
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Figure 5. 
Overview of spatiotemporal distribution of proteins involved in central metabolism. Arrows 

denote metabolic pathways; ovals indicate genes, and colors indicate time point and region 

where proteins were detected.
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