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This editorial refers to ‘Cysteine 202 of cyclophilin D is a site of

multiple post-translational modifications and plays a role in

cardioprotection’ by G. Amanakis et al., pp. 212–223.

Haworth and Hunter first described the characteristics of permeability
transition in bovine mitochondria in the late 1970s, establishing it to be a
consequence of the reversible opening of a pore within the inner mito-
chondrial membrane. The role of this pore in myocardial ischaemia/reper-
fusion (I/R) injury has been the subject of considerable interest in the
intervening years. During myocardial ischaemia, this pore, now known as
the mitochondrial permeability transition pore (PTP) remains closed be-
cause metabolic acidosis prevents its opening. Upon reperfusion, PTP
opening in response to biochemical changes [restoration of pHi, genera-
tion of reactive oxygen species, and mitochondrial calcium (Ca2þ) over-
load], causes significant cellular injury. In part, this injury happens because
PTP opening has deleterious effects on the mitochondria themselves:
swelling and rupture, membrane depolarization, and uncoupling of oxida-
tive phosphorylation.1 In part, substances released from the mitochondria
through PTP initiate cell death. Together, these events contribute to the
overall injury sustained by the heart during myocardial I/R injury. Since the
PTP is a key mediator of myocardial I/R injury, much attention is focused
on understanding its intrinsic regulatory pathways and how these may be
targeted for therapeutic gain. The peptidylprolyl isomerase, cyclophilin D
(CypD) is widely recognized as a regulator of the PTP. I/R-induced cell
death in vivo is reduced in CypD knockout mice, confirming that CypD
and PTP contribute to the tissue damage mediated by such injury.2

Importantly, the CypD inhibitor cyclosporin A (CsA) attenuates in-
farct size in small and large animal models of I/R. Promisingly, CsA also
protected human atrial trabeculae subjected to simulated I/R injury1 and
in a small pilot trial, its intravenous administration attenuated infarct size
by approximately 40%3 in patients with ST-segment elevation myocardial
infarction. However, data generated from the much larger CIRCUS trial
proved less promising,4 to the consternation of many. Since CsA affects
the mitochondria of all organs it may produce deleterious off-target
effects. Gaining a greater insight into CypD regulation and function will
therefore allow for the development of alternative and more specific
therapies targeted at the cardiac PTP.

Although CypD knockout mice have significantly improved our un-
derstanding of its role in cardiac (patho)physiology, more subtle knock in
animals are important to identify the key residues involved in its function.
Amanakis et al. have used this knock in approach to evaluate the impor-
tance of CypD cysteine 202 in I/R injury.5 This residue had already been
established to be oxidized during I/R injury, reversibly nitrosylated during
ischaemic preconditioning6 and can also form an intramolecular disul-
phide.7 Amanakis et al. now demonstrate novel, dynamic S-palmitoyla-
tion of this residue. Their study reports substantial protection from I/R
injury in C202S hearts compared to wild type, alongside a significantly
enhanced resistance of C202S mitochondria to calcium overload-
induced permeability transition. Interestingly C202S hearts confer no ad-
ditional protection following I/R injury from CsA, suggesting PTP assem-
bly requires CypD C202. CypD S-palmitoylation is reduced significantly
during ischaemia (in intact hearts) and following calcium overload (in iso-
lated mitochondria). Evidently, the signalling poise of this single amino
acid has the potential to swing life and death decisions in the mitochon-
drial matrix.

To further elucidate the role of CypD palmitoylation in PTP assembly,
the mechanisms by which the palmitoylation and de-palmitoylation oc-
cur warrant further study. S-palmitoylation is catalyzed by Asp-His-His-
Cys (DHHC)-palmitoyl acyltransferase enzymes (zDHHC-PATs) which
are integral membrane proteins localized throughout the secretory path-
way. The activity of this enzyme family has been implicated in I/R injury
by others. The cell surface localized zDHHC5 regulates a number of im-
portant cardiac substrates8 and is a key component of the process of
massive endocytosis (MEND) following anoxia/reperfusion. The MEND
pathway is triggered by PTP opening and acyl-CoA release from mito-
chondria, which leads to substantial remodelling of the cell surface mem-
brane by zDHHC5.9 The sensitivity of MEND to PTP suggests CypD
palmitoylation may itself regulate this pathway. As such, understanding
which zDHHC-PAT palmitoylates CypD will be important to determine
the impact of palmitoylation on CypD function and PTP assembly. Of
the 23 zDHHC-PATs identified in humans, most are localized in the
Golgi apparatus, endoplasmic reticulum and on the cell surface.
However, proteomic studies have revealed several mitochondrial pro-
teins are palmitoylated,10 so there is indirect evidence to suggest that
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.some zDHHC-PATs localize to mitochondria. In particular, zDHHC13
was identified in a quantitative analysis of the liver S-palmitoylome,
where its absence significantly impacted expression of proteins impli-
cated in mitochondrial function,11 and zDHHC8 has been suggested to
play an important role in regulating mitochondria in the brain.12

Although these DHHC-PATs have not been studied in the context of
cardiac mitochondria, they could provide an insight into the mechanism
of CypD palmitoylation. Conversely, it is noteworthy that as a mitochon-
drial protein, CypD is likely exposed to high local concentrations of acyl-
CoA, and it is conceivable that this could cause it to be auto-
palmitoylated, as has been demonstrated with other soluble proteins.13

In the work of Amanakis et al., exposing cardiac mitochondria to high
calcium triggers CypD de-palmitoylation, potentially increasing availabil-
ity of C202 for oxidation and subsequent PTP-induced injury at reperfu-
sion (Figure 1). Calcium regulated de-palmitoylation is a previously
unreported phenomenon that may have important consequences for
palmitoylated cardiac substrates—particularly those involved in calcium
handling.14 The mechanism of CypD de-palmitoylation is therefore of
greatest interest. Recent work has revealed that APT1, one of seven pro-
tein thioesterases identified to date, localizes in mitochondria as well as
the cytosol.15 In addition, ABHD10 (recently reported to act as a thioes-
terase), is exclusively localized in mitochondria where it de-palmitoylates
the mitochondrial homeostasis regulator peroxiredoxin-5 (PRXD5).16

Both enzymes warrant investigation as the source of CypD de-
palmitoylation during ischaemia.

While the significance of C202 in CypD function has been clearly
demonstrated in this study, an important outstanding question concerns
CypD palmitoylation stoichiometry, to understand what population of
the protein is being regulated by palmitoylation. It remains a significant
challenge to the field of cysteine post-translational modifications that
chemically distinct post-translational modifications can compete for the
same residue, complicating our understanding of the phenotypes of
knock in models. Typically, it is the same solvent-exposed cysteines that
form disulphides and are subjected to S-nitrosylation, S-acylation, oxida-
tion, S-glutathiolation, etc. Since protection of C202 from oxidation may
generate significant therapeutic benefit, understanding the cross-talk be-
tween modifications will be of vital importance.
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