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ABSTRACT

Methods to assess environmental exposure to hazardous chemicals have primarily focused on quantification of individual
chemicals, although chemicals often occur in mixtures, presenting challenges to the traditional risk characterization
framework. Sampling sites in a defined geographic region provide an opportunity to characterize chemical contaminants,
with spatial interpolation as a tool to provide estimates for non-sampled sites. At the same time, the use of in vitro
bioactivity measurements has been shown to be informative for rapid risk-based decisions. In this study, we measured
in vitro bioactivity in 39 surface soil samples collected immediately after flooding associated with Hurricane Harvey in Texas
in a residential area known to be inundated with polycyclic aromatic hydrocarbon (PAH) contaminants. Bioactivity data
were from a number of functional and toxicity assays in 5 human cell types, such as induced pluripotent stem cell-derived
hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as human umbilical vein endothelial cells. Data on
concentrations of PAH in these samples were also available and the combination of data sources offered a unique
opportunity to assess the joint spatial variation of PAH components and bioactivity. We found significant evidence of
spatial correlation of a subset of PAH contaminants and of cell-based phenotypes. In addition, we show that the cell-based
bioactivity data can be used to predict environmental concentrations for several PAH contaminants, as well as overall PAH
summaries and cancer risk. This study’s impact lies in its demonstration that cell-based profiling can be used for rapid
hazard screening of environmental samples by anchoring the bioassays to concentrations of PAH. This work sets the stage
for identification of the areas of concern and direct quantitative risk characterization based on bioactivity data, thereby
providing an important supplement to traditional individual chemical analyses by shedding light on constituents that may
be missed from targeted chemical monitoring.

Key words: polycyclic aromatic hydrocarbons; mixtures toxicology; in vitro models; iPSC; humanized models; human risk as-
sessment; risk assessment; new approach methods; bioactivity; spatial analysis.

Environmental samples from contaminated sites contain com-
plex mixtures of chemicals and may pose concern to both hu-
man health and the environment (Escher et al., 2020; Stehle and

Schulz, 2015). The regulatory authorities in the United States
(U.S. EPA, 1986) and Europe (Backhaus et al., 2010; Brack et al.,
2019; Kortenkamp and Faust, 2018) are tasked with the
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evaluation of the mixtures; however, multiple challenges with
the current approaches they rely upon have been widely ac-
knowledged. Traditional methods for assessment of environ-
mental exposures focus on the few individual chemicals that
were detected in environmental samples, an approach that can
underestimate the risks both because chemicals may be missed
due to their not being analyzed for, as well as because interac-
tions among the components in a mixture may complicate
attempts at dose reconstruction (Kortenkamp and Faust, 2018).
Several regulatory agencies are considering amendments to the
traditional risk characterization frameworks to mixtures (Bopp
et al., 2019; ECHA, 2017; More et al., 2019) to address the knowl-
edge gaps in regulatory science with respect to quantitative
characterization of the effects by the mixtures of unknown, or
yet to be characterized, chemical composition.

To better characterize potential hazards of complex environ-
mental mixtures, novel approaches based on chemical analysis
methods (Hollender et al., 2017) and biological assays (Fang
et al., 2020; Judson et al., 2010) have been proposed. Recent
advances in analytical chemistry assays and their application to
the analysis of environmental samples contribute greatly to the
opportunities to reconstruct exposure to complex mixtures
(Patel, 2017; Rager et al., 2016). Both targeted and untargeted
approaches have demonstrated that environmental and human
samples may contain hundreds to thousands of chemicals
(Rappaport, 2018; Sille et al., 2020); however, this complexity
presents a formidable challenge to confident identification and
quantitation of the constituent chemicals. Even with the most
contemporary high-resolution analytical techniques, only par-
tial characterization of the chemicals in complex environmental
samples is attainable.

A complementary approach for hazard characterization of
complex substances or mixtures is the use of in vitro methods
that can evaluate the effects of the whole substance, rather
than its individual constituents (Escher et al., 2020). Examples
over the last decade include applications to hazard identifica-
tion of oil dispersant formulations (Judson et al., 2010), environ-
mental samples (Blackwell et al., 2017, 2019; Escher et al., 2018;
Horzmann et al., 2017; Neale et al., 2020), petroleum substances
(Grimm et al., 2016; Kamelia et al., 2019), and botanicals (Catlin
et al., 2018). The high-throughput format of in vitro assays allows
for rapid testing, and it has been suggested that additions of
in vitro bioactivity data to mixture risk assessment may hold
promise in reducing uncertainties (Drakvik et al., 2020; Ginsberg
et al., 2019). It has also been posited that cell-based bioassays
can be used in support of environmental quality standards
(Escher et al., 2018).

Most studies that used cell-based bioassays to evaluate the
effects of environmental mixtures take advantage of readily-
available cancer cell lines and rely on cell viability or reporter
assays (Alimba et al., 2016; Blackwell et al., 2019; Fang et al., 2020;
Neale et al., 2017). Seldom are primary or induced pluripotent
stem cell (iPSC)-derived human cell types and functional pheno-
types used. Therefore, this study used a compendium of human
cell lines from different organs to test bioactivity of a set of soil
samples collected from a residential area in Texas with reported
contamination from polycyclic aromatic hydrocarbon (PAH)-
containing substances during Hurricane Harvey-associated
flooding (Horney et al., 2018; Stone et al., 2019). The potential for
a small set of in vitro models to inform rapid risk-based deci-
sion-making for environmental chemicals was recently demon-
strated (Chen et al., 2020). Here, we show that PAH
concentrations and in vitro bioactivity in environmental sam-
ples were spatially correlated for only a subset of cell-based

phenotypes; however, in vitro bioactivity data can be used to
predict environmental concentrations and cancer risk from PAH
contaminants.

MATERIALS AND METHODS

Chemicals and biologicals. Dimethyl sulfoxide (DMSO, cell-culture
grade, �99%) was purchased from Santa Cruz Biotechnology
(Santa Cruz, California). Cyclohexane (HPLC grade) was obtained
from Fisher Scientific (Waltham, Massachusetts). Reference
compounds that served as positive controls for each cell type
(Supplementary Table 1) were purchased from Sigma-Aldrich
(St Louis, Missouri). Hoechst 33342, MitoTracker Orange
CMTMRos, and Calcein Green AM were obtained from Life
Technologies (Grand Island, New York). Four types of human
iPSC-derived cells (iCell hepatocytes 2.0, catalog no. C1023; iCell
neurons, catalog no. C1008; iCell cardiomyocytes, catalog no.
CMC-100-010-001; and iCell endothelial cells, catalog no. C1023)
used in these studies were from Fujifilm Cellular Dynamics
(Madison, Wisconsin). Pooled human umbilical vein endothelial
cells (HUVEC, catalog no. CC-2519A) were from Lonza
(Walkersville, Maryland). Cell-specific media and supplements
were purchased from the same vendor as the cells. Rationale for
cell selection, metabolic competency of the iCell hepatocyte
model, and the justification for selected phenotypes in each cell
type are detailed elsewhere (Chen et al., 2020; Grimm et al., 2015;
Iwata et al., 2017; Sirenko et al., 2014a,b).

Environmental sample collection and extraction. Surface soil samples
were collected from a residential area in Manchester, Texas,
which is a neighborhood in the greater Houston region
(Figure 1). This area was selected for sampling because it is
known to be contaminated with PAHs (Bera et al., 2019; Sansom
et al., 2018, 2020; Stone et al., 2019). Samples were collected on
September 1, 2017, immediately after the area became accessi-
ble following Hurricane Harvey landfall. Soil was taken from the
top 2–3 cm depth using a metal shovel and deposited into
Fisherbrand Certified Clean Clear Glass Straight-Sided Jars
(250 ml, catalog no. 11704299; Fisher Scientific, Waltham,
Massachusetts). The longitude and latitude of each sample loca-
tion were recorded and all samples were transported to the lab-
oratory in an ice-filled chest and stored at �80�C until
extractions.

Prior to extraction, soil samples were freeze dried (Malcolm,
1968). The extraction procedure was designed to concentrate
the “biologically active” fraction (polycyclic aromatics, but also
other polar constituents) of each environmental sample.
Samples were extracted (Figure 2A) with cyclohexane and
DMSO using a procedure based on the IP346 method
(CONCAWE, 1994). Specifically, 1 g of each sample was decanted
into a 15-ml conical-bottom disposable plastic tube (Corning,
Vernon Hills, Illinois) and mixed with 2 ml of cyclohexane and
2 ml of DMSO pre-equilibrated with cyclohexane at 10:1 ratio.
Tubes were vortexed for 1 min and centrifuged for 5 min at
4700 rpm. A 2 ml of DMSO layer was removed and placed into a
clean 5-ml glass vial (Lab Products, Houston, Texas). Additional
amount of 2 ml of pre-equilibrated DMSO was added to the tube
with the sample and the sample was vortexed and centrifuged
as detailed above. The DMSO layer (2 ml) was removed and com-
bined with the first DMSO fraction. This sample was used as a
stock solution of each sample for subsequent in vitro experi-
ments. In addition, we prepared a “method blank” sample using
the procedure detailed above but without addition of a soil sam-
ple. This sample contained 100% DMSO with trace amounts of
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cyclohexane and was used as a “vehicle” sample throughout all
in vitro experiments.

Cell culture experiments. All cell types (Figure 2B) were cultured in
384-well flat bottom plates (iCell Hepatocytes, catalog no. 356667,
Corning; iCell Neurons, catalog no. 781946, Greiner Bio-One,
Monroe, North Carolina; iCell Cardiomyocytes, catalog no. 3764,
Corning; iCell Endothelial cells and HUVECs, catalog no. 353962,
Corning) in the media as recommended by the manufacturers
(Fujifilm Cellular Dynamics or Lonza). Cells were cultured without
treatment for a period of time required to achieve functional ca-
pacity. Cell plating density and other culture conditions for each
of these cell types have been previously detailed (Grimm et al.,
2015; Iwata et al., 2017; Sirenko et al., 2014a,b). Each environmental
sample’s stock extract in 100% DMSO was used to prepare 10� se-
rial dilutions with cell culture grade DMSO. A master test plate
was prepared to contain 308 experimental wells. All outer wells
of the 384-well plates were filled with 75ml of sterile distilled wa-
ter to enhance temperature balance for the entire plate and were
not used in the experiments. In the master plate, experimental
wells were filled with one serial dilution (four 10� dilutions) of
each of environmental sample extracts, “method blanks,” or pure
DMSO. Three environmental extracts were placed on the master
plate twice to enable examination of intra-plate reproducibility.
Remaining wells were kept unfilled for cell-specific positive con-
trol chemicals and media-only wells. The master plate was
sealed with aluminum film and stored at �80�C until used.
Copies of a master plate were prepared for use in each in vitro ex-
periment to avoid freeze thawing.

On the day of an experiment for a specific cell type, the mas-
ter plate was removed from the freezer and placed at room

temperature. Content of each well was diluted 100-fold with
warm cell culture medium corresponding to the cell type under
investigation to yield 4� working solution in 1% DMSO. Positive
control chemicals (in 4� concentrations) and cell culture me-
dium were added to the designated empty wells. Next, 12.5 ml
(for cardiomyocytes) or 25 ml (for all other cell types) of each well
on the working plate was transferred to the plates with cells us-
ing 384-well automatic dispenser. The final concentration of
DMSO in all assay wells (except for media-only wells) following
addition of the test substances was 0.25% (v/v). This amount of
DMSO was without effects in all cell types used in these studies
(Grimm et al., 2015; Iwata et al., 2017; Sirenko et al., 2014a,b). The
environmental sample extracts were assayed in the final dilu-
tion of 400–400 000� from the stock solution. All experiments
included inter-plate replicates because two identical plates
were screened for each cell type.

Cytotoxicity and functional phenotype assays. For each cell line, a
number of phenotypes (Supplementary Table 2) were evaluated
using high-content or kinetic imaging. A total of 38 phenotypes
from 5 tested cell types, including cytotoxicity and functional
readouts, were used in subsequent analyses. At the end of the
exposure period, cells were stained with different fluorescent
dyes and imaged as detailed in previous studies (Grimm et al.,
2015; Iwata et al., 2017; Sirenko et al., 2014a,b). Images were proc-
essed using the Multi-Wavelength Cell Scorning, Neurite
Outgrowth, or Angiogenesis Tube Formation application mod-
ules in MetaXpress (Molecular Devices, San Jose, California)
software and quantitative data were extracted for
concentration-response modeling. Briefly, effects on the mito-
chondrial integrity and intensity of iCell hepatocytes, and

Figure 1. Geographical map of the study area of Manchester neighborhood in Houston, Texas. A map of South-East section of the greater Houston area showing both

downtown (top left) and Manchester (red box, bottom right) areas. Inset is a zoom-in of the Manchester neighborhood (blue outline) and surroundings that include a

major petrochemical refinery (North-East), an inter-state highway (West), and a rail yard (South). Background and inset maps are from ESRI/OpenStreetMap. Map reso-

lutions are indicated in the bottom left corners.
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neurite outgrowth of iCell neurons were measured using high-
content imaging (ImageXpress Micro Confocal, Molecular
Devices). Calcium flux reflecting the contract beating of iCell
cardiomyocytes was determined by FLIPR tetra (Molecular
Devices) instrument using EarlyTox Cardiotoxicity Kit
(Molecular Devices). Effects on angiogenesis of both iCell endo-
thelial cells and HUVECs were measured by 3D cell culture using
extracellular gel matrix followed by high-content imaging
(ImageXpress Micro Confocal, Molecular Devices).

Assay quality controls. The overall workflow of data processing
and analysis is detailed in Figure 2C. Data quality in this study
was evaluated using previously established protocols (Grimm
et al., 2015). All cell responses were normalized to the vehicle
control (0.25% “method blank”-treated wells). Overall quality
control criteria were established to evaluate each cell-based as-
say based on 3 parameters (Supplementary Tables 3 and 4): (1)
lack of a statistically significant difference between negative

controls, (2) lower than 20% coefficient of variation (% CV) for
the negative controls, and (3) confidence that positive control
chemicals displayed expected effects in each cell type (expected
direction of the effect and comparison of the EC50 of the positive
controls to those in previously published methods).

Concentration-response modeling. Vehicle control-scaled data for
each treatment were fitted to a curve with a nonlinear logistic
function to determine point-of-departure (POD) values, defined
as the dilutions at which the fitted curve exceeded one standard
deviation above or below the mean of vehicle-treated controls,
using R software-based script as reported previously (Sirenko
et al., 2017). The choice of one standard deviation “benchmark
response” was based on the U.S. EPA guidance for dose-response
modeling and determination of the POD (U.S. EPA, 2012), as well
as empirical testing of various thresholds as detailed in Sirenko
et al. (2017), which showed that a choice of one standard devia-
tion generates consistently high classification accuracy.

Figure 2. Overall experimental design of the study. A, A schematic diagram of the extraction procedure for environmental soil samples. B, Bioactivity data collection

overview. In vitro experiments were performed in 384-well plates using 5 human cell types. C, Data analysis workflow. Quality control (QC) was used to filter assay/cell

line combinations to ensure high concordance among controls and high intra- and inter-plate reproducibility. For the assays passing QC, points of departure (POD)

were estimated using logistic (Hill) function curve fitting, and overall and cell-type-specific measures of bioactivity computed across the assays. Analysis of bioactivity

was further grounded in comparisons to polycyclic aromatic hydrocarbon (PAH) data on the same samples. Data were integrated using ToxPi approach. Spatial associa-

tion and correlations between biological and PAH data were evaluated. Finally, trained (supervised) models to “predict” the PAH data from bioactivity or vice versa

were constructed.

CHEN ET AL. | 111



Data integration in ToxPi and clustering analyses. POD values gener-
ated from concentration-response modeling of each phenotype
in tested cell types (Supplementary Table 5) were converted into
toxicological priority index (ToxPi) scores (Reif et al., 2013),
which were inversely scaled from 0 to 1, with 0 representing the
highest POD value in a given dataset (ie, the lowest observed
bioactivity) and 1 representing the lowest POD value (ie, the
highest observed bioactivity). The scaled POD values were then
used as quantitative inputs in ToxPi Graphical User Interface
(Marvel et al., 2018) for data integration and visualization of bio-
activity profiling. For the clustering, tested environmental sam-
ples were grouped based on the similarity between the
biological profiling from each cell type in an unsupervised anal-
ysis, without prior knowledge of sample categories.

Spatial association of the bioactivity and PAH concentration data. For
each sampling location, geographic distances were calculated
from GPS coordinates using the geosphere package in R. Spatial
interpolation was performed using inverse distance weighting
in using the gstat package in R with idp¼ 3. Test of spatial asso-
ciation for bioactivity or PAH data used the standard Mantel
(1967) approach for space-time association, with values for the
biological and chemical features taking the place of the “time”
dimension, and geographical distances calculated using lati-
tude/longitude coordinates. This approach compares matrices
of geographical distances to squared feature differences for all
pairs of sampling sites normalized according to the methods in
Zhou et al. (2013). For global tests using all biological or chemical
features, distance matrices using all paired samples (i, j) were
calculated using 1 � qij, where qij is the Spearman correlation of
all features. The test statistic is the summed element-wise
product of the two distance matrices, and rejects the null hy-
pothesis for large values, corresponding to evidence of spatial
correlation. Each test was implemented in R v.3.6.1 and p values
were obtained using 10 000 permutations, and padj were derived
from multiple testing correction using Benjamini-Hochberg
computation (Benjamini and Hochberg, 1995) using the p.adjust
function in R.

Both bioactivity data (ToxPi scores for each cell type) and
chemical concentrations of PAHs in these samples (Sansom
et al., 2020) were used for these analyses (Supplementary Table
6). Concentration of PAHs in these environmental samples was
measured by Geochemical and Environmental Research Groups
at Texas A&M University. The priority 16 PAHs, which have
been designated high priority pollutants by the U.S. EPA (Keith,
2015), as well as the total PAH concentrations were analyzed by
gas chromatography (HP5890, Hewlett Packard, Wilmington,
Delaware) with mass spectrometry detection (Agilent 5972,
Agilent Technologies, Santa Clara, California) in selected ion
monitoring mode.

Hazard index calculation and cancer risk assessment based on PAHs
concentrations. We characterized the non-cancer and cancer risk
(Supplementary Table 7) associated with each sample as follows
using the U.S. EPA Regional Screening Level Soil Screening
Levels (SSL) for residential soil (U.S. EPA, 2020). For non-cancer
risk levels for each sample, we calculated (Supplementary Table
8) the hazard index (HI) by summing the ratios between the
measured soil concentration Ck for PAH k (converted to mg/kg)
and the corresponding non-cancer SSLnc, k:

HI ¼
Xn

k¼1
Ck=SSLnc; k:

This calculation is based on the individual PAH non-cancer
SSLnc, k corresponding to a hazard quotient of 1. Several PAHs
did not have SSLs, so they were not included in the calculation.
For cancer risk, we converted each PAH concentration to ben-
zo[a]pyrene (BaP)-equivalents using the Toxic Equivalency
Factors (TEFs) from Nisbet and LaGoy (1992), CBaPeq, k ¼ Ck TEFk,
and then calculated the cancer risk using the cancer SSLc, BaP for
BaP (Supplementary Table 8):

Cancer risk ¼ 10�6
Xn

k¼1
CBaPeq;k=SSLc; BaP:

This calculation is based on the individual PAH cancer SSLnc,

k corresponding to a cancer risk of 10�6. Similar results were
obtained when using alternative TEFs (U.S. EPA, 1993, 2010)
(Supplementary Table 8).

Prediction between chemical and biological profiling. For prediction of
individual chemical features from the collection of biological
features, and individual biological features from the collection
of chemical features, ordinary linear regression performs ex-
tremely poor due to the large number of prediction features
compared to the sample size. Penalized ridge regression is a
useful alternative, and we used the multivariate nature of the
prediction (eg, multiple chemicals simultaneously) to offer fur-
ther improvements in a unified model. Briefly, one can envision
the chemical concentration data as a multidimensional readout
Y with n¼ 39 rows and 19 columns for cancer risk and chemicals
(include PAH aggregate values) and a predictor matrix X with 39
rows and 39 columns (including the intercept unit column) for
biological features. Prior to fitting, all data columns were cen-
tered and scaled to unit variance for comparability and to en-
sure no predictor dominated simply due to scale differences.
For tuning parameter k, bB ¼ XTXþ kI

� ��1ðXTYÞ is a 39 � 19 co-
efficient matrix, with final prediction bY ¼ XbB. k was evaluated
on a grid such that log10(k) varied uniformly from �1.0 to 6.0 in
increments of 0.1. Evaluations were performed using leave-one-
out cross-validation, ie, prediction for elements of Y from the
ith sample used coefficients obtained after removing the ith
sample, to avoid overfitting. Selection of the tuning parameter
was performed to give minimum mean-squared prediction er-
ror. Final predictions were returned to the original Y scale by
multiplying each column by the original standard deviation and
adding the original mean. The entire procedure was then run
again to predict biological features by reversing the assignment
of X and Y matrices.

RESULTS

A recent longitudinal study that assessed exposure to PAHs
among residents of Manchester, an environmental justice
neighborhood located in the East End of Houston, Texas
(Figure 1), showed evidence of redistribution of PAHs due to ex-
treme flooding associated with Hurricane Harvey in 2017
(Horney et al., 2018; Stone et al., 2019). We sampled a total of 39
locations across the whole neighborhood; surface soil samples
were collected immediately after the flooding receded. Because
of the large number of potential sources of PAH in and around
Manchester, and previous reports of considerable gradients of
PAH concentrations among these samples, we processed
(Figure 2A) the soils using a procedure that is designed to ex-
tract carcinogenic PAHs (ASTM International, 2014; CONCAWE,
1994). Specifically, this method preferentially extracts PAH that
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are toxicologically relevant, those with >3 rings, naked or par-
tially alkylated (Carrillo et al., 2019).

To profile the bioactivity of the environmental samples, we
used a targeted set of human cell-based models and phenotypes
(Figure 2B) that can be used to assign compounds to chemical
classes. The quantitative estimates of in vitro effects from these
cells/phenotypes can serve as a conservative surrogate for regu-
latory in vivo POD (Chen et al., 2020). The data were analyzed us-
ing a multi-stage workflow (Figure 2C) that included quality
assurance, concentration-response analysis, integration of the
data from multiple cell types/phenotypes, spatial and correla-
tion analyses of both bioactivity and PAH data, and supervised
feature prediction between bioactivity and PAH datasets.

ToxPi and Clustering Analyses of Bioactivity in Environmental Soil
Samples
We used dilution series-derived POD data from 38 phenotypes
in 5 cell types (Supplementary Table 5) to compute an overall
bioactivity ToxPi score for each of the 39 tested environmental
samples (Figure 3A). Most of the samples exhibited little to no
bioactivity in most phenotypes, as can be seen from low ToxPi
values for about 75% of all samples analyzed. Only a handful of

samples were bioactive, as signified by a sharp increase in the
ToxPi scores. Interestingly, the sensitivity analysis, showed by
the confidence interval (95%) whiskers for each red dot, demon-
strated that high ToxPi samples’ rank was largely invariable,
whereas the low-ranked samples’ confidence intervals were
wide and largely overlapping. Figure 3B shows the ToxPi profiles
and their clustering for each sample. The bioactive samples
showed effects in several cell types, primarily in endothelial
cells and iCell cardiomyocytes. Clustering of the ToxPi profiles
for each sample showed that several clusters of very similar bio-
activity were present.

Spatial Association of Bioactivity, PAH Concentration Data, and Risk
Characterization
Next, we tested if spatial association was significant for bioac-
tivity profiles. First, we mapped the overall bioactivity ToxPi
scores, or scores for each cell type separately, for each location
(Figure 4). Clusters of bioactivity were evident; however, the sig-
natures of the individual cell types were quite distinct, similarly
to our previous finding that each of tested cell types contributed
independently to the utility of this overall in vitro model (Chen
et al., 2020). Although a number of tested locations had consis-
tently low bioactivity across the whole panel, several locations
appeared to be hot spots identified by this analysis. Next, we
used a statistical test of spatial association (a modified version
of Mantel [1967]) to determine whether physical proximity
among sampling sites was associated with the similarity of the
bioactivity. Upon stringent false discovery rate correction proce-
dures, no bioactivity phenotype individually, or in aggregate,
reached significance (Supplementary Table 6). Similar analyses
were performed using PAH concentrations in the same samples
(Figure 5). Several clear “hot spots” were apparent for both total
PAH (Figure 5A) and the individual PAHs (data not shown).

As shown in Figure 5B and Supplementary Table 8, the non-
cancer risks associated with these measured PAH concentra-
tions are well below the levels of concern denoted by HI¼ 1. For
cancer, however, the calculated cancer risks for many samples
are above the commonly used screening level threshold of
1� 10�6, though still within EPA’s generally acceptable risk
range of 10�4 to 10�6 (U.S., 2011). In addition, a statistical test of
spatial association for PAH data (Figure 5C, Supplementary
Table 6) showed that most of the substances, as well as their cu-
mulative values and PAH-derived cancer risk factor, were highly
significantly co-located, even when stringent false discovery
rate correction procedures were applied.

Prediction Between Chemical and Biological Profiling
Next, we tested if overall in vitro bioactivity correlated with
PAH-derived non-cancer (ie, HI) or cancer risk values for each
sampling locations. Highly significant positive correlation was
observed for both HI (r¼ 0.45, p< .01) and cancer risk (r¼ 0.48,
p< .005) when samples 102 and 49 were removed, as these had
the highest HI and cancer risk values. Next, we sought to deter-
mine what individual in vitro bioactivity phenotypes and soil
PAH concentrations correlated (Figure 6). Most of the pheno-
types (all of the phenotypes in iCell endothelial cells and iCell
cardiomyocytes) did not correlate significantly with PAH values
after adjustment for multiple comparisons (Figure 6A); however,
several in vitro phenotypes showed strong negative correla-
tions—most of the phenotypes in HUVECs and total branch phe-
notype in iCell neurons. Negative correlation for the individual
phenotypes is expected as it indicates that higher PAH concen-
tration indicate higher potency (ie, lower POD). Interestingly, in
iCell hepatocytes, several PAHs were positively associated with

Figure 3. Bioactivity-based ranking of the sampling locations based on the data

from 5 human cell types. A, The Toxicological Priority Index (ToxPi) approach

was used to combine data across cell types (pie chart inset) and rank them based

on the combined ToxPi score. Horizontal whisker represents a resampling-based

confidence interval (95%) on the rank of each sampling location (red dots). B,

Clustering (Ward’s D method) of the sampling locations using ToxPi scores.

ToxPi radial plots were the same as those shown in panel (A).
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Figure 4. Interpolation of the spatial patterns in bioactivity of the samples. Sampling locations are identified as black dots and the ToxPi integrated bioactivity (on a

scale from 0¼ lowest effect [dark blue], to 1¼highest effect [orange]) was used to create the maps (see Materials and Methods) that visualize ToxPi values as a color gra-

dient (see the legends in each graph). The maps show overall bioactivity based on all 5 cell types (top left), or bioactivity in each of the cell types individually (see labels

for each map for cell identifier).

Figure 5. Polycyclic aromatic hydrocarbons (PAH) levels in the studied sample locations. A, Interpolation of the spatial patterns in total concentration of PAH (ng/g

soil). Sampling locations are identified as black dots and the cumulative PAH concentrations were used to create the maps (see Materials and Methods) that visualize

PAH levels as a color gradient (see the legend inset for concentration/color). B, Screening-level risk characterization for non-cancer (upper panel) and cancer (lower

panel) risks, based on EPA Soil Screening Levels. Horizontal dashed lines denote screening levels of potential concern, based on a non-cancer Hazard Index¼1 and a

cancer risk of 10�6. C, p values (log10 scale) for spatial correlation/persistence for cancer risks (based on PAH TEF), individual, or cumulative concentrations of 16 priority

PAH, or total PAH. These p values were derived using a modification of a standard space-time correlation method as described in text. Shown are adjusted p values for

each parameter and a vertical dotted line represents padj ¼ .05 (false discovery rate) threshold.
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cell viability and mitochondrial integrity, also concordant with
the expected relationship between PAHs and these effects in
hepatocytes. Figure 6B shows examples of two PAHs, anthra-
cene and benzo[a]anthracene, which showed somewhat differ-
ent geographical distribution of the “hot spots”; however, their
concentrations were highly correlated with the environmental
sample-induced effects HUVEC nuclei area phenotype
(Figure 6C, top). We also show a geographical distribution of bio-
activity in iCell neurons ATP phenotype (Figure 6C, bottom), as
an example of a phenotype that did no correlate with PAH con-
centrations in environmental samples.

Because of the strong correlation among the PAH concentra-
tions and some bioactivity phenotypes (Figure 6,
Supplementary Table 6), we tested whether in vitro bioactivity
data can be used collectively to infer PAH concentrations in
these environmental samples, or vice versa. This question is rel-
evant because both in vitro analyses and analytical chemistry
assays are time consuming and if these data streams are predic-
tive of each other, considerable time and resource savings can
be achieved by prioritizing sample analyses.

Using a regression model with rigorous cross-validation, we
found that bioactivity data were highly predictive of the PAH
concentrations, both for many individual priority PAHs, their
summary measures, and the cancer risk (Table 1). Figure 7
shows representative examples of the relationships between
observed and predicted values. Because the individual PAHs,
their sum, and the cancer risk values are highly correlated, it is

not surprising that similar patterns exist between observed and
predicted values (Figs. 7A–C). It is noteworthy, however, that
due to the nature of regression-based predictions, predicted val-
ues are “shrunken” estimates (toward a common mean) with
less variation than the actual data. For predictions of cancer risk
and PAH content, the most informative in vitro phenotypes were
HUVEC nuclei area and mitochondria intensity, and total
branch length in iCell neurons, see Supplementary Table 9 for
all the predictor coefficients for all summary and individual pri-
ority PAHs, and their relative ranks. For HUVEC nuclei area and
iCell neurons total branch length, the result may not be unex-
pected, as the pairwise correlations of these quantities with to-
tal PAH and cancer risk as observed in Figure 6A were of high
significance. However, the high rank of iCell hepatocyte nuclei
area as a highly informative predictor was not apparent from
the pairwise correlations, and points to the advantage of using
a multivariate regression prediction model in this context.

Predictions of in vitro bioactivity from PAH concentrations
were less informative, with only 4 of 38 phenotypes having multi-
ple testing-corrected significant correlations (Table 1) between
observed and predicted values. Even though the correlations
were significant for at least some phenotypes, the ranges of pre-
dicted bioactivity values were far narrower than those of the ac-
tual effects (Figure 7D), indicating that such predictions are
difficult to interpret with respect to the potential range of hazards
among real environmental samples. Supplementary Table 10
shows all of the regression predictor coefficients for various

Figure 6. Correlation analysis between PAH content and bioactivity of the soil samples. A, Spearman correlation of all bioactivity phenotypes with cancer risk, total, 16

priority or individual PAH concentrations. Significant (padj < .05) correlations are shown as dots that are colored based on the q value as indicated in the color bar. B,

Interpolation of the spatial patterns in concentrations of anthracene and benzo[a]anthracene (ng/g soil) as representative PAH. Sampling locations are identified as

black dots and the cumulative PAH concentrations were used to create the maps (see Materials and Methods) that visualize PAH levels as a color gradient (see the leg-

end inset for concentration/color). C, Interpolation of the spatial patterns in bioactivity of soil samples for the HUVEC (nuclei area) and iCell Neurons (ATP) as represen-

tative phenotypes. Sampling locations are identified as black dots and the effective concentrations (as % dilution of the soil extract) were used to create the maps (see

Materials and Methods) that visualize bioactivity as a color gradient (see the legend inset for effective concentration/color).

CHEN ET AL. | 115



PAHs, and their relative ranks in predicting the bioactivity meas-
ures. Overall, the predictor coefficients were far smaller than
those in case of predicting PAH concentrations from bioactivity.

DISCUSSION

Many have suggested the potential utility of cell-based in vitro
bioassays for addressing the potential human and ecological
health hazard of complex mixtures (Blackwell et al., 2017, 2019;
Drakvik et al., 2020; Escher et al., 2020; Hayes et al., 2020; Kassotis
et al., 2016; Neale et al., 2020). Large-scale in vitro toxicity screen-
ing programs such as Tox21 or ToxCast focus largely on the
first-pass testing for individual chemical compounds and some
complex substance formulations (Catlin et al., 2018; Judson et al.,
2010), and have yet to be widely applied in the evaluation of
complex environmental mixtures (Kassotis et al., 2016). In the
past two decades, dozens of studies used various cell types, de-
rived from both mammalian and aquatic species and prokar-
yotes, have been used to study sediment, soil, and water
samples. Most often these studies examined general cytotoxic-
ity, effects on the DNA (various genotoxicity and mutagenicity
endpoints), as well as activation of various hormone and
metabolism-related receptors. Concentration-response rela-
tionships were routinely evaluated and it was demonstrated
that bioactivity can be used not only in comparative analysis of
the relative potency among samples, but also to derive quanti-
tative estimates of hazard (Blackwell et al., 2017, 2019; Escher
et al., 2014, 2015, 2018; Jia et al., 2015). Overall, these studies
established a body of evidence that a battery of in vitro bioassays
can be used to support decision-making based on the bioactivity
of the actual environmental samples.

Our work builds on this empirical foundation and shows
that human iPSC-derived cells may not only be used to rank en-
vironmental samples with respect to potential human health
concerns, but they also introduce additional valuable informa-
tion through the analysis of cell function phenotypes. We found
that among a large number of samples collected in a relatively
confined geographical area with equal potential of PAH contam-
ination associated with the proximity of numerous point sour-
ces (Stone et al., 2019), only some locations indicated a potential
concern, information that could serve as a rationale for follow-
up analyses with additional assays and models. Interestingly,
we found that depending on the cell type, the “hot spots” varied.
This finding is commensurate with evidence that certain cell
types and phenotypes are differentially affected by various
chemicals (Chen et al., 2020; Grimm et al., 2020). Although a
screening-level risk characterization based on PAH concentra-
tions indicated little concern for non-cancer effects, a possible
concern was identified for some samples for PAH-related cancer
risks, which in many cases exceed the screening level risk of
10�6. Similarly, while the calculated risk levels were still within
the “generally acceptable” range used by EPA, because only
PAHs were measured, the cumulative effects of other, unmeas-
ured toxicants (which are surely present in this neighborhood)
are not accounted for. In such a situation, it is common under
EPA guidelines to strive for the “lower end” of the risk range and
the bioactivity data may provide important clues on the types of
hazards that may be present and also the level of concern for
follow-up analyses.

A number of previous studies examined spatial relationships
in bioactivity between sampling locations, or tested for the
strength of association between bioactivity and chemical con-
tamination in a spatial dimension. A study of 41 surface soil
samples from Tianjin, China used a suite of in vitro cell bioas-
says focused on nuclear receptors and genotoxicity endpoints
to examine the spatial clustering of the bioassay data (Xiao
et al., 2006). This study found that the geographic distribution of
aryl hydrocarbon receptor (AhR)-agonism and genotoxic

Table 1. Cross-Validated Prediction of PAH Levels From All In Vitro
Bioactivity Data, and of Bioactivity Quantification From All PAH
Levels

Parameter ra padj
b qa padj

b

Predicting PAH levels from in vitro bioactivity dataa

Cancer risk 0.47 <.01 0.46 <.01
Total PAHs 0.44 <.01 0.48 <.01
Priority 16 PAHs 0.42 <.01 0.43 <.05
Benzo(k)fluoranthene 0.48 <.01 0.42 <.05
Benzo(b)fluoranthene 0.48 <.01 0.41 <.05
Indeno(1,2,3,-c, d)pyrene 0.45 <.01 0.48 <.01
Chrysene 0.45 <.01 0.46 <.01
Dibenzo(a, h)anthracene 0.45 <.01 0.42 <.05
Benzo(g, h, i)perylene 0.42 <.01 0.46 <.01
Benzo(a)pyrene 0.40 <.05 0.37 <.05
Pyrene 0.36 <.05 0.41 <.05
Fluoranthene 0.34 <.05 0.37 <.05
Benzo(a)anthracene 0.27 n.s. 0.36 <.05
Fluorene 0.17 n.s. 0.30 <.05

Predicting in vitro bioactivity data from PAH levels
HUVEC nuclei area 0.65 <.001 0.54 <.01
iCell Neurons mean outgrowth 0.44 <.05 0.12 n.s.
HUVEC mitochondria intensity 0.39 n.s. 0.47 <.05
iCell neurons total branch 0.31 n.s. 0.49 <.05

aCorrelation (Pearson r or Spearman q) of predicted response values using multi-

variate ridge regression prediction compared to actual response values.
bAssociated padj values expressed as false discovery-adjusted using the

Benjamini-Hochberg method applied to all responses (only significant results

using padj < .05 shown).

Figure 7. Illustrative cross-validated regression predicted values versus actual

values, for predicting (A) total PAH concentrations, (B) cancer risk and (C) ben-

zo(b)fluranthene from bioactivity measurements, and (D) HUVEC nuclei areas

from the measured PAH concentrations. See correlation coefficients and p val-

ues for the correlations shown here listed in Table 1.
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bioactivity exhibited strong positive spatial correlation; how-
ever, the geographic distribution of pro-estrogenic bioactivity
was markedly different from that of AhR-agonists effects. An
example of a study that correlated in vitro and analytical data
from environmental samples is a publication by Leusch et al.
(2010) who compared the responses of 5 bioassays designed to
measure estrogenic activity and chemical analysis on water
samples (ground and river water, and raw and treated sewage).
The authors showed that the bioassays that were robust in
terms of assay sensitivity and reproducibility were well-
correlated with the data from chemical assays. An example of a
study that looked at both spatial and bioactivity-chemical anal-
ysis correlations is the work of Jung et al. (2012) who used 21
sediment samples from Masan Bay, Korea, to identify several
“hot spots” of bioactivity (estrogen- and dioxin-responsive re-
ceptor assays). The authors also used spatial correlation analy-
sis between organochlorine pesticides, polychlorinated
biphenyls, dioxins and alkylphenols and their biological effects
to pinpoint the sources, such as sewage treatment and indus-
trial outfall, of environmental hazards. Recent examples of
studies in the United States and Europe demonstrate that
bioassay-based analysis of environmental mixtures for detect-
ing biological effects should be combined with the analysis of a
wide range of chemical contaminants to ascertain additional
risks that may not be evident from the chemical analyses alone
(Blackwell et al., 2017, 2019; Konig et al., 2017; Neale et al., 2020).

These studies established an important foundation for ex-
amining the relationships between exposure and bioactivity-
derived hazard and for quantifying these relationships bioana-
lytical equivalent concentrations (Jahnke et al., 2018) and
exposure-activity ratios (Blackwell et al., 2017). Our study pro-
vides strong additional evidence of such relationships. It is
noteworthy that our study showed that while there was an
overall significant positive correlation between bioactivity and
PAH-associated HI and cancer risk, the correlation coefficients
were only about 0.5. A similar finding was reported in a study of
rain events impact on the chemical pollution in river water
where the measured chemicals explained only a small fraction
(<8%) of the in vitro biological effects (Neale et al., 2020). These
data show indicate that bioactivity, while valuable information,
may not be sufficient for evaluating certain chemical-specific
risks. These results are not altogether surprising, as certain end-
points, such as cancer and immunotoxicity, are known to be
poorly covered by currently available in vitro assays. Thus, we
reason that for environmental monitoring, high bioactivity
scores may be able to identify “hot spots” or areas of concern for
the follow-up investigation, but that low bioactivity scores are
not sufficient to rule out potential risk.

Another interesting corollary to the datasets that combine
measurements of chemical contamination and bioactivity on
the same samples is the possibility of using one or the other as
predictors. Previously, Leusch et al. (2010) calculated a predicted
estrogenicity for environmental water samples by multiplying
the concentration of each chemical as determined by standard
chemical methods with the relative potency for each individual
compound. This report concluded, based on dose reconstruc-
tion from the individual chemical concentrations, that there
was a good agreement between the predicted and measured
estrogenicity; however, this study only attempted prediction of
hazard for one type of hazard (ie, estrogenicity) and only
through dose reconstruction. In this respect our study offers
several additional advances. The correlations between PAH
measurements and bioactivity levels show that a relatively
small proportion of bioactivity measurements are substantially

correlated with PAH levels in environmental samples. However,
these correlations are sufficiently large (correlation >0.5) such
that summary PAH levels and cancer risk values can be pre-
dicted with reasonable accuracy from bioactivity measure-
ments. Interestingly, we found that a reverse prediction, from
PAH concentrations to bioactivity, was not as informative. This
finding reflects the potential indication that other compounds
in the samples may have contributed to the overall bioactivity.
It is also possible that poorer prediction of bioactivity may sim-
ply be due to an imbalance in the number of PAHs versus the
number of bioactivity phenotypes. Ideally, it would be possible
to obtain quantitative understanding of the contributions of in-
dividual measured substances to overall bioactivity, such as uti-
lizing exposure-activity ratios based on bioactivity data on
individual substances. Although some success in this regard
have been made for water contamination (Blackwell et al., 2017,
2019; Neale et al., 2020), such efforts are more challenging in the
case of soil contamination due to differences in extraction and
bioavailability when comparing soil concentrations with con-
centrations in vitro media (Luo et al., 2020). Future studies are
needed to better understand differential extraction efficiency
and bioavailability of compounds of interest in order to make
more confident comparisons across matrices. Overall, these
findings provide additional important evidence as a proof of
concept for the use of bioactivity as an approximate chemical
concentration surrogate, although additional data should be
generated to refine these findings. In addition, the ability to
generalize beyond the range of concentrations observed is un-
known, and we emphasize that aspects of our data structure
and PAH content may be specific to the Manchester neighbor-
hood sampled here.

This study has important limitations. First, the chemical
comparisons and environmental sample extraction methods
were focused on PAH contamination and as such provide an
over-simplified representation of the chemical complexity of
the environmental samples, especially after a major natural di-
saster. Although this chemical class was the most natural
choice because of previous reports of PAH contamination in this
area (Horney et al., 2018; Stone et al., 2019) and geographical
proximity of the relevant point sources, additional chemicals
need to be considered in future studies. For example, we found
that bioactivity “hot spots” varied among cell types indicating
that other contaminants may also be present and additional
chemical analyses need to be performed. Second, our risk char-
acterization and comparisons to HI and cancer slope factors
were equally restricted to PAH-derived values, which may have
reduced our ability to observe true relationships between chem-
ical concentrations and bioactivity. Third, we emphasize that,
by focusing on a single neighborhood, the range of variation in
PAH may have been limited in comparison to other areas. Thus,
under a wider sampling regime it is likely that the observed spa-
tial relationships would have been significant for a larger num-
ber of individual chemical and/or bioactivity components.
Finally, we note that the large number of cell-based phenotypes
and measured contaminants relative to the sample size neces-
sitated the use of penalized regression as a prediction tool,
which can provide biased estimation in order to achieve higher
prediction accuracy. Follow-up studies focusing on only a select
few cell-based assays, informed by this and previous studies, as
well as a larger pool of assays from ToxCast/Tox21 (Paul
Friedman et al., 2020) might be required in order to provide unbi-
ased estimation of the precise relationships between bioactivity
and PAH contaminant concentrations.
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In summary, this study explored the use of a small compen-
dium of human cell lines representing multiple potential target
tissues for bioactivity-based prioritization in the context of en-
vironmental monitoring. Using samples with suspected PAH
contamination in a community in a greater Houston area that
experienced massive flooding associated with Hurricane
Harvey, we found joint spatial variation of PAH components
and bioactivity, with different cell-types exhibiting largely dis-
tinct spatial patterns of activity. In addition, we found that the
cell-based bioactivity data correlate with, and can be used to
predict environmental concentrations for several PAH contami-
nants, as well as overall PAH summaries and cancer risk.
However, several high concentration outliers in terms of PAH
contamination were not well predicted by bioactivity, possibly
due to the need for broader coverage of biological space in the
cell-based assays. Overall, these results suggest that human
cell-based assays, data that can be procured within weeks after
a contamination event, can provide useful information for rapid
decision-making in emergency situations, supplementing tradi-
tional targeted chemical monitoring with human effects-based
monitoring so as to identify possible “hot spots” that warrant
additional investigation for their potential to increase human
health risk.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.

ACKNOWLEDGMENTS

The authors thank students, staff, and faculty at Texas A&M
Superfund Research Center for collecting, transporting and
processing the environmental samples used in these
studies.

FUNDING

National Institute of Environmental Health Sciences (P42
ES027704, P30 ES029067);a cooperative agreement with the
United States Environmental Protection Agency (STAR
RD83580201). The views expressed in this manuscript do not
reflect those of the funding agencies. The use of specific
commercial products in this work does not constitute en-
dorsement by the funding agencies.

DECLARATION OF CONFLICTING INTERESTS

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

REFERENCES
Alimba, C. G., Gandhi, D., Sivanesan, S., Bhanarkar, M. D.,

Naoghare, P. K., Bakare, A. A., and Krishnamurthi, K. (2016).
Chemical characterization of simulated landfill soil leach-
ates from Nigeria and India and their cytotoxicity and DNA
damage inductions on three human cell lines. Chemosphere
164, 469–479.

ASTM International. (2014). Standard test method for determin-
ing carcinogenic potential of virgin base oils in metalworking
fluids. E1687-10, West Conshohocken, PA.

Backhaus, T., Blanck, H., and Faust, M. (2010). Hazard and risk
assessment of chemical mixtures under REACH state of
the art, gaps and options for improvement Swedish
Chemicals Agency, Stockholm, Sweden. Report No. PM 3/10.
www.kemi.se.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false dis-
covery rate - A practical and powerful approach to multiple
testing. J. Roy. Stat. Soc. B Met. 57, 289–300.

Bera, G., Camargo, K., Sericano, J. L., Liu, Y., Sweet, S. T., Horney,
J., Jun, M., Chiu, W., Rusyn, I., Wade, T. L., et al. (2019).
Baseline data for distribution of contaminants by natural dis-
asters: Results from a residential Houston neighborhood dur-
ing Hurricane Harvey flooding. Heliyon 5, e02860.

Blackwell, B. R., Ankley, G. T., Bradley, P. M., Houck, K. A.,
Makarov, S. S., Medvedev, A. V., Swintek, J., and Villeneuve,
D. L. (2019). Potential toxicity of complex mixtures in surface
waters from a nationwide survey of United States streams:
Identifying in vitro bioactivities and causative chemicals.
Environ. Sci. Technol. 53, 973–983.

Blackwell, B. R., Ankley, G. T., Corsi, S. R., DeCicco, L. A., Houck,
K. A., Judson, R. S., Li, S., Martin, M. T., Murphy, E., Schroeder,
A. L., et al. (2017). An “EAR” on environmental surveillance
and monitoring: A case study on the use of exposure-activity
ratios (EARs) to prioritize sites, chemicals, and bioactivities
of concern in Great Lakes waters. Environ. Sci. Technol. 51,
8713–8724.

Bopp, S. K., Kienzler, A., Richarz, A. N., van der Linden, S. C.,
Paini, A., Parissis, N., and Worth, A. P. (2019). Regulatory as-
sessment and risk management of chemical mixtures:
Challenges and ways forward. Crit. Rev. Toxicol. 49, 174–189.

Brack, W., Ait Aissa, S., Backhaus, T., Dulio, V., Escher, B. I.,
Faust, M., Hilscherova, K., Hollender, J., Hollert, H., Muller, C.,
et al. (2019). Effect-based methods are key. The European
Collaborative Project SOLUTIONS recommends integrating
effect-based methods for diagnosis and monitoring of water
quality. Environ. Sci. Eur. 31, 1–6.

Carrillo, J. C., van der Wiel, A., Danneels, D., Kral, O., and
Boogaard, P. J. (2019). The selective determination of poten-
tially carcinogenic polycyclic aromatic compounds in lubri-
cant base oils by the DMSO extraction method IP346 and its
correlation to mouse skin painting carcinogenicity assays.
Regul. Toxicol. Pharmacol. 106, 316–333.

Catlin, N. R., Collins, B. J., Auerbach, S. S., Ferguson, S. S., Harnly,
J. M., Gennings, C., Waidyanatha, S., Rice, G. E., Smith-Roe, S.
L., Witt, K. L., et al. (2018). How similar is similar enough? A
sufficient similarity case study with Ginkgo biloba extract.
Food Chem. Toxicol. 118, 328–339.

Chen, Z., Liu, Y., Wright, F. A., Chiu, W. A., and Rusyn, I. (2020).
Rapid hazard characterization of environmental chemicals
using a compendium of human cell lines from different
organs. ALTEX 37, 623–638.

CONCAWE. (1994). The use of the dimethyl sulphoxide (DMSO)
extract by the IP 346 method as an indicator of the carcinoge-
nicity of lubricant base oils and distillate aromatic extracts,
Brussels, Belgium. Report No. 94/51.

Drakvik, E., Altenburger, R., Aoki, Y., Backhaus, T., Bahadori, T.,
Barouki, R., Brack, W., Cronin, M. T. D., Demeneix, B.,
Hougaard Bennekou, S., et al. (2020). Statement on advancing
the assessment of chemical mixtures and their risks for hu-
man health and the environment. Environ. Int. 134, 105267.

ECHA. (2017). Read-Across Assessment Framework (RAAF) -
Considerations on multi-constituent substances and UVCBs.
European Chemical Agency, Helsinki, Finland.

118 | RISK CHARACTERIZATION OF ENVIRONMENTAL SAMPLES

http://www.kemi.se


Escher, B. I., Aı̈t-Aı̈ssa, S., Behnisch, P. A., Brack, W., Brion, F.,
Brouwer, A., Buchinger, S., Crawford, S. E., Du Pasquier, D.,
Hamers, T., et al. (2018). Effect-based trigger values for
in vitro and in vivo bioassays performed on surface water
extracts supporting the environmental quality standards
(EQS) of the European Water Framework Directive. Sci. Total.
Environ. 628-629, 748–765.

Escher, B. I., Allinson, M., Altenburger, R., Bain, P. A., Balaguer, P.,
Busch, W., Crago, J., Denslow, N. D., Dopp, E., Hilscherova, K.,
et al. (2014). Benchmarking organic micropollutants in waste-
water, recycled water and drinking water with in vitro bioas-
says. Environ. Sci. Technol. 48, 1940–1956.

Escher, B. I., Neale, P. A., and Leusch, F. D. (2015). Effect-based
trigger values for in vitro bioassays: Reading across from
existing water quality guideline values. Water Res. 81,
137–148.

Escher, B. I., Stapleton, H. M., and Schymanski, E. L. (2020).
Tracking complex mixtures of chemicals in our changing en-
vironment. Science 367, 388–392.

Fang, W., Peng, Y., Yan, L., Xia, P., and Zhang, X. (2020). A tiered
approach for screening and assessment of environmental
mixtures by omics and in vitro assays. Environ. Sci. Technol.
54, 7430–7439.

Ginsberg, G. L., Pullen Fedinick, K., Solomon, G. M., Elliott, K. C.,
Vandenberg, J. J., Barone, S., Jr, and Bucher, J. R. (2019). New
toxicology tools and the emerging paradigm shift in environ-
mental health decision-making. Environ. Health Perspect. 127,
125002.

Grimm, F. A., Iwata, Y., Sirenko, O., Bittner, M., and Rusyn, I.
(2015). High-content assay multiplexing for toxicity screen-
ing in induced pluripotent stem cell-derived cardiomyocytes
and hepatocytes. Assay Drug Dev. Technol. 13, 529–546.

Grimm, F. A., Iwata, Y., Sirenko, O., Chappell, G. A., Wright, F. A.,
Reif, D. M., Braisted, J., Gerhold, D. L., Yeakley, J. M., Shepard,
P., et al. (2016). A chemical-biological similarity-based group-
ing of complex substances as a prototype approach for evalu-
ating chemical alternatives. Green Chem. 18, 4407–4419.

Grimm, F. A., Klaren, W. D., Li, X., Lehmler, H. J., Karmakar, M.,
Robertson, L. W., Chiu, W. A., and Rusyn, I. (2020).
Cardiovascular effects of polychlorinated biphenyls and
their major metabolites. Environ. Health Perspect. 128, 077008.

Hayes, A. W., Muriana, A., Alzualde, A., Fernandez, D. B.,
Iskandar, A., Peitsch, M. C., Kuczaj, A., and Hoeng, J. (2020).
Alternatives to animal use in risk assessment of mixtures.
Int. J. Toxicol. 39, 165–172.

Hollender, J., Schymanski, E. L., Singer, H. P., and Ferguson, P. L.
(2017). Nontarget screening with high resolution mass spec-
trometry in the environment: Ready to go? Environ. Sci.
Technol. 51, 11505–11512.

Horney, J. A., Casillas, G. A., Baker, E., Stone, K. W., Kirsch, K. R.,
Camargo, K., Wade, T. L., and McDonald, T. J. (2018).
Comparing residential contamination in a Houston environ-
mental justice neighborhood before and after Hurricane
Harvey. PLoS One 13, e0192660.

Horzmann, K. A., de Perre, C., Lee, L. S., Whelton, A. J., and
Freeman, J. L. (2017). Comparative analytical and toxicologi-
cal assessment of methylcyclohexanemethanol (MCHM)
mixtures associated with the Elk River chemical spill.
Chemosphere 188, 599–607.

Iwata, Y., Klaren, W. D., Lebakken, C. S., Grimm, F. A., and Rusyn,
I. (2017). High-content assay multiplexing for vascular toxic-
ity screening in induced pluripotent stem cell-derived endo-
thelial cells and human umbilical vein endothelial cells.
Assay Drug Dev. Technol. 15, 267–279.

Jahnke, A., Sobek, A., Bergmann, M., Braunig, J., Landmann, M.,
Schafer, S., and Escher, B. I. (2018). Emerging investigator se-
ries: Effect-based characterization of mixtures of environ-
mental pollutants in diverse sediments. Environ. Sci. Process
Impacts 20, 1667–1679.

Jia, A., Escher, B. I., Leusch, F. D., Tang, J. Y., Prochazka, E., Dong,
B., Snyder, E. M., and Snyder, S. A. (2015). In vitro bioassays to
evaluate complex chemical mixtures in recycled water.
Water Res. 80, 1–11.

Judson, R. S., Martin, M. T., Reif, D. M., Houck, K. A., Knudsen, T.
B., Rotroff, D. M., Xia, M., Sakamuru, S., Huang, R., Shinn, P., et
al. (2010). Analysis of eight oil spill dispersants using rapid,
in vitro tests for endocrine and other biological activity.
Environ. Sci. Technol. 44, 5979–5985.

Jung, J. H., Hong, S. H., Yim, U. H., Ha, S. Y., Shim, W. J., and
Kannan, N. (2012). Multiple in vitro bioassay approach in sed-
iment toxicity evaluation: Masan Bay, Korea. Bull. Environ
Contam. Toxicol. 89, 32–37.

Kamelia, L., de Haan, L., Ketelslegers, H. B., Rietjens, I., and
Boogaard, P. J. (2019). In vitro prenatal developmental toxicity
induced by some petroleum substances is mediated by their
3- to 7-ring PAH constituent with a potential role for the aryl
hydrocarbon receptor (AhR). Toxicol. Lett. 315, 64–76.

Kassotis, C. D., Tillitt, D. E., Lin, C. H., McElroy, J. A., and Nagel, S.
C. (2016). Endocrine-disrupting chemicals and oil and natural
gas operations: Potential environmental contamination and
recommendations to assess complex environmental mix-
tures. Environ. Health Perspect. 124, 256–264.

Keith, L. H. (2015). The source of US EPA’s sixteen PAH priority
pollutants. Polycycl. Aromat. Comp. 35, 147–160.

Konig, M., Escher, B. I., Neale, P. A., Krauss, M., Hilscherova, K.,
Novak, J., Teodorovic, I., Schulze, T., Seidensticker, S., Kamal
Hashmi, M. A., et al. (2017). Impact of untreated wastewater
on a major European river evaluated with a combination of
in vitro bioassays and chemical analysis. Environ. Pollut. 220,
1220–1230.

Kortenkamp, A., and Faust, M. (2018). Regulate to reduce chemi-
cal mixture risk. Science 361, 224–226.

Leusch, F. D., de Jager, C., Levi, Y., Lim, R., Puijker, L., Sacher, F.,
Tremblay, L. A., Wilson, V. S., and Chapman, H. F. (2010).
Comparison of five in vitro bioassays to measure estrogenic
activity in environmental waters. Environ. Sci. Technol. 44,
3853–3860.

Luo, Y. S., Ferguson, K. C., Rusyn, I., and Chiu, W. A. (2020). In vi-
tro bioavailability of the hydrocarbon fractions of dimethyl
sulfoxide extracts of petroleum substances. Toxicol. Sci. 174,
168–177.

Malcolm, R. (1968). Freeze-drying of organic matter, clays, and
other earth materials. US Geol. Surv. Prof. Pap. 600-C,
C211–C216.

Mantel, N. (1967). The detection of disease clustering and a gen-
eralized regression approach. Cancer Res. 27, 209–220.

Marvel, S. W., To, K., Grimm, F. A., Wright, F. A., Rusyn, I., and
Reif, D. M. (2018). ToxPi graphical user interface 2.0: Dynamic
exploration, visualization, and sharing of integrated data
models. BMC Bioinf. 19, 80.

More, S., Bampidis, V., Benford, D., Boesten, J., Bragard, C.,
Halldorsson, T., Hernandez-Jerez, A., Hougaard-Bennekou,
S., Koutsoumanis, K., Naegeli, H., et al. (2019). Genotoxicity
assessment of chemical mixtures. EFSA J. 17, e05519.

Neale, P. A., Altenburger, R., Ait-Aissa, S., Brion, F., Busch, W.,
Umbuzeiro, G. D., Denison, M. S., Du Pasquier, D.,
Hilscherova, K., Hollert, H., et al. (2017). Development of a bio-
analytical test battery for water quality monitoring:

CHEN ET AL. | 119



Fingerprinting identified micropollutants and their contribu-
tion to effects in surface water. Water Res. 123, 734–750.

Neale, P. A., Braun, G., Brack, W., Carmona, E., Gunold, R., Konig,
M., Krauss, M., Liebmann, L., Liess, M., Link, M., et al. (2020).
Assessing the mixture effects in in vitro bioassays of chemi-
cals occurring in small agricultural streams during rain
events. Environ. Sci. Technol. 54, 8280–8290.

Nisbet, I. C., and LaGoy, P. K. (1992). Toxic equivalency factors
(TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul.
Toxicol. Pharmacol. 16, 290–300.

Patel, C. J. (2017). Analytic complexity and challenges in identify-
ing mixtures of exposures associated with phenotypes in the
exposome era. Curr. Epidemiol. Rep. 4, 22–30.

Paul Friedman, K., Gagne, M., Loo, L. H., Karamertzanis, P.,
Netzeva, T., Sobanski, T., Franzosa, J. A., Richard, A. M.,
Lougee, R. R., Gissi, A., et al. (2020). Utility of in vitro bioactiv-
ity as a lower bound estimate of in vivo adverse effect levels
and in risk-based prioritization. Toxicol. Sci. 173, 202–225.

Rager, J. E., Strynar, M. J., Liang, S., McMahen, R. L., Richard, A. M.,
Grulke, C. M., Wambaugh, J. F., Isaacs, K. K., Judson, R.,
Williams, A. J., et al. (2016). Linking high resolution mass
spectrometry data with exposure and toxicity forecasts to
advance high-throughput environmental monitoring.
Environ. Int. 88, 269–280.

Rappaport, S. M. (2018). Redefining environmental exposure for
disease etiology. NPJ Syst. Biol. Appl. 4, 30.

Reif, D. M., Sypa, M., Lock, E. F., Wright, F. A., Wilson, A., Cathey,
T., Judson, R. R., and Rusyn, I. (2013). ToxPi GUI: An interac-
tive visualization tool for transparent integration of data
from diverse sources of evidence. Bioinformatics 29, 402–403.

Sansom, G. T., Kirsch, K. R., Casillas, G. A., Camargo, K., Wade, T.
L., Knap, A. H., Baker, E. S., and Horney, J. A. (2020). Spatial
distribution of polycyclic aromatic hydrocarbons contami-
nants after Hurricane Harvey in a Houston neighborhood.
Submitted.

Sansom, G. T., Kirsch, K. R., Stone, K. W., McDonald, T. J., and
Horney, J. A. (2018). Domestic exposures to polycyclic aro-
matic hydrocarbons in a Houston, Texas. Environ. Justice
Neighborhood. Environ Justice 11, 183–191.

Sille, F. C. M., Karakitsios, S., Kleensang, A., Koehler, K.,
Maertens, A., Miller, G. W., Prasse, C., Quiros-Alcala, L.,
Ramachandran, G., Rappaport, S. M., et al. (2020). The expo-
some - A new approach for risk assessment. Altex 37, 3–23.

Sirenko, O., Grimm, F. A., Ryan, K. R., Iwata, Y., Chiu, W. A.,
Parham, F., Wignall, J. A., Anson, B., Cromwell, E. F., Behl, M.,
et al. (2017). In vitro cardiotoxicity assessment of environ-
mental chemicals using an organotypic human induced plu-
ripotent stem cell-derived model. Toxicol. Appl. Pharmacol.
322, 60–74.

Sirenko, O., Hesley, J., Rusyn, I., and Cromwell, E. F. (2014a). High-
content assays for hepatotoxicity using induced pluripotent
stem cell-derived cells. Assay Drug Dev. Technol. 12, 43–54.

Sirenko, O., Hesley, J., Rusyn, I., and Cromwell, E. F. (2014b).
High-content high-throughput assays for characterizing the
viability and morphology of human iPSC-derived neuronal
cultures. Assay Drug Dev. Technol. 12, 536–547.

Stehle, S., and Schulz, R. (2015). Agricultural insecticides
threaten surface waters at the global scale. Proc. Natl. Acad.
Sci. USA 112, 5750–5755.

Stone, K. W., Casillas, G. A., Karaye, I., Camargo, K., McDonald, T.
J., and Horney, J. A. (2019). Using spatial analysis to examine
potential sources of polycyclic aromatic hydrocarbons in an
environmental justice community after Hurricane Harvey.
Environ. Justice 12, 194–203.

U.S. (2011). 40 CFR 300.430 - Remedial Investigation/Feasibility Study
and Selection of Remedy. Washington, DC.

U.S. EPA. (1986). Guidelines for the health risk assessment of
chemical mixtures. Fed. Reg. 51, 34014–34025.

U.S. EPA. (1993). Provisional Guidance for quantitative risk as-
sessment of polycyclic aromatic hydrocarbons (PAH). U.S.
Environmental Protection Agency, Office of Research and
Development, Office of Health and Environmental
Assessment, Washington, DC.

U.S. EPA. (2010). Development of a relative potency factor (Rpf)
approach for polycyclic aromatic hydrocarbon (PAH) mix-
tures (external review draft). U.S. Environmental Protection
Agency, Washington, DC.

U.S. EPA. (2012). Benchmark Dose Technical Guidance.
U.S. EPA. (2020). Regional Screening Levels RSLS Generic Tables.

Available at: https://www.epa.gov/risk/regional-screening-
levels-rsls-generic-tables. Accessed July 1, 2020.

Xiao, R., Wang, Z., Wang, C., and Yu, G. (2006). Soil screening for
identifying ecological risk stressors using a battery of in vitro
cell bioassays. Chemosphere 64, 71–78.

Zhou, Y. H., Mayhew, G., Sun, Z., Xu, X., Zou, F., and Wright, F. A.
(2013). Space time clustering and the permutation moments
of quadratic form. Stat 2, 292–302.

120 | RISK CHARACTERIZATION OF ENVIRONMENTAL SAMPLES

https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

