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Abstract

We examine the accuracy of p values obtained using the asymptotic mean and var-
iance (MV) correction to the distribution of the sample standardized root mean
squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM
models. In a simulation study, we found that under normality, the MV-corrected
SRMR statistic provides reasonably accurate Type I errors even in small samples and
for large models, clearly outperforming the current standard, that is, the likelihood
ratio (LR) test. When data shows excess kurtosis, MV-corrected SRMR p values are
only accurate in small models (p = 10), or in medium-sized models (p = 30) if no
skewness is present and sample sizes are at least 500. Overall, when data are not
normal, the MV-corrected LR test seems to outperform the MV-corrected SRMR.
We elaborate on these findings by showing that the asymptotic approximation to the
mean of the SRMR sampling distribution is quite accurate, while the asymptotic
approximation to the standard deviation is not.
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Structural equation modeling (SEM) is a popular technique for modeling multivariate

data because it provides a comprehensive framework for fitting theoretical models.

Given that SEM is most often used for furthering theory development, a substantial

body of literature to date has focused on the issue of how to assess model–data fit

(i.e., goodness of fit) in SEM. There appear to be two general perspectives with

regard to goodness of fit in SEM. One perspective revolves around the notion that

one should not expect to find and thus not seek a model that may be considered as

precisely true or correct in the population (e.g., MacCallumet al., 1992). From this

perspective, applied researchers should aim at showing that a model provides a good

approximation to real-world phenomena, as represented in an observed set of data.

To do so, it is generally recommended that multiple approaches to assessment of fit

be used (MacCallum, 1990). These may be purely descriptive, involving a compari-

son of the fitted model to another model, such as a saturated model, or to indepen-

dence model (Bentler & Bonett, 1980). This perspective appears to be frequently

employed, for instance, when fitting exploratory factor analysis models (Lim &

Jahng, 2019). From this perspective, assessing whether the model fits the data exactly

appears almost unnecessary.

The alternative perspective is concerned with the quality of inferences drawn

using the fitted model. From this perspective, assessing the exact fit of a model is

important because, provided that alternative equivalent models (Bentler & Satorra,

2010; MacCallum et al., 1993; Stelzl, 1986) can be ruled out theoretically and that

the power of the test (Lee et al., 2012; Saris & Satorra, 1993) is sufficiently large,

failing to reject the null hypothesis of exact fit enables drawing statistical inferences

on the parameter estimates (Bollen & Pearl, 2013; Maydeu-Olivares et al., 2020). Of

course, as sample size increases the power to reject the hypothesis of exact model fit

increases (Jöreskog, 1967). Also, as model size increases it becomes increasingly dif-

ficult to find a well-fitting model, simply due to time constraints (Maydeu-Olivares,

2017a). From this perspective, assessing the exact fit of a model is a meaningful

endeavor, always coupled with an assessment of the size of model misfit, with confi-

dence intervals (Maydeu-Olivares, 2017a; Steiger, 1989).

Because sample goodness-of-fit indices are estimators of population quantities,

both perspectives can be integrated by using confidence intervals (and if of interest,

significance tests) for population effect sizes of misfit. Confidence intervals for the

root mean squared error of approximation (RMSEA; Steiger & Lind, 1980; see also

Browne & Cudeck, 1993) are well known and routinely used in applications. Steiger

(1989) showed that it is possible to obtain confidence intervals for the population

goodness-of-fit index (GFI; Jöreskog & Sörbom, 1988; see also MacCallum & Hong,

1997; Maiti & Mukherjee, 1990; Tanaka & Huba, 1985). The sampling distribution

of the comparative fit index (CFI; Bentler, 1990) may also be approximated using

asymptotic methods (Lai, 2019). Finally, confidence intervals for the standardized

root mean squared residual (SRMR; Bentler, 1995) can be obtained using a normal

distribution (Maydeu-Olivares, 2017a; Maydeu-Olivares et al., 2018; Ogasawara,

2001). Therefore, if the purpose of the analysis is simply to provide an approximate
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representation of the phenomena under investigation, confidence intervals for any of

these estimands should be obtained. It is important to use unbiased estimators of the

estimands of interest as well as confidence intervals because at small to moderate

sample sizes the sample goodness-of-fit indices commonly used in applications can

be severely biased and may display a large sampling variability (Maydeu-Olivares

et al., 2018; Shi et al., 2019; Steiger, 1990). On the other hand, if the purpose of the

analysis is to draw causal inferences on the model parameters, then it makes more

sense to test whether the population value of these effect sizes suggests a perfect fit.

The only effect size of model misfit that is currently used in applications is the

RMSEA. Put differently, the RMSEA is the only goodness-of-fit index for which

SEM software routinely provide a p value for a test of close fit. The null and alterna-

tive hypotheses can be written as

H�0 : RMSEA � RMSEA0 versus H�1 : RMSEA . RMSEA0 where RMSEA0 is an

arbitrary population value of the RMSEA. When data are normally distributed, a p

value for a test of close fit can be obtained using

1� Fx2 x2; df ;N3df 3RMSEA2
0

� �
; ð1Þ

where N denotes sample size, Fx2ðx2; df ; lÞ denotes the noncentral chi-square distri-

bution with df degrees of freedom and noncentrality parameter l (Browne & Cudeck,

1993), and x2 denotes the chi-square statistic used to assess the exact fit of the model,

usually the likelihood ratio test statistic (e.g., Jöreskog, 1969). We note that expres-

sion (1) can also be used to assess the exact fit of the model, that is, RMSEA0 = 0. In

this case, the noncentrality parameter N3df 3RMSEA2
0 becomes zero, and expres-

sion (1) reduces to the familiar equation to obtain a p value for the chi-square test

using a central chi-square distribution.

When data are not normal, the most widely used test statistic is the likelihood

ratio test statistic, either scaled by its asymptotic mean or adjusted by its asymptotic

mean and variance as proposed by Satorra and Bentler (1994). When any of these

chi-squares robust to nonnormality is used, (1) is replaced by

1� Fx2 x2; df ;N3df 3RMSEA2
0=c

� �
; ð2Þ

where x2 denotes the robust chi-square statistic used, and c denotes its scaling correc-

tion (Gao et al., 2020; Savalei, 2018). As in the normal case, expression (2) reduces

to the usual chi-square testing in the special case of examining exact fit, for example,

H�0 : RMSEA = 0.

Recently, Maydeu-Olivares (2017a) introduced a framework for assessing the size

of model misfit using the SRMR. Confidence intervals and, if of interest, tests of

close fit can now be performed using the SRMR in addition to the RMSEA. Extant

research (Maydeu-Olivares et al., 2018; Shi et al., 2020) has shown that more accu-

rate confidence intervals and test of close fit are obtained using the SRMR than the

RMSEA. The latter only provides accurate results in small models.
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Maydeu-Olivares (2017a) also provided theory for utilizing the SRMR as a test of

exact fit, both under normality assumptions and when data are not normal. In a simu-

lation study, involving a confirmatory factor analysis (CFA) model and sample sizes

(N) ranging from 100 to 3,000 observations, the author showed that the SRMR p val-

ues were accurate even when the smallest sample sizes were considered.

Nevertheless, this simulation study relied on a CFA population model involving only

eight variables (p = 8) and normally distributed data. In the literature to date, how-

ever, it has been repeatedly found that the performance of goodness-of-fit tests wor-

sens as the model size (i.e., the number of variables being modeled) increases

(Herzog et al., 2007; Maydeu-Olivares, 2017b; Moshagen, 2012; Shi, Lee, & Terry,

2018; Yuan et al., 2015) and with violations of the normality assumptions (e.g., Hu

et al., 1992; Satorra, 1990).

In the current article, we address this gap in the literature and examine whether the

SRMR test of exact fit yields accurate p values in a wider range of conditions, involv-

ing models of various sizes and both normal and nonnormal data. In addition, we pit

the performance of the SRMR against the gold standard for the exact goodness-of-fit

assessment, the likelihood ratio test (e.g., Jöreskog, 1969). In the SEM literature, this

test statistic is commonly referred to as the chi-square test. In the comparison, we also

include the robust, that is, the mean and variance adjusted, chi-square test statistic

appropriate for nonnormal data (Asparouhov & Muthén, 2010; Satorra & Bentler,

1994). The remainder of this article is organized as follows. First, we summarize the

existing statistical theory for the SRMR. Next, we describe the simulation study con-

ducted to evaluate the accuracy of the asymptotic approximations to the finite sam-

pling distribution of these test statistics. We then summarize the results and provide a

discussion of our findings.

The Standardized Root Mean Squared Residual

The Sample SRMR

Let the standardized residual variances and covariances be

êij =
sij � ŝijffiffiffiffiffiffiffiffi

siisjj
p ; ð3Þ

where sij denotes the sample covariance between variables i and j, with the model

implied counterpart ŝij; when i = j, sii and ŝii denote variances. Then, the sample

SRMR (Bentler, 1995; Jöreskog & Sörbom, 1988) is the square root of the average

of the squared standardized residual variances and covariances

dSRMSR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

X
i�j

ê2
ij

s
=

ffiffiffiffiffiffiffiffiffi
1

t
ê0ê

r
; ð4Þ
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where t = pðp + 1Þ=2 denotes the number of nonredundant variances and covariances,

and ê denotes the vector of t standardized residual covariances (3).

Equation (4) is the SRMR expression computed by the widely used software pro-

gram LISREL (Jöreskog & Sörbom, 2017) and EQS (Bentler, 2004). It is suitable for

assessing how well the assumed (theorized) model reproduces the observed associa-

tions among the variables in an interpretable manner. Roughly, it can be interpreted

as the average of the absolute value of residual correlations.

On the other hand, the SRMR computed by default in Mplus software (Muthén &

Muthén, 2017) is somewhat different:

dSRMSR
�

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t + p

X
i�j

ðê�ijÞ
2

+
X

i

ðê�i Þ
2

 !vuut : ð5Þ

ê�ij =
sijffiffiffiffiffiffiffiffi
siisjj
p � ŝijffiffiffiffiffiffiffiffiffiffiffi

ŝiiŝjj

p ; ê�i =
miffiffiffiffi
sii
p � m̂iffiffiffiffiffiffi

ŝii

p ; ð6Þ

where mi and m̂i denote the sample and expected mean of variable i. It needs to be

noted that in Equation (6), ŝii is used when standardizing the expected covariance. In

contrast, in Equation (3), the unrestricted estimate sii is used for standardization. This

need not affect considerably the SRMR values because, in many applications, the

estimated variances equal the sample variances, that is, sii = ŝii. However, the inclu-

sion of the mean structure components ê�i in the Mplus version of the SRMR statistic

may have a nonnegligible impact. Specifically, in many applications (e.g., in CFA

models), the mean structure is saturated, that is, the mean residuals ê�i equal zero. In

these applications, computing the SRMR in Equation (5) will result in a lower value

than the value computed using the SRMR in Equation (4). Consequently, because all

the SRMR cutoff values provided in the literature (e.g., Hu & Bentler, 1998, 1999;

Shi, Maydeu-Olivares, & DiStefano, 2018) have been obtained relying on the

LISREL/EQS definition of the SRMR, the utility of these cutoff values when applied

to the Mplus SRMR becomes moot.1 In this article, we focus on models with a satu-

rated mean structure (i.e., no mean structure) and accordingly, on the sample SRMR

in Equation (4).

Confidence Intervals for the Population SRMR

The sample SRMR provided in Equation (4) is an estimator of the population SRMR:

SRMR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

X
i�j

e2
ij

s
=

ffiffiffiffiffiffiffiffiffi
1

t
e0e

r
, eij =

sij � s0
ijffiffiffiffiffiffi

sii
p

sjj

: ð7Þ

Here, sij denotes the true and unknown population covariance between variables i

and j (or variance if i = j) and s0
ij denotes the population covariance (or variance)

under the fitted model. The sample SRMR provided in Equation (4), however, is a
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biased estimator of the population SRMR in finite samples. To illustrate the potential

severity of the bias, we utilize simulation results reported recently by Shi, Maydeu-

Olivares, and DiStefano (2018, Table 2). In Figure 1, we provide a plot of the aver-

age sample SRMR over 1,000 replications as sample size increases from 50 to 2,000

when the population SRMR = .058. As it can be clearly observed in the figure, the

magnitude of the overestimation cannot be neglected for sample sizes smaller than

500 observations.

In Figure 1, we have also plotted the results of Shi, Maydeu-Olivares, and

DiStefano (2018, Table 2) for the average unbiased estimator of the SRMR proposed

by Maydeu-Olivares (2017a). As the figure reveals, the unbiased estimator of the

SRMR is essentially unbiased for sample sizes over 100 observations. The unbiased

estimator of the population SRMR proposed by Maydeu-Olivares (2017a) is

dSRMRu = k̂�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ê0ê� trðN̂Þ; 0

� �
t

s
, k̂ = 1� trðN̂2Þ+ 2ê0N̂ê

4 ê0êð Þ2
; ð8Þ

where N denotes the asymptotic covariance matrix of the sample standardized resi-

duals Equation (3), which can be computed either assuming that the observed

Figure 1. Average sample (i.e., biased) standardized root mean squared residual (SRMR) and
unbiased SRMR estimates of the population SRMR of .058 across 1,000 replications as a
function of sample size.
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variables are normally distributed (NT) or under the asymptotically distribution free

assumptions (ADF) put forth by Browne (1982).

Maydeu-Olivares (2017a) proposed using a normal distribution as reference for

obtaining confidence intervals and tests of close fit for the population SRMR using

the unbiased SRMR estimator. Using this reference distribution, a (100 2a)% confi-

dence interval for the population SRMR, can be obtained with

Pr dSRMRu � za=2SEð dSRMRuÞ � dSRMR � dSRMRu + za=2SEð dSRMRuÞÞ = 1� a;
�

ð9Þ

where za=2 denotes the critical value under a standard normal distribution correspond-

ing to a significance level a, and SEð dSRMRuÞdenotes the asymptotic standard error

of the unbiased SRMR estimate

SEð dSRMRuÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

trðN̂2Þ+ 2ê0N̂ê
2t ê0ê

s
: ð10Þ

Finally, p values for a null hypothesis of close fit, H0: SRMR � SRMR0 versus

H1: SRMR1 . SRMR0, where SRMR0 denotes an arbitrary value of the population

SRMR, can be obtained using

p = 1� F
dSRMRu�SRMR0

SEð dSRMRuÞ

 !
; ð11Þ

where Fð Þ denotes a standard normal distribution function.

In needs to be noted that, in principle, these procedures could also be used to test

whether a hypothesized SEM model fits exactly. In practice, when the population SRMR

equals zero, often ê0ê� tr N̂
� �

\0, and the unbiased SRMR estimate is set to zero; see

Equation (8). Put differently, when the model fits exactly, the sampling distribution of thedSRMRu must be zero inflated and a normal distribution must provide a poor approxima-

tion. See Figure 1 of Shi et al. (2020) for an illustration of this result. Maydeu-Olivares

(2017a) suggested that whether a model fits exactly could be tested approximating the

sampling distribution of the biased SRMR using a normal distribution.

Testing for Exact Fit Using the SRMR

In SEM models without the mean structure, the null and alternative hypotheses of

exact fit are generally written as: H0 : S = S0 versus H1 : S 6¼ S0, where S denotes

the unknown population covariance matrix and S0 denotes the population covariance

matrix implied by the model. A number of test statistics have been proposed in the

SEM literature to assess this null hypothesis of exact fit. In addition to the likelihood

ratio test statistic described earlier, researchers may employ, for instance, the residual

based chi-square statistic proposed by Browne (1974, 1982; Hayakawa, 2018), the F

116 Educational and Psychological Measurement 81(1)



test proposed by Yuan and Bentler (1999), or the chi-square test proposed by Yuan

and Bentler (1997) to name a few.

Maydeu-Olivares (2017a) has proposed an additional test of the exact fit of the

model based on the SRMR. The author showed that under the null hypothesis of exact

model fit, the mean and standard error of the sample SRMR in (4) can be approxi-

mated in large samples using

m dSRMR
=

ffiffiffiffiffiffiffiffiffiffi
trðNÞ

t

r
1� trðN2Þ

4trðNÞ2

 !
; ð12Þ

s dSRMR
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðN2Þ

2t trðNÞ

s
: ð13Þ

Then, the sample SRMR can be used to obtain p values for the null hypothesis of

exact fit using

p = 1� F zð Þ; z =

dSRMR � m dSRMR

s dSRMR

: ð14Þ

To investigate the performance of the method above, Maydeu-Olivares (2017a) per-

formed a simulation study involving a CFA model with eight observed variables (p =

8), sample sizes (N) ranging from 100 to 3,000, and normally distributed data. The

results revealed that the proposed method provided accurate Type I error rates regard-

less of the sample size and significance level. Nevertheless, it has been repeatedly

found in the literature that the performance of goodness-of-fit tests worsens as model

size (i.e., the number of variables being modeled) increases (e.g., Herzog et al., 2007;

Maydeu-Olivares, 2017b; Moshagen, 2012; Shi, Lee, & Terry 2018; Yuan et al.,

2015). Because the initial evidence on the performance of SRMR was limited to a

very small model, it seemed necessary to evaluate the performance of this test statistic

also in large models. In addition, the SRMR proposal to assess the exact fit of SEM

models was evaluated only in the case of normally distributed data (Maydeu-Olivares,

2017a). However, it has been well documented in the literature that the goodness-of-

fit tests (e.g., the likelihood ratio test) fail when data are not normal (e.g., Hu et al.,

1992; Satorra, 1990). Accordingly, it seemed warranted to evaluate the performance

of the exact fit SRMR proposal also in the case of nonnormal data.

Method

We performed a simulation study to examine the performance of SRMR p values to

assess the exact fit of SEM models as introduced by Maydeu-Olivares (2017a). The

model used to generate the data was a CFA model because it is the most widely used

SEM model in empirical research (DiStefano et al., 2018). The population and fitted

models were a one-factor model. We used this simple model because the main aim of
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the study was to investigate the performance of SRMR p values under nonnormality

and large model size. The population values for all factor loadings were set to be .70,

and all residual variances were set to .51.

Data Generation

Data were generated as follows. Using this population CFA model, we first generated

continuous data from a multivariate normal distribution. The continuous data were

then discretized into seven categories coded 0 to 6. Methodological studies have

shown that when the number of response categories is large (i.e., seven), it is appro-

priate to treat the discretized data as continuous when fitting CFA models (DiStefano

& Morgan, 2014; Rhemtulla et al., 2012). Furthermore, we used discretized normal

data because in CFA studies it is more common to model discrete ordinal data (i.e.,

responses to Likert-type items) than continuous data proper (i.e., test scores). Finally,

categorizing continuous variables is employed as a widely used method to generate

nonnormally distributed data (DiStefano & Morgan, 2014; Maydeu-Olivares, 2017b;

Muthén & Kaplan, 1985).

Study Conditions

The simulation conditions were obtained by manipulating the following three factors:

(a) sample size, (b) model size, and (c) level of nonnormality.

Sample Size. Sample sizes included 100, 200, 500, and 1,000 observations. The sam-

ple sizes were selected to reflect a range of small to large samples commonly used in

psychological research.

Model Size. Model size refers to the total number of observed variables, p (Moshagen,

2012; Shi, Lee, & Terry, 2018). We used three different levels for the number of

observed variables: small (p = 10), medium (p = 30), and large (p = 60) models.

Level of Nonnormality. Three levels of nonnormality were obtained by manipulating

the population values of the skewness and (excess) kurtosis: (a) skewness = 0.00, kur-

tosis = 0.00 (i.e., normal data), (b) skewness = 0.00, kurtosis = 3.30, and (c) skewness

= 22.00, kurtosis = 3.30. To achieve the designed skewness and kurtosis, the contin-

uous data were discretized using selected threshold values (Maydeu-Olivares, 2017b;

Muthén & Kaplan, 1985). The threshold values used for data generation and the

expected area under the curve for each response category are presented in Table 1.

The technical details for computing the population skewness and kurtosis given a set

of thresholds can be found in Maydeu-Olivares et al. (2007).

In sum, the simulation study consisted of a fully crossed design including four

sample sizes, three distributional shapes, and three model sizes. Thirty-six conditions

were created in total (4 3 3 3 3). For each of the 36 simulated conditions, 1,000
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replications were generated with the simsem package in R (Pornprasertmanit et al.,

2013; R Core Team, 2019).

Estimation

For each simulated data set, we fitted a one-factor CFA model with the maximum

likelihood estimation method using the lavaan package in R (Rosseel, 2012). In the

supplementary materials to this article, we provide R code for computing the exact fit

test using SRMR. The SRMR test statistic Equation (14) was obtained under both NT

and ADF) assumptions. Different values of this statistic based on the SRMR to assess

the exact fit of the model are obtained under NT and ADF assumptions because the

asymptotic covariance matrix of the standardized residual covariances, N is computed

differently. For computational details of the two SRMR test statistics the reader is

referred to Maydeu-Olivares (2017a).

To benchmark the performance of the SRMR as a test of exact fit, we used the

likelihood ratio (Jöreskog, 1969) test, also commonly known as the chi-square test

(x2). The chi-square test statistic was also obtained both NT and ADF assumptions.

The x2 statistic computed under normality is the likelihood ratio test. The x2 statistic

computed under ADF is the mean and variance adjusted likelihood ratio test statistic

proposed by Asparouhov and Muthén (2010; see also Satorra & Bentler, 1994). For

both x2 and SRMR statistics, we evaluated the empirical rejection rates, that is, Type

I error rates using nominal alpha levels of 5%.

Results

For all the study conditions all replications successfully converged. Accordingly,

results for each of the 36 conditions under investigation were based on all 1,000

replications.

We provide in Table 2 the empirical rejection rates at the 5% significance level of

the x2 and SRMR tests of exact fit. Following Bradley (1978), and taking into account

that we used only 1,000 replications, we considered Type I error rates in [.02, .08] to

be adequate. Conditions that fall outside this range are highlighted in Table 2.

The results presented in Table 2 for the x2 statistic were consistent with previous

findings in the literature. Specifically, the x2 computed under normality assumption

Table 1. Target Item Category Probabilities and Corresponding Threshold Values Used to
Generate the Data.

Expected area under the curve

Kurtosis Skewness Thresholds 0 1 2 3 4 5 6

0 0 21.64, 21.08, 20.52, 0.52, 1.08, 1.64 5% 9% 16% 40% 16% 9% 5%

3.3 0 22.33, 21.64, 21.04, 1.04, 1.64, 2.33 1% 4% 10% 70% 10% 4% 1%

3.3 22.0 22.33, 21.88, 21.55, 21.17, 20.84, 20.55 1% 2% 3% 6% 8% 10% 70%

Pavlov et al. 119



Table 2. Empirical Rejection Rates at the 5% Significance Level of the Chi-Square and SRMR
Tests of Exact Fit.

NT ADF

Kurtosis Skewness p N x2 SRMR x2 SRMR

0.0 0.0 10 100 0.08 0.03 0.08 0.03
200 0.08 0.05 0.08 0.04
500 0.05 0.05 0.04 0.03

1,000 0.07 0.06 0.06 0.05
30 100 0.67 0.03 0.68 0.01

200 0.28 0.04 0.26 0.02
500 0.13 0.06 0.10 0.05

1,000 0.10 0.07 0.07 0.06
60 100 1.00 0.01 1.00 0.00

200 0.99 0.04 0.99 0.00
500 0.50 0.07 0.43 0.00

1,000 0.25 0.08 0.18 0.00
3.3 0.0 10 100 0.38 0.24 0.10 0.05

200 0.32 0.26 0.07 0.03
500 0.29 0.27 0.05 0.04

1,000 0.31 0.30 0.06 0.05
30 100 1.00 0.86 0.74 0.00

200 0.99 0.92 0.25 0.00
500 0.96 0.94 0.09 0.03

1,000 0.97 0.95 0.07 0.05
60 100 1.00 1.00 1.00 0.00

200 1.00 1.00 0.98 0.00
500 1.00 1.00 0.38 0.00

1,000 1.00 1.00 0.15 0.00
3.3 22.0 10 100 0.87 0.75 0.12 0.04

200 0.85 0.79 0.09 0.04
500 0.85 0.83 0.06 0.07

1,000 0.84 0.83 0.05 0.07
30 100 1.00 1.00 0.87 0.00

200 1.00 1.00 0.34 0.00
500 1.00 1.00 0.12 0.00

1,000 1.00 1.00 0.07 0.00
60 100 1.00 1.00 1.00 0.00

200 1.00 1.00 1.00 0.00
500 1.00 1.00 0.54 0.00

1,000 1.00 1.00 0.20 0.00

Note. Highlighted are conditions with adequate Type I errors. The asymptotic covariance matrix of the

residual covariances used to compute p values for the SRMR is computed differently under normality and

ADF assumptions. SRMR = standardized root mean squared residual; p = number of variables; NT =

under normality; ADF = asymptotically distribution free; x2 = likelihood ratio (LR) test (under normality)

and mean and variance LR under ADF assumptions.
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(NT in the table) overrejected the true model when data were nonnormal.

Furthermore, the rejection rates increased as the model size increased. For the non-

normal conditions investigated, as soon as p = 30, the test almost always rejected the

model. In fact, the only conditions investigated for which the test maintained ade-

quate Type I error rates involved normal data and a small model (p = 10). For normal

data and larger models (p� 30), the NT x2 statistic converged slowly to its asympto-

tic distribution, but even the largest sample size considered (1,000) was insufficient

to obtain accurate Type I error rates.

We also see in Table 2 that with the increasing number of variables, the robust x2

(ADF in the table) converged faster than the NT x2 to its reference distribution, that

is, it was more robust to the model size effect. This is consistent with previous find-

ings in the literature (e.g., Maydeu-Olivares, 2017b). Under normality, the robust x2

achieved adequate Type I errors when p = 30 with 1,000 observations. However,

sample sizes larger than 1,000 are needed for this statistic to yield accurate Type I

error rates when p = 60. As expected, the ADF x2 was also more robust to the effect

of nonnormality. Specifically, p values were acceptable for p = 10 and the minimum

sample size needed to achieve them varied depending on the level of kurtosis and

skewness in the data. A minimum of 100 observations was needed when the data

shows neither (excess) kurtosis nor skewness (i.e., normal data), 200 observations

when the data showed only excess kurtosis, and of 500 observations when both kur-

tosis and skewness were present. For p = 30, larger sample sizes (i.e., 1,000 observa-

tions) were needed for the test to yield nominal Type I error rates. Finally, for p =

60, not even the largest sample sizes (i.e., 1,000) were sufficient to obtain accurate

Type I error rates.

Results for the test of exact fit using the SRMR revealed a pattern different from

the one observed for the x2 test statistic. When performed under normality assump-

tions (NT in Table 2), the SRMR test yielded adequate Type I error rates for all con-

ditions involving normally distributed data and smaller models (p� 30). These

findings were in line with the results reported by Maydeu-Olivares (2017a). The

Type I error rates were inaccurate (i.e., the test was underrejecting) only when the

largest model and smallest sample size were considered (p = 60, N = 100). Overall,

with normal data, the NT SRMR test statistic clearly outperformed the NT x2 (i.e.,

the likelihood ratio test). On the other hand, with nonnormal data, the NT SRMR test

of exact fit consistently overrejected and its behavior closely resembles the behavior

of the NT x2 statistic.

When data were normal and p = 10, the robust SRMR (ADF in Table 2) and

robust x2 yielded comparable and adequate results. Conversely, when p = 30, a sam-

ple of 200 observations sufficed to obtain adequate p values using the robust SRMR,

whereas 1,000 observations were needed using the robust x2. When p = 60, the robust

SRMR underrejected the null hypothesis even at the largest sample size considered.

When data showed excess kurtosis but no skewness, the SRMR provided more

accurate Type I error rates than the robust x2 in small models and small samples (p =

10, N = 100), slightly better results in medium size models and large samples (p = 30,
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N� 500) but was consistently underrejecting when the largest model size considered

(p = 60). Most interestingly, the behavior of the SRMR exact fit test was adversely

affected by the skewness of data. When data showed both (excess) kurtosis and skew-

ness, even though it was performing adequately in conditions with small models (p =

10), the robust SRMR was underrejecting the model in all conditions involving p�
30 observed variables. In these conditions (p� 30), the Type I error rates of the

robust x2 were gradually returning to their nominal levels with the increasing sample

size, while the same effect was not observed for the robust SRMR.

Discussion

In the present study, we have examined the accuracy of the asymptotic mean and

variance correction to the distribution of the sample SRMR proposed by Maydeu-

Olivares (2017a) to assess the exact fit of SEM models. Several model sizes, sample

sizes, and levels of nonnormality were considered, and the SRMR was computed

under both normal theory (NT) and ADF assumptions. In addition, the SRMR accu-

racy was pitted against the gold standard for the exact goodness-of-fit assessment,

the likelihood ratio test (e.g., Jöreskog, 1969), and its robust (ADF) version obtained

by adjusting the likelihood ratio statistic by its asymptotic mean and variance

(Asparouhov & Muthén, 2010; Satorra & Bentler, 1994).

Overall, the results revealed that the mean and variance corrected SRMR statistic

provides reasonably accurate Type I errors when data shows neither excess kurtosis

nor skewness in small samples and even in large models (p = 60, N = 200), in which

the likelihood ratio test statistic fails. In other words, when data are normal, the mean

and variance corrected SRMR outperforms the current standard. When data shows

excess kurtosis, Type I errors of the mean and variance corrected SRMR are accurate

only in small models (p = 10), or in medium-sized models (p = 30) if no skewness is

present and sample is large enough (N� 500). Overall, it seems that the current stan-

dard, that is, the mean and variance corrected likelihood ratio test statistic, outper-

forms the mean and variance corrected SRMR when data are not normal.

The robust x2 and SRMR test statistics considered in this article are both mean

and variance corrected statistics of the type

Ta ¼ a + bT ; ð15Þ

where Ta denotes the mean and variance corrected statistic used for testing, and T

denotes the original sample statistic. In the case of the robust x2, we write

x2
a = a + bx2, where x2

a denotes the mean and variance adjusted chi-square statistic

and x2 is the likelihood ratio test statistic. a and b are constants such that x2
a agrees

asymptotically in mean and variance with a reference chi-square distribution with

the model’s degrees of freedom. However, the asymptotic distribution of the robust

x2 is not chi-square; it is a mixture of one degree of freedom chi-squares (Satorra &

Bentler, 1994). This implies that as sample size increases, the behavior of the robust

x2 p values need not improve.
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As our results show, with nonnormal data, the approximation’s behavior improves

with increasing sample size. However, it is important to note that our simulation

involved discretized normal data. With other algorithms to generate nonnormal data,

this need not be the case (for instance, see Gao et al., 2019). In fact, one should rather

expect the accuracy of the robust x2 p values to improve up to a sample size, and

slightly worsen after that, reflecting that the reference distribution to obtain the p val-

ues is not the actual asymptotic distribution of the x2 statistic.

In the case of the robust SRMR, we write z = a + b dSRMR, where a and b are con-

stants such that z agrees asymptotically with a standard normal reference distribution.

Obviously, in this case, a = � m dSRMR
s�1dSRMR

, b = s�1dSRMR
, and this is the solution pro-

posed in Equation (14). The mean and variance adjustment is also used to obtain p val-

ues for the SRMR in the normal case, and the difference between the normal and robust

SRMR options lies in how the asymptotic covariance matrix of the standardized residual

covariances is estimated (see Maydeu-Olivares, 2017a). It is important to note here that

the use of normal distribution as a reference distribution is heuristic, and it remains to

be proved that the sampling distribution of the sample SRMR converges to normality.

Nevertheless, the approximation seems to work very well in practice.

Why do p values for the robust SRMR fail to be accurate in many of the nonnor-

mal conditions investigated in this study? One plausible explanation is that the

asymptotic approximation proposed by Maydeu-Olivares (2017a) to the empirical

standard deviation of the dSRMR is not sufficiently accurate. To explore this, for each

simulated condition, we calculated the average SRMR estimates and empirical var-

iances across replications and compared them to the values based on the theoretical

normal reference distributions. In Table 3, we provide the empirical mean and stan-

dard deviation of the dSRMR for each of the conditions of our simulation study, that

is, the mean and standard deviation of the dSRMR across the 1,000 replications for

each condition. We also provide in this table the expected mean and standard devia-

tion for each condition computed using Equations (12) and (13) under both NT and

ADF assumptions. It may be observed in Table 3 that under NT, the asymptotic

approximation to the empirical mean is quite accurate for all conditions involving

normally distributed data. Conversely, it underestimates the empirical mean for all

nonnormal conditions. The asymptotic approximation underestimates the empirical

standard deviation but, as expected, it improves as sample size increases. Under ADF

assumptions, the asymptotic approximation to the empirical mean is fairly accurate

for all conditions investigated (the relative bias is 5% at most). Nevertheless, it over-

estimates the empirical standard deviation of the dSRMR, and it does not improve

swiftly as sample size increases. As a result, for many nonnormal conditions, the

mean and variance corrected dSRMR statistic provides inaccurate p values.

We illustrate this issue in Figure 2. In this figure, we provide histograms of thedSRMR across all 1,000 replications for two selected conditions. For each condition,

we have plotted a normal reference distribution using the empirical mean and stan-

dard deviation (solid line) and using the expected mean and standard deviation
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Table 3. Accuracy of the Asymptotic Approximation to the Samplig Distribution of the
Sample SRMR Across 1,000 Replications. Test of Normality, Observed Versus Expected Mean
(M) and Standard Deviation (SD).

SRMR Test of normality

Observed Expected (NT) Expected (ADF)

Kurtosis Skewness p N M SD M SD M SD SW p value

0.0 0.0 10 100 0.044 .0060 0.043 .0056 0.043 .0067 .9975 .13
200 0.031 .0040 0.030 .0038 0.030 .0043 .9979 .25
500 0.019 .0024 0.019 .0024 0.019 .0025 .9978 .20

1,000 0.014 .0017 0.014 .0017 0.014 .0017 .9951 \.01
30 100 0.051 .0038 0.051 .0023 0.050 .0045 .9979 .25

200 0.036 .0020 0.036 .0014 0.036 .0024 .9984 .46
500 0.023 .0010 0.023 .0008 0.023 .0012 .9976 .15

1,000 0.016 .0007 0.016 .0006 0.016 .0007 .9988 .78
60 100 0.053 .0034 0.053 .0014 0.052 .0041 .9962 .01

200 0.037 .0018 0.037 .0008 0.037 .0021 .9981 .31
500 0.024 .0008 0.023 .0005 0.023 .0009 .9984 .47

1,000 0.017 .0004 0.017 .0003 0.017 .0005 .9990 .88
3.3 0.0 10 100 0.056 .0072 0.050 .0066 0.054 .0098 .9942 \.01

200 0.039 .0050 0.035 .0044 0.038 .0060 .9951 \.01
500 0.025 .0030 0.022 .0027 0.025 .0033 .9974 .10

1,000 0.017 .0022 0.016 .0019 0.017 .0022 .9944 \.01
30 100 0.066 .0041 0.058 .0028 0.063 .0074 .9979 .26

200 0.046 .0023 0.041 .0017 0.045 .0040 .9980 .30
500 0.029 .0012 0.026 .0010 0.029 .0018 .9989 .83

1,000 0.021 .0008 0.018 .0007 0.020 .0010 .9979 .26
60 100 0.068 .0035 0.060 .0018 0.066 .0070 .9976 .16

200 0.048 .0018 0.042 .0010 0.047 .0036 .9980 .28
500 0.030 .0009 0.027 .0005 0.030 .0015 .9990 .89

1,000 0.021 .0005 0.019 .0004 0.021 .0008 .9993 .99
3.3 22.0 10 100 0.068 .0101 0.051 .0070 0.065 .0129 .9955 \.01

200 0.048 .0064 0.036 .0046 0.047 .0077 .9932 \.01
500 0.030 .0037 0.022 .0028 0.030 .0042 .9976 .14

1,000 0.021 .0026 0.016 .0019 0.021 .0028 .9979 .25
30 100 0.079 .0067 0.059 .0032 0.077 .0104 .9969 .05

200 0.056 .0035 0.042 .0018 0.055 .0055 .9973 .10
500 0.035 .0018 0.026 .0010 0.035 .0024 .9981 .33

1,000 0.025 .0011 0.019 .0007 0.025 .0014 .9984 .50
60 100 0.082 .0060 0.061 .0022 0.080 .0100 .9975 .14

200 0.058 .0032 0.043 .0011 0.057 .0052 .9990 .85
500 0.037 .0013 0.027 .0006 0.036 .0021 .9979 .24

1,000 0.026 .0007 0.019 .0004 0.026 .0011 .9978 .20

Note. SRMR = standardized root mean squared residual; p = number of variables; N = sample size;

NT = under normality; ADF = asymptotically distribution free; SW = Shapiro–Wilk test statistic.
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(dotted line). In both cases, it may be observed that a normal distribution using the

empirical mean and standard deviation provides a very good approximation to the

sampling distribution of the dSRMR. In the condition with N = 500, p = 60, (excess)

kurtosis = 3, and skewness = 0, the expected mean of the dSRMR underestimates the

empirical mean by approximately 1%, but the expected standard deviations overesti-

mates the empirical standard deviation by roughly 54% (see Table 3). The latter has

quite a dramatic effect on the accuracy of the p values obtained using the mean and

variance corrected dSRMR. These are obtained using the dotted line in Figure 2, and

as the figure reveals, p values in the lower tail will be quite inflated.

In the other condition displayed in Figure 2, with N = 1,000, p = 30, (excess) kur-

tosis = 3, and skewness = 0, the relative bias of the expected mean of the dSRMR is

less than 1%, and the relative bias of the expected standard deviation is ‘‘only’’ 23%.

Nevertheless, despite the substantial bias, the left tail probabilities are reasonably

accurate.

As depicted in Figure 2, distribution of the sample SRMR appears to be quite nor-

mal. To further assess the quality of the normal approximation to the distribution of

the sample SRMR, we performed Shapiro and Wilk’s (1965) test of normality for

each of the investigated conditions. We chose this particular test as it has been shown

to be the most powerful to detect departures from normality (Yap & Sim, 2011). The

test statistic ranges from 0 to 1, with 1 indicating perfect fit. In out study, the statistic

ranged from .993 to .999 across conditions (see Table 3), indicating that a normal

distribution provides a good fit to the sampling distribution of the SRMR. We have

also provided in Table 3 p values for this test statistic because they may more clearly

pinpoint conditions under which the normal approximation works best. As it may be

observed in the table, the main driver of the accuracy of the normal approximation is

Figure 2. Empirical distribution of the sample standardized root mean squared residual
(SRMR) and reference normal distributions. (a) p = 60, excess kurtosis = 3, skewness = 0, N
= 500; (b) p = 30, excess kurtosis = 3, skewness = 0, N = 1,000.
Note. Solid line = empirical mean (M) and standard deviation (SD) across 1,000 replications;
dotted line = expected M and SD using asymptotic methods; p values computed using the
expected M and SD and yield adequate Type I errors in (b), but not in (a).
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model size. Specifically, the normal approximation is somewhat poorer when the

number of observed variables is small (i.e., p = 10).

Concluding Remarks

In the current study, we investigated whether a recently proposed test statistic (based

on the SRMR) outperforms the current standard tests to evaluate the exact fit of

structural equation models in terms of Type I errors. We conclude that the answer is

negative. Because the current standard test statistics are a side product of the compu-

tations involved in obtaining maximum likelihood parameter estimates and standard

errors, the current test statistics are to be preferred to the new proposal. We have not

compared the power of both approaches as it only makes sense to compare the power

of test statistics when accurate Type I errors are obtained, which was not the case in

many of the conditions investigated.

The accuracy of the SRMR test of exact fit depends on the accuracy of the refer-

ence nomal distribution to the sampling distribution of the SRMR, and on the accu-

racy of the asymptotic approximation to the empirical mean and standard deviation

of the sampling distribution of the SRMR. We found that the proposed reference nor-

mal distribution provides a good approximation to the sampling distribution of the

SRMR when the model fits exactly, but additional statistical theory is needed to sup-

port the use of this reference distribution. We also found that the asymptotic approxi-

mation to the mean of the SRMR sampling distribution is quite accurate, but that the

asymptotic approximation to the standard deviation is not. Under normality assump-

tions, the asymptotic approximation underestimates the empirical standard deviation;

under asymptotically distribution free assumptions, it overestimates it. The reason for

the differential accuracy of the asymptotic approximations to the empirical mean and

standard deviation is that two terms are used to approximate the mean, but only one

term is used to approximate the standard deviation (for technical details, see Maydeu-

Olivares, 2017a). The present study sugests that a two-term approximation is needed

also for the standard deviation. Further statistical theory is required to obtain a better

asymptotic approximation to the empirical sampling distribution of the SRMR and to

support the use of a reference normal distribution.
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Note

1. To be able to pit the Mplus results against the SRMR cutoff values published in the litera-

ture, Mplus users should use MODEL=NOMEANSTRUCTURE in the ANALYSIS com-

mand. In this case, Mplus computes the SRMR given by Equation (4; Asparouhov &

Muthén, 2018).
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