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Abstract

Singlet oxygen (1O2), as an important active reagent, has found wide applications in 

photodynamic therapy (PDT), synthetic chemistry and materials science. Organic conjugated 

aromatics serving as hosts to capture and release singlet oxygen have been systematically 

investigated over the last decades. Herein, we present a [6+6] organoplatinum(II) metallacycle by 

using ~180° dipyridylanthracene donor and ~120° Pt(II) acceptor as the building blocks, which 

enables the capture and release of singlet oxygen with relatively high photooxygenation and 

thermolysis rate constants. The photooxygenation of the metallacycle to the corresponding 

endoperoxide was performed by sensitized irradiation, and the resulting endoperoxide is stable at 

room temperature and can be stored under ambient condition over months. Upon simple heating 

the neat endoperoxide under inert atmosphere at 120 °C for 4 h, the resulting endoperoxide can be 

reconverted to the corresponding parent form and singlet oxygen. The photooxygenation and 

thermolysis products were characterized by NMR spectroscopy and ESI-TOF-MS analysis. 

Density functional theory calculations were conducted in order to reveal the frontier molecular 

orbital interactions and reactivity. This work provides a new material-platform for singlet oxygen 

related promising applications.

*Corresponding Author: u6014248@utah.edu, linker@uni-potsdam.de, stang@chem.utah.edu.
⊥These authors contributed equally to this work.

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI:
Additional experimental data and characterization spectra, including Table S1 - S2 and Figures S1 – S12.

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2021 February 05.

Published in final edited form as:
J Am Chem Soc. 2020 February 05; 142(5): 2601–2608. doi:10.1021/jacs.9b12693.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Graphical Abstract

INTRODUCTION

Singlet oxygen (1O2) is a metastable excited state of molecular oxygen with the ability to 

oxidize organic and biological compounds, providing a wide range of applications in 

synthetic organic chemistry,1,2 materials science3–12 and photodynamic therapy (PDT).13–18 

In general, there are two methods to generate singlet oxygen via the energy transfer based 

photoexcitation of ground-state oxygen (photosensitization), or as a product in a chemical 

reaction.19–22 In the photosensitization of ground-state oxygen approach, a photosensitizer is 

photoexcited by light and then sensitizing the neigh-bouring ground-state oxygen to produce 

singlet oxygen. However, the photooxygenation technique involves some practical and 

technical challenges, especially for using on a large scale, such as the requirement of the 

simultaneous presence of molecular oxygen and a photosensitizer, light penetration of the 

reaction media, and the limited solubility of the molecular oxygen in solution. Another 

chemical method is also known as “dark” oxygenation, which is a promising alternative to 

address the controllable generation of singlet oxygen. Traditionally, the H2O2/catalyst and 

HOCl/catalyst based inorganic systems rely on cheap reagents and yield singlet oxygen 

quantitively, but typically require an aqueous media condition and show cytotoxicity to the 

cells. Recently, specific aromatic organic compounds have been reported to react with 

singlet oxygen to form the corresponding endoperoxides (EPOs), such as naphthalene, 2-

pyridones and anthracene derivatives.2,23–29 Many kinds of EPOs are able to convert back to 

the parent aromatic organic compounds and singlet oxygen under external thermal, photo or 

chemical stimuli, which allow a clean generation of singlet oxygen without remaining 

oxidation reagents and sensitizers, and are not restricted to the aqueous media. The 

reversibility of the reaction allows applications of EPOs in the area of singlet oxygen 

storage, fluorescent photo-switching and photodynamic therapy. We found that the reactivity 

of the anthracene-based EPOs is dependent on the substituents and the chemical conditions.
30,31 For instance, kinetics of the ortho, meta, and para isomers of 9,10-dipyridylanthracene 

are controlled by the substitution pattern and solvent.32 By using a simple chemical trigger 
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at low temperature, the release of the reactive singlet oxygen from dipyridylanthracene 

EPOs in aqueous media has also been found.25 Besides that, some EPOs are not stable at 

room temperature. The development of room temperature stable EPOs is still highly desired 

for the application of singlet oxygen storage.33,34 Moreover, the reported EPOs are mainly 

based on the polycyclic aromatic hydrocarbons systems, which are still unexplored in the 

field of the discrete organic-inorganic hybrid frameworks.

Supramolecular coordination complexes (SCCs) arising from the methodology of 

coordination-driven self-assembly via the formation of metal-ligand bonds between the 

electron-poor metal acceptors and the rigid electron-rich organic donors, display attractive 

features such as well-defined shapes and sizes, facile building block functionalization and 

modularity, and increased solubilities.35–45 A large number of functional SCCs have been 

produced for applications in host–guest chemistry, materials sciences and medical sciences, 

including two-dimensional (2D) metallacycles and three dimensional (3D) metallacages.
38,46–53 Very recently, an elegant dual-stage metallacycle by using a 1O2 generation 

porphyrin photosensitizer and diarylethene photochromic switch as the functional building 

blocks was reported, which shows the capability to reversibly control 1O2 generation via 

photosensitization.54

Herein, we present a new discrete [6+6] organoplatinum(II) metallacycle containing six 

~180° dipyridylanthracene responsive moieties, which are introduced to allow the capture 

and release of singlet oxygen in the multi reaction sites. Upon the photooxygenation process, 

the six anthracene groups in a discrete metallacycle skeleton react with singlet oxygen to 

afford the metallacycle endoperoxide (M-EPO). The obtained M-EPO is stable under 

ambient condition and can be stored over months. By using the dipyridylanthracene 

endoperoxide ligand as the starting material, the corresponding M-EPO can also be prepared 

by coordination-driven self-assembly. The release of singlet oxygen from the M-EPO was 

performed by heating the M-EPO solid at 120 °C for 4 h under inert condition, which was 

determined by adding a 1O2 trap reagent. Accordingly, the reversible capture and release of 

singlet oxygen in an organoplatinum(II) metallacycle are achieved, which provides a 

promising alternative for the polycyclic aromatic hydrocarbons singlet oxygen reactive 

reagents.

RESULTS AND DISCUSSION

Synthesis and Characterization.

The organic ligands 1and 3 were prepared according to our previous published procedures.32 

Based on the coordination-driven self-assembly methodology, the pyridyl groups terminated 

180 ° organic donor ligands (1, 3) react with 120° diplatinum(II) acceptor (2) to afford [6+6] 

metallacycles 4 and 5. For 4, the reaction was conducted in CH2Cl2/CH3OH (1/1, v/v) at 50 

°C for 10 h. Under similar conditions, metallacycle 5 was synthesized by stirring the starting 

materials at room temperature. The metallacycles were characterized by multinuclear NMR 

(1H NMR, 31P{1H} NMR, 13C NMR) and electrospray ionization time-of-flight mass 

spectrometry (ESI-TOF-MS) analysis. As shown in the 1H NMR spectra of metallacycles 4 
and 5 (Figure 2a), the peaks corresponding to the Hα and Hβ protons of the pyridine groups 

show downfield shifts as compared to the spectra of the free ligands 1 and 3 (Δδ = −0.47, 
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−0.52 ppm for the Hα, Hβ of 4, Δδ = −0.46, −0.47 ppm for the Hα, Hβ of 5, respectively), 

indicating the formation of Pt-pyridyl coordination bonds. In the 31P{1H} NMR spectra of 4 
and 5 (Figure 2b), the sharp singlets (ca. 16.72 ppm for 4, 17.54 ppm for 5) with 

concomitant 195Pt satellites (JPt–P = 2294.9 Hz for 4 and 2294.5 Hz for 5) are observed for 

each of the metallacycles corresponding to a single phosphorus environment. Compared to 

the precursor Pt(II) acceptor 2, these peaks show an upfield shift by approximately 5.52 and 

4.70 ppm for 4 and 5, respectively. Metallacycles 4 and 5 were also studied by 13C NMR. As 

shown in (Figure S7), the 13C NMR spectrum of 5 exhibits a characteristic peak at 83.26 

ppm, suggesting the existence of C-O bonds. This signal is not observed in the 13C NMR 

spectrum of 4.

ESI-TOF-MS is a well established technique to provide evidence for the stoichiometric 

formation of the multi-charged supramolecular coordination complexes. As shown in 

Figures 2c, 2d, a series of mass peaks (from 6+ to 9+) owing to the loss of different numbers 

of trifluoromethanesulfonate groups (OTf−) are found in the ESI-TOF-MS spectra of 4 and 

5. The isotopically resolved peaks with seven positive charges ([M – 7OTf]7+) at m/z = 

1237.21 for 4, 1264.63 for 5 are in agreement with their calculated theoretical distributions 

(Figure S3, S6), further supporting the formation of the discrete [6+6] metallacyclic 

assemblies.

Spectroscopic characterizations.

As shown in Figure 3a, UV–Vis absorption of metallacycle 4 displays the intense vibronic 

band at 340–450 nm arising from the anthracene moieties. In contrast, this band is absent in 

the absorption spectrum of M-EPO 5 due to the formation of endoperoxide, which is 

consistent with the changes of the precursor ligand 1 and 3.32 The emission spectra of 4 and 

5 show a similar phenomenon (Figure 3b). Metallacycle 4 is moderately emissive in acetone 

with the emission quantum yield of ca. 0.23. However, no obvious emission band was 

observed in the solution of M-EPO 5 under the same conditions. The distinct differences of 

the spectroscopic behaviors between 4 and M-EPO 5 afford a facile technique for 

monitoring the reaction of singlet oxygen and provide potential application in the responsive 

switches.

Photooxygenation of 4.

Compound 4 was rapidly photooxygenated to the corresponding endoperoxide (5’) in 

CD3OD (40 mg/4 mL), using methylene blue as sensitizer. The obtained product was studied 

by NMR spectroscopic (1H NMR, 31P{1H} NMR, 13C NMR), ESI-TOF-MS and UV-vis 

spectral analysis. As shown in Figures 4, S7, the 1H NMR, 31P{1H} NMR and 13C NMR 

spectra of endoperoxide (5’) are in agreement with that of the as-prepared complex 5. The 

formation of 5’ was further determined by ESI-TOF-MS analysis. ESI-TOF-MS signals of 

5’ at m/z = 1087.81, 1264.63 and 1500.40 were observed (Figure S8), which are consistent 

with the mass spectral results of the as-prepared complex 5. Hence, the photooxygenation of 

compound 4 affords the endoperoxide (5’) with the same molecular structure as complex 5.

UV/vis measurements were conducted to monitor the photooxygenation of 4 in methanol (or 

MeOH) under solution under pseudo first order reactions conditions (see experimental 
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details in the SI). As shown in Figure S9, the absorption band at 340–450 nm gradually 

decreased during irradiation. To classify the reactivity of complex 4, we performed an 

analogous irradiation experiment with just the precursor ligand 1, which has been 

investigated in our previous work.32 It’s worth noting that complex 4 consists of six reacting 

anthracene moieties, while the ligand 1 has one anthracene group. Thus, to compare the 

reactivity of 1 and 4, concentrations were employed at a ratio of 6:1 for 1 and 4 respectively. 

Complex 4 shows a slower absorption decay at the characteristic band (340–450 nm) than 

the precursor ligand 1 (Figure 5). The slope fits reveal a ratio of ~2/1 between the reactivity 

of 1 and 4. The reduced reactivity of the complex can be ascribed to the appearance of the 

positive charges, which reduce the electron density of the reaction center. This behavior is in 

accordance with our previous studies on acceptor substituents at diarylanthracenes.55 To 

further prove such influences, we also conducted the irradiation experiment with the 

positively charged methylated form 1-Me2+ (Figure 5). In this case the conversion 

proceeded significantly slower (k1-Me2+/k4~1/3.6). Thus, metal coordination of the pyridyl 

site reduces electron density to a minor extend as compared to covalent binding to a methyl 

group. Since the slope of the complex remains linear until completion, we can conclude that 

each anthracene moiety within the complex reacts independently with the absence of 

allosteric effects.

To investigate the reaction possibility of Pt-phosphine ligand with singlet oxygen,56,57 the 

control experiments by using a precursor ligand 6 without anthracene units were performed. 

In this precursor ligand 6, the labile OTf terminal groups of 120° diplatinum(II) acceptor (2) 

were replaced by iodide units. Under the similar photooxygenation conditions, there is no 

obvious shifts in 31P NMR Spectra of 6 before and after irradiation (Figure S10), indicating 

a lack of reactivity between Pt-phosphine ligand and singlet oxygen.

Theoretical calculations.

The reactivity of [4+2] cycloadditions between anthracenes and 1O2 can be predicted by the 

frontier molecular orbital (FMO) theory, based on the energy arising from the overlap 

between the termini of a diene and a dienophile.58 The FMO theory indeed indicated a good 

correlation between the energy of the HOMO of an acene as diene and the rate constant of 

its reaction with 1O2.30,55,59–62

Therefore, with the intention to explain the reduced rate of the complex 4 relative to ligand 1 
and its enhanced reactivity relative to the cationic ligand 1-Me2+, DFT calculations of 1, 1-
Me2+ and the model structure 6 holding the anthracene ligand 1 and two 

[(PMe3)2Pt(C≡CPh)] units, were performed on a B3LYP(LANL2DZ/6–31G*) level. 

Populations of the resulting frontier orbitals with their energies are shown in Figure 6. 

Interestingly, their HOMOs are differently populated: While the HOMOs of the bare ligand 

1 and the cationic species 1-Me2+ show maximal density on the anthracene units, as is 

typical for anthracenes,30 the maximal population of the HOMO of complex 6 is situated at 

the outer two ethynylphenyl units. TDDFT calculations further reveal that the first excited 

state of the complex 6 correspond to a charge transfer from these peripheral units into the 

LUMO (Table S1) at a wavelength of 442 nm, which is consistent with the red-shift in the 

UV/vis spectrum of 4 as compared to the free ligand 1 (Figure S11). The reason for the swap 
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of the two orbital populations is that the pyridyl groups of 6 transfer partial charge from the 

anthracene moiety via the metal center towards the alkynyl moiety (see Mulliken charge 

populations in Figure S12). As a consequence of this difference, the [4+2] 1O2 cycloaddition 

of 6 cannot occur from its HOMO.

The highest occupied orbital of model complex 6, which shows maximum population at the 

acene core lies energetically below the HOMO (HOMO–1) with an energy of −9.41 eV. 

HOMO–1 of 6 lies energetically between the HOMO energies of 1 and 1-Me2+, which is in 

line with the order of reactivities (Figure 6). In summary, FMO theory revealed that the 

calculated energies of the pertinent orbitals of the diene and the reactivities correlate well. 

Thus, N-metal coordination causes weaker stabilization of the acene towards 1O2 than the 

direct introduction of a formal positive charge at the nitrogen atom.

Thermolysis of the endoperoxides. The solid of the obtained endoperoxide 5’ and as-

prepared complex 5 was directly heated at 120 °C for 4 h with no solvent to fully regenerate 

the parent complex (4’). Complex 4’ was characterized by 1H NMR, 31P{1H} NMR, and 

ESI-TOF-MS analysis. As shown in Figure 6, upon heating complex 5 at 120 °C in an inert 

atmosphere for 4 h, the 1H NMR and 31P{1H} NMR of 4’ exhibit the characteristics of 

complex 4. ESI-TOF-MS spectrum of 4’ shows a series of mass peaks at m/z = 928.95, 

1040.32 and 1468.43 (Figure S13). These mass signals can also be observed in the mass 

spectrum of compound 4 (Figure S3), which further confirm the reconversion of the M-EPO.

An investigation of the reconversion M-EPO kinetics was complicated by the lack of a 

suitable solvent, in which the complex remained stable. High boiling solvents such as DMF 

or DMSO, cause the decomposition of the complex. However, we could investigate the 

reconversion of M-EPO by multiple cycles of heating the neat sample followed by 

measuring the UV/vis absorption spectrum in a defined volume of acetone and removal of 

solvent. As shown in Figure 8, the kinetics follows a clean first order process with a half-life 

of 2.6 h at 90°C. Thus, the M-EPO 5 reconverts significantly faster to its parent form than 

the free ligand EPO 3 (9.6 h at 90°C).32 Its worth noting that the complex remained stable 

throughout the thermolysis process since no traces of free ligand 1 were found in the 1H 

NMR or UV/vis-spectra.

Release of Singlet Oxygen.

In order to verify that a fraction of the released oxygen is in its singlet state, a solution of the 
1O2 trapping reagent 1,3-diphenylisobenzofurane (DPBF) in toluene was added to the M-

EPO. By measuring the DPBF absorbance at 413 nm, a full consumption of the trap was 

observed upon heating a tenfold excess of the M-EPO 5 at 110 °C (Figure 9). To quantify 

the amount of 1O2 released per M-EPO complex, transfer experiments to DPBF were 

performed with an excess of the trapping reagent in deuterated solvent in order to keep the 

fraction of 1O2 solvent quenching as low as possible. The average of these experiments 

revealed that 28±4% of the released oxygen is in its excited state.
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CONCLUSION

In summary, we have prepared two supramolecular metallacycles by the coordination-driven 

self-assembly of a ~120° Pt(II) acceptor with a ~180° dipyridyl donor or its corresponding 

endoperoxide. As the comparative study with the corresponding as-prepared endoperoxide 

shows, the reversible capture and release of singlet oxygen was realized in this 

multidipyridylanthracene-bridged organoplatinum(II) metallacycle. The products of the 

photooxygenation and thermolysis were fully characterized by a combination of NMR 

experiments and ESI-TOF-MS measurements. UV/vis analysis provides further kinetic 

results about the photooxygenation and thermolysis of the metallacycle, indicating that the 

photooxygenation kinetic rate constant of the metallacycle lies between the rate constant of 

the free ligand and the rate of its corresponding dicationic form 1-Me2+. The thermolysis of 

the resulting M-EPO affords re-generation of the parent complex under release of singlet 

oxygen. Moreover, a faster re-generation of singlet oxygen from the M-EPO 5 is observed 

compared to the free ligand EPO 3. This work paves a new pathway to achieve the reversible 

capture and release of singlet oxygen by using supramolecular coordination complexes.

EXPERIMENTAL SECTION

Materials and Methods.

All reagents were commercially available and used as supplied without further purification 

(I assume that they are still available). 1H NMR and 13C NMR spectra were recorded on a 

Varian Inova 500 MHz spectrometer. 31P{1H} NMR spectra were measured on a Varian 

Unity 300 MHz spectrometer, using an external unlocked sample of 85% H3PO4 (δ = 0) as 

reference. ESI-TOF-MS were recorded on a Waters Synapt G2 mass spectrometer. 

Absorption and fluorescence spectra were recorded on a Hitachi U-4100 and Hitachi F-7000 

Spectrophotometer, equipped with 1 cm quartz cuvettes from Starna Cells, Inc. DFT and 

TDDFT calculations were carried out using the B3LYP exchange correlation function and 

implemented in the Gaussian 09 package.62

Synthesis of 4.

9,10-Bis(4-pyridyl)anthracene (1, 3.32 mg, 10.0 μmol) and 2 (12.85 mg, 10.0 μmol) were 

mixed in CH2Cl2/CH3OH (3 mL/3 mL). The resulting solution was stirred at 50 °C for 10 h. 

After cooling to rt, the system was then concentrated by flushing with N2 gas. The resulting 

yellow solid was collected without further purification to give compound 1 in quantitative 

yield (>99%). 1H NMR (500 MHz, Acetone-d6): δ 9.37 (d, J = 7.5 Hz, 24H), 8.04 (d, J = 7.0 

Hz, 24H), 7.56–7.65 (m, overlapped, 48H), 7.44 (s, 6H), 7.33–7.34 (m, overlapped, 18H), 

2.15–2.18 (m, overlapped, 144H), 1.32–1.40 (m, overlapped, 216H). 31P{1H} NMR (121.4 

MHz, Acetone-d6): δ 16.72 (s, 195Pt satellites, 1JPt–P = 2294.9 Hz). ESI-TOF-MS calcd for 

[M – 7OTf]7+ (m/z): 1237.21. Found: 1237.21.

Synthesis of 5.

Complex 5 was prepared under the similar procedure for the synthesis of 4. Ligands 2 and 3 
were stirred in CH2Cl2/CH3OH (3 mL/3 mL) at room temperature for 10 h to afford the 

white solid product 5 in quantitative yield (>99%). 1H NMR (500 MHz, Acetone-d6): δ 9.38 
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(d, J = 8.0 Hz, 24H), 8.15 (d, J = 8.5 Hz, 24H), 7.22–7.41 (m, overlapped, 72H), 2.08–2.12 

(m, overlapped, 144H), 1.27–1.38 (m, overlapped, 216H). 31P{1H} NMR (121.4 MHz, 

Acetone-d6): δ 17.01 (s, 195Pt satellites, 1JPt–P = 2294.5 Hz). ESI-TOF-MS calcd for [M – 

7OTf]7+ (m/z): 1264.78. Found: 1264.77.

Preparative photooxygenation of 4 to give 5’.

To a solution of complex 4 in CD3OD (40 mg/4 mL) in a pyrex glass tube was added 

methylene blue (1 mg). The tube was irradiated for 30 min by using a 300 W sodium lamp at 

5 °C, while oxygen was bubbled through the solution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Synthetic routes to metallacycles M1 and M2.
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Figure 2. 
(a) Partial 1H NMR (500 MHz, acetone-d6, 298 K), (b) 31P{1H} NMR (121.4 MHz, 

acetone-d6, 298 K) and (c, d) ESITOF-MS spectra of compounds studied in this work.
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Figure 3. 
(a) Absorption and (b) emission spectra of 4 and 5 in acetone (c = 2.0 × 10−6 M, λex = 350 

nm).
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Figure 4. 
Partial (a) 1H NMR (500 MHz, acetone-d6, 298 K) and (b) 31P{1H} NMR (121.4 MHz, 

acetone-d6, 298 K) of complexes 4, 5’, 5.
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Figure 5. 
The absorbance decays of complex 4, ligand 1 and its cationic methylated form 1-Me2+ 

caused by photooxygenation in CD3OD, depicted as semilogarithmic plots.
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Figure 6. 
Populations and energies of the HOMOs and HOMO–1 of the model complex 6, the ligand 1 
and its methylated cationic form 1-Me2+.
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Figure 7. 
Partial (a) 1H NMR (500 MHz, acetone-d6, 298 K) and (b) 31P{1H} NMR (121.4 MHz, 

acetone-d6, 298 K) of complexes 5, 4’, 4.
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Figure 8. 
(a) UV/vis spectra showing the reappearance of 4’ upon heating of 5 (colored curves) and 

the free ligand 1 for comparison; (b) semi-logarithmic plot of disappearing M-EPO 5 as 

derived from the absorbances.
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Figure 9. 
Reaction of DPBF with 1O2 generated upon thermolysis of the M-EPO 5.
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