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Burkholderia cenocepacia infections are difficult to treat due to resistance, biofilm formation and persistence.
B. cenocepacia strain J2315 has a large multi-replicon genome (8.06Mb) and the function of a large fraction of
(conserved) hypothetical genes remains elusive. The goal of the present study is to elucidate the role of small
proteins in B. cenocepacia, focusing on genes smaller than 300 base pairs of which the function is unknown.
Almost 10% (572) of the B. cenocepacia J2315 genes are smaller than 300 base pairs and more than half of these
are annotated as coding for hypothetical proteins. For 234 of them no similarity could be found with non-
hypothetical genes in other bacteria using BLAST. Using available RNA sequencing data obtained from bio-
films, a list of 27 highly expressed B. cenocepacia J2315 genes coding for small proteins was compiled. For nine of
them expression in biofilms was also confirmed using LC-MS based proteomics and/or expression was confirmed
using eGFP translational fusions. Overexpression of two of these genes negatively impacted growth, whereas for
four others overexpression led to an increase in biofilm biomass. Overexpression did not have an influence on the
MIC for tobramycin, ciprofloxacin or meropenem but for five small protein encoding genes, overexpression had an
effect on the number of persister cells in biofilms. While there were no significant differences in adherence to and
invasion of A549 epithelial cells between the overexpression mutants and the WT, significant differences were
observed in intracellular growth/survival. Finally, the small protein BCAM0271 was identified as an antitoxin
belonging to a toxin-antitoxin module. The toxin was found to encode a tRNA acetylase that inhibits translation.
In conclusion, our results confirm that small proteins are present in the genome of B. cenocepacia J2315 and
indicate that they are involved in various biological processes, including biofilm formation, persistence and
intracellular growth.
1. Introduction

Burkholderia cenocepacia J2315 is a member of the Burkholderia
cepacia complex (Bcc), a group of opportunistic pathogens that can cause
severe lung infections in cystic fibrosis (CF) patients [1,2]. Infections are
often difficult to treat due to resistance, biofilm formation and persis-
tence [3]. Biofilms consist of aggregated cells embedded in an extracel-
lular polymeric matrix [4]. Persisters are highly-specialised cells that can
be part of the biofilm and are able to survive an antibacterial treatment
that results in killing of most of the bacterial population [5]. Despite their
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importance in treatment failure, the actual mechanisms involved in the
formation and maintenance of these persister cells in biofilms are still
largely unknown.

B. cenocepacia strain J2315 has a large multi-replicon genome
(8.06Mb) and the function of a large fraction of genes annotated as
“hypothetical” or “conserved hypothetical” is still unknown [6]. While
previous research has predominantly focussed on larger proteins, evi-
dence is accumulating that genes encoding polypeptides with a length
between 10 and 200 amino acids (but usually smaller than 100 amino
acids) are ubiquitous in the genomes of all living organisms and are
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involved in various biological processes [7,8]. These small proteins are
found in nearly all subclasses of functional groups of the COG database
and on average approximately 10% of the protein-coding genes belong to
this group [9]. Some well-known small proteins include chaperonin Hsp
10, translation initiation factor IF-1 and several ribosomal proteins (e.g.
S17, S19, L27 and L30). Despite their potential involvement in important
cellular processes, the exact function of the majority of small proteins is
still unknown.

Toxin antitoxin (TA)-modules form a special group of small proteins
known to be involved in various essential cellular processes including cell
cycle control and biofilm formation [10]. Type II TA-modules generally
encode small proteins and consist of a toxin, which can inhibit an
important cellular function and an antitoxin which can form a complex
with the toxin, thereby inactivating it [11]. Those modules are negatively
auto-regulated by binding of the antitoxin alone or the toxin-antitoxin
combination to the promoter sequence. Toxins are typically between
31 and 204 amino acids long whereas antitoxins consist of 41 up to 206
amino acids [12].

The goal of the present study is to elucidate the role of selected small
proteins in B. cenocepacia biofilm formation, persistence and virulence.

2. Material and methods

2.1. Strains and culture conditions

The strains and plasmids used in the present study are shown in
Table 1. Strains were cultured at 37 �C on Luria-Bertani agar (LBA,
Table 1
Strains and plasmids used in the present study. TpR: trimethoprim resistance
marker, CmR: chloramphenicol resistance marker.

Strain Information Source (reference)

B. cenocepacia
J2315 (LMG16656) CF patient, UK BCCM/LMG Bacteria

Collection
Overexpression mutants
Vector control J2315 pScrhaB2 empty vector, TpR [27]

J2315 pScrhaB2 BCAL0008a, TpR This study
J2315 pScrhaB2 BCAL0683, TpR This study
J2315 pScrhaB2 BCAL2532, TpR This study
J2315 pScrhaB2 BCAL2734, TpR This study
J2315 pScrhaB2 BCAL3186, TpR This study
J2315 pScrhaB2 BCAM0271, TpR This study
J2315 pScrhaB2 BCAM0971, TpR This study
J2315 pScrhaB2 BCAM2623, TpR This study
J2315 pScrhaB2 pBCA050, TpR This study

eGFP translational fusion reporters
Vector control J2315 pJH2 empty vector, CmR [24]

J2315 pJH2 BCAL0008a, CmR This study
J2315 pJH2 BCAL0683, CmR This study
J2315 pJH2 BCAL2523, CmR This study
J2315 pJH2 BCAL2734, CmR This study

J2315 pJH2 BCAM0271, CmR This study

J2315 pJH2 BCAM2623, CmR This study

E. coli DH5α BCCM/LMG Bacteria
Collection

E. coli DH5α
BCAM0271-2

pScrhaB2 BCAM0271-2, TpR This study

E. coli helper pRK2013 [26]
E. coli DJ624Δara
BCAM0272

pBAD33 BCAM0272 This study

E.coli DJ624Δara MG1655, lac Iq, Δara [44]
Plasmids
pBAD33 P15A, CmR, pBAD promoter [44]
pJH2 promoter eGFP replaced with

multiple cloning site, CmR
[24]

pScrhaB2 oripBBR1rhaR, rhaS, PrhaB
TpRmobþ

[27]
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Oxoid). Overnight cultures were diluted in Luria-Bertani broth (LBB,
Oxoid) and incubated aerobically at 37 �C. Where appropriate, the
following antibiotics were added for plasmid selection: chloramphenicol
(Cm) (Sigma-Aldrich), gentamicin (Sigma-Aldrich), kanamycin (Sigma-
Aldrich) and trimethoprim (Tp) (Ludeco). Overexpression mutants were
grown in LBB supplemented with Tp at 800 μg/ml with or without 0.2%
(w/v) rhamnose (Sigma-Aldrich).

2.2. Identification of small proteins with unknown function

The Burkholderia genome database was used to select proteins of
20–100 amino acids in size that were annotated as hypothetical [13].
Using BLASTP we searched for similarity with non-hypothetical proteins
in other bacteria and conservation in Burkholderia. The cut-off E-value
and the identity threshold used in this analysis were 10�5 and 40%,
respectively. Only well annotated genomes were used for assessing
conservation [14]. These included for the Bcc: Burkholderia cenocepacia
K56-2, H111, AU1054, HI2424 and MC0-3, Burkholderia lata 383, Bur-
kholderia vietnamiensis G4, Burkholderia multivorans ATCC 17616, Bur-
kholderia ambifaria AMMD, Burkholderia contaminans MS14, Burkholderia
dolosa AU0158, Burkholderia cepacia GG4 and Burkholderia pyrrocinia
DSM 10685; for the Burkholderia pseudomallei group: Burkholderia thai-
landensis E264, Burkholderia pseudomallei K96243, Burkholderia mallei
ATCC 23344; and for the other Burkholderia species: Burkholderia xen-
ovorans LB400, Burkholderia phytofirmans PsJN, Burkholderia gladioli
BSR3, Burkholderia phymatum STM815, Burkholderia glumae BGR1 and
Burkholderia rhizoxinia HKI 454. Proteins were considered to be
conserved if present in at least 11 of the 13 searched Bcc species, in all
species of the B. pseudomallei group or in 5 of the 6 species of the other
Burkholderia species [14].

2.3. Expression of small proteins

Available transcriptomic datasets [3,15–18] were used to determine
which small proteins are expressed during various stress conditions.
Based on Van Acker et al. (2014) small proteins highly expressed in
biofilms were selected [17]. In this study the number of reads assigned to
a transcript was divided by the transcript length and normalized to the
number of mapped reads to obtain reads per kb per million (RPKM)
expression values. Genes with an RPKM >200 were considered highly
expressed. For these proteins the transcription start site was determined
based on published data from differential RNA sequencing [19]. To
confirm expression of these genes, two different approaches were used,
LC-MS based proteomics and use of translational fusion reporters in
which the gene encoding a putative small protein was fused with an
eGFP-encoding gene.

2.4. LC-MS based proteomics

Biofilms were grown as described below. After 24 h cells were har-
vested by vortexing and sonication (2 � 5 min) (Branson 3510, Branson
Ultrasonics Corp, Danbury, CT) and transferred to falcon tubes. Falcon
tubes were subsequently centrifuged for 9 min at 5000 rpm and the su-
pernatant was removed. Protein extraction was performed by using the
R1-R3 extraction kit (Bio-Rad). For this, the cell pellet was resuspended
in 500 μL of R1 buffer supplemented with benzonase (1 μl/ml) and
protease inhibitor cocktail (1 x), and 0.5 mg/ml lysozyme, 1 mM
dithiothreitol (DTT). The samples were sonicated for 10 min followed by
centrifugation (5 min, 15 000 rpm). The supernatant was removed and
vacuum-dried in a vaccuum concentrator (CentriVap, Labconco). The
remaining pellet was dissolved in ready-prep R3 buffer (Biognosys). After
vortexing and centrifuging the sample, the supernatant was removed and
vacuum-dried. In order to enrich the small proteins in the samples, SDS-
PAGE was performed on a Criterion TGX 4–15% gel (Bio-Rad). The
samples were resuspended in 10 μl Laemmli buffer (R1þR3 pooled) and
1 μl β-mercaptoethanol followed by incubation for 10 min at 95 �C. The
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denaturated samples were loaded on the gel together with a Precision
Plus Protein All Blue Standard (Bio-Rad). After running the gel for 30 min
at 150 V and 60 min at 200 V, a cut-off point for the small proteins was
chosen at 25 kDa. To obtain peptides suitable for LC-MS-analysis, the
small proteins were digested in-gel as described before [20]. Briefly, the
gel-pieces were washed three times for 10min with a 25mM tri-ethyl
ammoniumbicarbonate (TEABC), 50% (v/v) acetonitrile (ACN) solu-
tion, followed by reduction of the proteins with 10mM DTT in 25mM
TEABC for 1 h at 56 �C and alkylation with 200mM S-methyl--
methanethiosulfonate (MMTS) for 1 h at room temperature. After per-
forming another wash-step, the gel-pieces were dehydrated with 100%
ACN (2x) and vacuum-dried. Next, tryptic digest was performed by
incubating the gel-pieces overnight at 37 �C in a 10 ng/μl tryptic solution
(1mM CaCl2, 5% (v/v) ACN and 50mM TEABC). The supernatant was
removed and vacuum-dried. The remaining gel-pieces were subjected to
a sequential peptide extraction with an increasing amount of ACN
(50%-75%–100% (v/v)) in 25mM TEABC for 30min, after which, each
supernatant was pooled with the first (vacuum-dried) supernatant. The
peptide samples were subsequently dissolved in 20 μl 0.1% formic acid
and spiked with Hi3 E. coli standard (Waters) to a final concentration of
25 fmol/μl. Equal fractions of all samples were pooled to generate quality
control samples to assess system stability during the LC-MS analysis and
to enhance alignment during data-analysis. The LC separation was per-
formed by a nanoACQUITY UPLC system (Waters) equipped with a trap
column (180 μm� 20mm nanoACQUITY UPLC 2G-V/MTrap 5 μm
Symmetry C18, Waters) and an analytical column (100 μm� 100mm
nanoACQUITY UPLC 1.7 μm Peptide BEH, Waters). The system was
operated with running buffer A (0.1% formic acid, 3% DMSO) and B
(0.1% formic acid, 99.9% ACN) to enable gradient elution of the peptides
according to their physicochemical properties. Trapping mode was used,
which implies that peptides were first collected in the trap column at a
flow rate of 8 μl/min for 2min with 99.5% buffer A (full retention),
followed by transfer to and separation on the analytical column with a
60min gradient elution profile from 3% to 40% buffer B, at a flow rate of
0.3 μl/min. MS data acquisition was performed by an ESI-Q-TOF Synapt
G2-Si (Waters), operated in positive mode. To ensure maximum coverage
of the small proteins, all samples were analysed label-free with both
data-dependent and data-independent acquisition (DDA and DIA). For
DDA, full scan MS and MS/MS spectra (m/z 50-5000) were acquired in
sensitivity mode. The survey MS scans were acquired using fixed scan
times of 200 ms. The subsequent tandem mass spectra were acquired on
fragment ions with a minimum intensity of 2 000 cps, derived from
maximum eight precursors with a charge state 2 þ or higher, using
collision induced dissociation. MS/MS scan time was set to 100 ms with
an accumulated ion count of 200.000 cps. Dynamic exclusion of the
fragmented precursor ions was set to 30 s. Ion mobility wave velocity was
ramped from 2500 to 400 m/s in MS/MS to enable wideband enhance-
ment in order to obtain a near 100% duty cycle on singly-charged frag-
ment ions, so called HD-DDA. For DIA, both low- and high-energy (i.e.
precursor- and fragment ions) scans (m/z 50-2000) were acquired
alternately using fixed scan times of 600ms, so-called ultradefinitionMSE

acquisition [21]; for the high-energy scans, an in-house optimised colli-
sion energy look-up table was used. Ion mobility wave velocity was
ramped from 1200 to 350m/s. For both acquisitions, a simultaneous lock
spray on glufibrinopeptide-B (m/z 785.8427) was acquired at a scan rate
of 30 s to enable m/z-calibration.

Both DDA and DIA datasets were imported into Progenesis QIP (Non-
linear Dynamics). After m/z calibration, peak picking, and alignment of
the different samples, an *.mgf file was exported from the DDA-analysis
and imported into the Mascot Daemon search engine. To identify the
proteins, a database search was performed against Burkholderia [13]
supplemented with contaminants from the cRAP Database [22] and the
small proteins. For this, parameters were set to a peptide mass tolerance
of 10 ppm, fragment mass tolerance of 0.3 Da, and trypsin as enzyme
specificity; methylthio on cysteine was set as fixed modification and
deamidation of asparagine/glutamine and oxidation of methionine were
3

set as variable modifications. A SynaptG2Si instrument was defined
in-house to only account for singly-charged ions as these are the only
ones generated during HDDDA acquisition. Subsequently, the identifi-
cations were exported as an *.xml file and imported back into Progenesis
QIP to match the identifications with the peptide ion intensities. The
DIA-data was identified using the Ion Accounting (IAdb) search algo-
rithm imbedded in Progenesis QIP. The mass tolerance was set to auto-
matic, enzyme specificity and modifications were kept identical to the
previous search, as well as the supplemented Burkholderia database. The
mass spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE [23] partner repository with the
dataset identifier PXD011198 and 10.6019/PXD011198.

2.5. Construction of eGFP translational fusion reporters in B. cenocepacia

Translational GFP reporter fusion plasmids [24] were constructed and
the production of an eGFP (“enhanced” GFP) protein was used as a
marker of small protein expression. Six genes with identified transcrip-
tion start sites (TSS) were chosen from our list of genes that are highly
expressed in biofilms (BCAL0008a, BCAL0683, BCAL2532, BCAL2734,
BCAM0271 and BCAM2623). The 50UTR plus approx. 150 nucleotides,
presumably containing the native promoter region, upstream of the TSS
and up to 50 nucleotides of the coding region were amplified by PCR
using a Phusion High Fidelity PCR Kit (Biok�e NEB). The primers and
annealing temperature are listed in Table S1. Cycling conditions were
30 s at 98 �C, 30 cycles of 10 s at 98 �C, 30 s at 60 or 65 �C, 24 s at 72 �C,
and finally 10min at 72 �C. PCR products were purified with a Nucleo-
spin Gel and PCR Clean-up (Macherey-Nagel), digested with NdeI
(Promega) and BglII (Promega), purified, and subsequently ligated into a
plasmid pJH2 [24], containing a Cm selection marker and the eGFP
sequence lacking the startcodon. The CaCl2 method was used to trans-
form the plasmid into E. coli DH5α [25]. Resistant colonies were isolated
and screened for the presence of the construct. Plasmids were transferred
into B. cenocepacia J2315 by triparental mating using pRK2013 as a
helper plasmid [26]. Exconjugants were selected on LBA plates supple-
mented with 200 μg/ml Cm and 50 μg/ml gentamicin and screened.
Plasmid extraction, PCR (primers in Table S1) and agarose gel electro-
phoresis were performed to determine the presence of the correct insert.
In addition, Sanger sequencing was performed for the reporters for which
no fluorescence could be observed.

2.6. Flow cytometry

To determine the expression of small proteins by B. cenocepacia, the
eGFP production from small protein translational fusion reporters was
determined using flow cytometry analysis. To this end, biofilms of the
different eGFP translational fusion reporters were grown as described
below. After 24 h cells were washed to remove non-adherent cells, har-
vested by thoroughly pipeting up and down and transferred to a new 96
well microtiter plate. Cell supensions were diluted 1/1000 to obtain
approx. 106 CFU/ml and analysed by flow cytometry (Attune NxT, Life
Technologies). Bacteria were defined based on the forward and side
scatter signal, and a threshold was set to exclude non-cellular particles
and cell debris. Excitation wavelength was 488 nm and fluorescence
emission was detected through a 530/30 bandpass filter. At least 10,000
bacteria were analysed per sample and the average eGFP signal in the
bacterial population was determined. Two wells were included per
condition and the experiment was repeated twice (n¼ 3� 2).

2.7. Construction of B. cenocepacia overexpression mutants

To study the role of different small proteins, overexpression mutants
were constructed in B. cenocepacia J2315 (LMG16656) as described
previously [3]. The primers and specific cycling conditions are listed in
Table S1. Cycling conditions were 30 s at 98 �C, 30 cycles of 10 s at 98 �C,
30 s at 55 �C, 60 �C or 65 �C, 24 s at 72 �C and finally 10min at 72 �C.
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PCR-products were digested using NdeI and XbaI and ligated into a
plasmid pSCrhaB2 [27], containing a rhamnose-inducible promotor and
a Tp selection marker.

2.8. Measurement of planktonic growth

To study the influence of small proteins on growth, overnight cultures
(16 h, 250 rpm) of the constructed overexpression mutants were diluted
to an optical density (λ¼ 590 nm) of 0.05 (approx. 5� 107 CFU/ml) in
LBB supplemented with 0.2% (w/v) rhamnose. 50 μl of this suspension
was added to the wells of a 24 well microtiter plate (TPP) and mixed with
950 μl LBB supplemented with 0.2% (w/v) rhamnose. To study growth in
different conditions, 10 μl of the suspension was added to the wells of a
96 well U-shaped microtiter plate (TPP) and mixed with 190 μl medium.
Eight different media were tested: LBB, 1/10 diluted LBB, LBB set to pH
4.2 or 8.2, and LBB with 1.5% (w/v) NaCl, 0.015% (w/v) SDS, 0.045%
(w/v) NaOCl, or 0.25mM 2,20-bipyridyl. Plates were incubated at 37 �C
and the absorbance was measured at 590 nm every 30min for three days
in an Envision multilabel plate reader (PerkinElmer). One to three wells
per strain were included in the experiments with a 24- or 96-well mi-
crotiter plate, respectively, and the experiment was performed twice.

2.9. Biofilm formation

To measure differences in biomass between vector control and
overexpression mutants, an inoculum suspension containing approx.
5� 107 CFU/ml was added to the wells of a round-bottomed 96-well
microtiter plate (TPP). Ten wells per strain were included and the
experiment was performed at least three times. Biofilms were grown in
LBB supplemented with Tp and 0.2% (w/v) rhamnose to induce
expression of the respective small proteins. Following four hours of
adhesion, the supernatant was removed and the plates were rinsed with
physiological saline (0.9% w/v NaCl,PS). Subsequently, 100 μl of fresh
LBB supplemented with Tp and 0.2% (w/v) rhamnose was added and the
plates were further incubated at 37 �C. After 24 h, the supernatant was
removed, wells were rinsed with 100 μl PS and 100 μl of a 99% (v/v)
methanol solution (Sigma) was added for 15min. Methanol was removed
and plates were dried at 37 �C. When all residual methanol was evapo-
rated, 100 μl of a 0.1% (v/v) crystal violet stain (Prolab Diagnostics) was
added for 20min. Plates were rinsed with water and 150 μl of a 33%
acetic acid solution was added for five minutes. After shaking, absorption
was measured at 590 nm [28].

2.10. Confocal laser scanning microscopy

Biofilms of the vector control and overexpression mutants were
grown in wells of a black 96-well plate with glass bottom (Greiner Bio-
one) in LBB supplemented with Tp and rhamnose as described above.
After 24 h of growth, the wells were rinsed with PS and filled with 100 μl
staining solution (containing 1ml PS, 3 μl SYTO9 and 3 μl propidium
iodide). The plates were incubated in the dark for 15min at room tem-
perature and the biofilm was visualized with a Nikon C1 confocal laser
scanning module attached to a motorized Nikon TE2000-E inverted mi-
croscope (Nikon Benelux) equipped with a CFI Plan Apo VC 60� 1.4 NA
oil immersion objective (Nikon) to obtain fluorescent images and Z-
stacks. A 488 nm continuous wave laser (Coherent Sapphire) was used for
excitation of SYTO9. Images were obtained from at least two biofilms for
each strain and representative images are shown.

2.11. Determination of the minimal inhibitory concentration (MIC)

MICs were determined in duplicate according to the EUCAST broth
microdilution protocol using flat-bottom 96-well microtiter plates (TPP)
[29]. Tobramycin (Tob) (TCI Europe), meropenem (Mer) (Astrazeneca)
and ciprofloxacin (Cip) (Sigma Aldrich) concentrations tested ranged
from 0.25 to 1024 μg/ml (Tob) and from 0.25 to 128 μg/ml (Mer, Cip).
4

The MIC was defined as the lowest concentration for which no significant
difference in optical density (λ¼ 590 nm) was observed between the
inoculated and blank wells after 24 h incubation. All MIC determinations
were performed in duplicate.

2.12. Quantification of persister cells

To determine the number of surviving persisters, 24 h old biofilms
were exposed to Tob or Cip in a concentration of 4 x MIC (1024 or 32 μg/
ml, respectively) for 24 h [3]. Biofilms were grown as described above.
After 24 h of growth, 120 μl of an antibiotic solution in PS or 120 μl PS
(control) was added and the plates were incubated for an additional
24 h at 37 �C. Twelve wells were included per condition. Cells were
harvested by vortexing and sonication (2� 5min) (Branson 3510,
Branson Ultrasonics Corp) and quantified by plating on LBA (n� 3 for all
experiments).

2.13. Adhesion, invasion and intracellular growth/survival in lung
epithelial cells

A549 lung epithelial cells (ATCC CCL-185) were maintained in GTSF-
2 medium supplemented with 2.5mg/l insulin transferrin selenite (ITS,
Sigma-Aldrich), 1.5 g/l sodium bicarbonate, and 10% (v/v) heat inacti-
vated foetal bovine serum (FBS, Life Technologies) at 37 �C under 5%
CO2. 2.5� 104 A549 cells were added per well in 24-well plates (1ml
volume) (SPL Life Sciences), and incubated until confluency was reached
(96 h). At the time of infection, the monolayer was rinsed three times
with Hanks’ Balanced Salt Solution (HBSS, Life Technologies) and cell
culture medium without FBS was added. For studies involving the in-
duction of small proteins, 0.2% (w/v) rhamnose was added to the cell
culture medium. Overnight cultures of the vector control or the different
small protein overexpression mutants were resuspended in cell culture
medium and added to the cells at a multiplicity of infection (MOI) of
approx. 100:1. To investigate the influence of the different small proteins
on adhesion, invasion and intracellular survival, an antibiotic protection
assay was developed. After 2 h of infection, the wells were rinsed twice
with HBSS followed by either 1) the addition of 1% (v/v) Triton X-100 to
lyse host cells, vigorous mixing and plating to determine the number of
adhered and/or invaded cells or 2) the addition of an antibiotic solution
containing 1 mg/ml amikacin, ceftazidime and meropenem in cell cul-
ture medium for 2 h to kill the extracellular bacteria. After treatment,
cells were again rinsed twice with HBSS followed by 1) the addition of
1% (v/v) Triton X-100, vigorous mixing and plating to determine the
number of invading bacteria or 2) the addition of an antibiotic solution
containing 0.01mg/ml amikacin, ceftazidime and meropenem to inhibit
growth of extracellular bacteria. After 24 h, the remaining wells were
washed, followed by the addition of 1% (v/v) Triton X-100, vigorous
mixing and plating to determine intracellular growth/survival. As a
control to ensure the absence of extracellular bacteria, the supernatant
was plated. Plates were incubated for 48 h to determine the CFU/ml
(n¼ 4).

To determine the fraction of adhering cells, the number of CFU
recovered two hours after infection was compared to the initial inoc-
ulum. The fraction of cells capable of invading epithelial cells was
determined by comparing the number of adhering cells (determined 2 h
after infection) with the number of cells recovered after an additional 2 h
treatment with antibiotics (¼ 4 h post infection). The number of cells
capable of prolonged intracellular survival (or even intracellular growth)
is calculated based on the number of CFU recovered after 24 h compared
to the number of CFU recovered 4 h after infection.

2.14. Fluorescence microscopy of infected A549 lung epithelial cells

Expression of the small proteins by B. cenocepacia in the presence of
A549 cells was evaluated after 24 h infection using the translational
fusion reporters. To this end, A549 cells were infected and treated as
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described above for the antibiotic protection assay, to determine the
expression of small proteins in the intracellular bacteria (24 h time
point). After 24 h infection, the cells were washed and fluorescent and
light microscopic images were taken using an EVOS FL Auto Imaging
System (Life Technologies) at 300 x magnification. The same settings
were used to record pictures of cells infected with the different reporter
strains. Experiments were performed in biological and technical dupli-
cates and a representative image is shown.

2.15. Cytotoxicity assay

To investigate the influence of the different small protein over-
expression mutants on cytotoxicity, cell viability was evaluated based on
a lactate dehydrogenase (LDH) assay. The LDH activity assay kit (Sigma)
was used to measure the release of cytosolic LDH by the lung epithelial
cells following exposure to vector control and overexpression mutants.
Medium from monolayers infected at an MOI of 100 for 48 h was
centrifuged for 15min at 3700 rpm. The supernatant was used for LDH
quantification following the manufacturer's instructions. A standard
curve using NADH was included. As a positive control, lung epithelial
cells were lysed with 1ml 1% (v/v) Triton-X100. The experiments were
performed in triplicate (n¼ 3� 2). The data are presented as a per-
centage of LDH release from the positive control.

2.16. Effect of expression of BCAM0271-BCAM0272 in E. coli on growth

To investigate whether BCAM0271-2 encodes a TA-module, plasmids
containing either the toxin BCAM0272 alone or both genes were con-
structed, transformed into E. coli DJ624Δara or DH5α, respectively, after
which growth was evaluated. The primers are listed in Table S1. Cycling
conditions were 120 s at 98 �C, 30 cycles of 10 s at 98 �C, 20 s at 62 �C,
30 s at 72 �C for BCAM0272 and 30 s at 98 �C, 30 cycles of 10 s at 98 �C,
30 s at 55 �C, 24 s at 72 �C and finally 10min at 72 �C for BCAM0271-2.
PCR-products were digested using XbaI and PstI (BCAM0272) or NdeI
and XbaI (BCAM0271-2) and ligated into plasmid pBAD33 with Cm se-
lection marker and downstream of a pAra promoter (BCAM0272) or into
plasmid pSCrhaB2 [27], containing a rhamnose-inducible promotor and
a Tp selection marker (BCAM0271-2). E. coli DJ624Δara pBAD33
BCAM0272 was grown in the presence of 1% (w/v) glucose to ensure
repression of BCAM0272. To study the influence on growth when
BCAM0272 was expressed alone or in combination with BCAM0271,
overnight cultures of the different mutants were diluted to an optical
density (λ¼ 590 nm) of 0.05 (approx. 5� 107 CFU/ml) in LBB supple-
mented with Cm (BCAM0272) or Tp (BCAM0271-2). This culture was
further diluted up to 10�8 and 10 μl of each dilution was streaked on LBA
supplemented with the appropriate antibiotics with or without 0.2%
(w/v) arabinose (BCAM0272) or rhamnose (BCAM0271-2). Plates were
incubated at 37 �C.

Assessing tRNA acetylation and synthesis of GFP-StrepII reporter
protein expressed from the T7 promoter in an in vitro transcription-
translation system.

The DNA fragment for synthesizing the BCAM0272 toxin in vitro in a
coupled transcription-translation reaction (PurEXPRESS, NEB) was
amplified using oligos 50UTR-BCAM0272 (GCGAATTAATACGAC
TCACTATAGGGCTTAAGTATAAGGAGGAAAAAATATGAGCGGTGCGCA
GTTGG) and 30UTR-BCAM0272-strepII (AAACCCCTCCGTTTAGA-
GAGGGGTTATGCTAGTTATTATTTTTCGAACTGCGGGTGGCTCCACTT-
CACCGTTGCCAATGGCAT). The amplification conditions were 120 s at
98 �C, 30 cycles of 10 s at 98 �C, 20 s at 65 �C, 30 s at 72 �C. The fragment
was then purified on a PCR purification column. 10 μl of coupled in vitro
transcription-translation reaction was supplemented with 100 ng of DNA
fragment coding T7-BCAM0272 toxin. After 1 h of synthesis reaction at
37 �C in one of the reactions 0.1mM of [14C]-acCoA was added and
synthesis and acetylation were allowed to proceed for additional 30min.
2 μl of reaction was subjected to 10% TBE-polyacrylamide gel electro-
phoresis for 40min at 120 V. Gel was then stained with 0.2% methylene
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blue solution and destained with water. The gel was dried and exposed to
a phosphor imaging screen overnight and visualised with Amersham
Typhoon Phosphor imager (GE).

DNA coding for GFP-strepII was amplified with 50UTR-GFP
(GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAA
ATATGAGTAAAGGAGAAGAACTTTTCAC) and 30UTR-GFP-strep
(AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTATTATTTTTCGAAC
TGCGGGTGGCTCCATTTGTATAGTTCATCCATGCCA) oligonucleotides.
The amplification conditions were 120 s at 98 �C, 30 cycles of 10 s at
98 �C, 20 s at 65 �C, 30 s at 72 �C. The BCAM0272-strepII toxin was
produced in 100 μl of in vitro transcription-translation reaction and pu-
rified from in vitro translation reaction using streptactin-agarose beads. In
vitro translation reactions for synthesis of reporter protein were set up
using 100 ng of template DNA, 0.1 μM of toxin, and one of the reactions
was supplied with 0.1mM acCoA. Reactions were incubated for 2 h at
37 �C and 5 μl of reactions were resolved by SDS-PAGE gel electropho-
resis followed by western blot with anti-strepII antibodies.

2.17. Statistical data analysis

Statistical data analysis was performed using SPSS software, version
21 (SPSS). The Shapiro-Wilk test was used to verify the normal distri-
bution of the data. Normally distributed data were analysed using a one-
sample t-test or an independent sample t-test, while non-normally
distributed data were analysed using a Wilcoxon signed-rank test or a
Mann-Whitney test. P-values < 0.05 were considered significant.

3. Results and discussion

3.1. Identification of small proteins

Small proteins are defined as polypeptides with a length of 10–200
amino acids, but are usually smaller than 100 amino acids. The average
proportion of genes encoding proteins smaller than 200 amino acids
among all annotated bacterial and archaeal genes is approx. 10% [9]. In
the B. cenocepacia J2315 genome we found that 2084 of the 7115
protein-coding genes (29.3%) were smaller than 600 base pairs, which is
close to the so-far highest described fraction of small proteins (33.4% in
the alphaproteobacterium Anaplasma phagocytophilum) [9]. 8.0% of the
B. cenocepacia J2315 protein coding genes (572) were smaller than 300
base pairs. These genes smaller than 300 base pairs belong to very diverse
functional categories (Table S2), and 345 of these genes are currently
annotated as hypothetical. For 234 of them no similarity could be found
with known genes in other bacteria using BLAST (criteria: E< 10�5 and
identity> 40%). However, the majority of the genes encoding hypo-
thetical proteins are differentially expressed in various conditions [3,15,
16], suggesting these proteins have a specific physiological function
(Table S2).

Based on available RNA sequencing data [17] a list of 27 small pro-
teins highly expressed in B. cenocepacia J2315 biofilms (i.e. RPKM
value> 200) was compiled for further analysis (Table 2). While no
similarity could be found with non-hypothetical genes in other bacteria
and only five are annotated as ‘conserved hypothetical’, homologs of 20
of them are present in other Bcc species. For four of these, homologs are
also found in species belonging to the pseudomallei group (i.e.
B. pseudomallei, B. thailandensis and B. mallei) and in other Burkholderia.
Four genes were identified only in the genomes of members of the
pseudomallei group, while eight genes were only present in the genomes
of members of the group of ‘other’ Burkholderia species (Table 2).

None of these 27 proteins contain a signal peptide, suggesting they
are not secreted. 22 small proteins have their own transcription start site
as determined by differential RNAseq [17,19] (Table 2). BCAL2308
forms an operon with BCAL2309 encoding a putative copper related
MerR family regulating protein. BCAM1811 seems to have its own
transcription start site but is also in an operon with BCAM1810, encoding
a putative cold shock protein. BCAM1052 forms an operon with



Table 2
Selected genes encoding small proteins highly expressed in biofilms. Tob: tobramycin, tbH2O2: tert-butyl peroxide CHX: chlorhexidine, BF: biofilm, PL: planktonic
growth. Available transcriptomic data were used to determine which small proteins are expressed during various stress conditions [3,15–18].

Gene Length
(bp)

Conserved in Fold change compared to untreated cultures Fold change BF
vs. PL

RPKM in
BF

Bcc Bpm
group

Other
Burkholderia

Tob H2O2 tb
H2O2

CHX Low
[Fe]

Low
[O2]

Heat pH¼ 4.2

BCAL0008aa,b 230 þ þ þ �1.5 1.6 210
BCAL0193 233 þ 10.1 6 1.6 1.6 2.7 2.7 442
BCAL0516 212 þ 1.7 1.5 648
BCAL0683a,b 257 þ þ 4.4 102.1 63.8 3.9 2.5 1.8 4135
BCAL1282 170 þ þ 0.3 1.7 1.7 4.2 2 524
BCAL1747A 212 þ 4.4 2.1 �1.9 3.1 458
BCAL2010 278 þ �1.5 1.6 203
BCAL2308 146 þ þ 3.9 3 2.6 1547
BCAL2532a,b 212 þ þ 0.4 1.6 1.7 0.5 �2.8 �1.7 433
BCAL2649 188 þ �1.6 329
BCAL2734a,b 224 þ 3.7 3.7 1.8 14.9 2 33.6 491
BCAL3186b 230 þ þ 0.4 713
BCAL3298 170 1.7 5.6 709
BCAM0271a,b 269 11.6 1.8 1.7 234
BCAM0895 176 þ þ 5.4 14.2 1.6 28 5.7 3.2 427
BCAM0971c,b 269 þ þ 0.2 �1.6 �2.1 619
BCAM1052c 176 þ 1.6 1.6 1.5 1.7 490
BCAM1811c 224 þ þ �1.5 �1.9 �14.8 571
BCAM2207 278 þ 2 2 6.5 1.9 608
BCAM2287 290 þ 1.8 1.5 �1.5 227
BCAM2623a,b 263 þ �1.7 1198
BCAM2685 155 þ 18.1 5 �1.5 21.9 �1.6 1.7 888
BCAS0244 206 0.2 0.2 �1.8 �2 �238.5 979
BCAS0245A 209 þ �248 2246
BCAS0535 224 �2.3 �2 213
BCAS0540b 236 339
pBCA050b 272 �2 �1.6 �3.4 201

a Genes for which eGFP translational fusion reporters were constructed.
b Genes for which overexpression mutants were constructed.
c Small proteins without an own transcription start site as determined with differential RNAseq [19].
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BCAM1051, encoding a phage death-on-curing protein. BCAM0971 is
part of a larger operon also containing genes encoding various subunits of
succinate dehydrogenase (BCAM0966 – BCAM0970) and BCAM0972
(encoding a citrate synthase) and, was found to be essential in
B. cenocepacia J2315 [30] and H111 [31].
3.2. Expression of small proteins

Translation of small protein genes was assessed by LC-MS based
proteomics and by constructing eGFP translational fusion reporters.
Using LC-MS, expression of six of the 27 selected small proteins
(BCAL0008a, BCAL3186, BCAM0271, BCAM0971, BCAM2623,
pBCA050) could be confirmed in the DDA data (Table 3). In Table S3 a
detailed overview of all 41 miniproteins identified by either the DDA or
high-definition MSE approach is given. Translational eGFP reporter
fusion plasmids [24] were constructed for six small proteins with iden-
tified TSS. Five of these produced detectable eGFP in biofilms using flow
cytometry analysis (Fig. 1). Only two of these five small proteins
(BCAM0271 and BCAM2623) were also identified using LC-MS. On the
other hand, BCAL0008a expression was confirmed by LC-MS, but no
Table 3
Genes confirmed as expressed by different approaches.

Gene RNA sequencing Proteomics Translational fusion

BCAL0008a Yes Yes No
BCAL0683 Yes No Yes
BCAL2532 Yes No Yes
BCAL2734 Yes No Yes
BCAL3186 Yes Yes Not tested
BCAM0271 Yes No Yes
BCAM0971 Yes Yes Not tested
BCAM2623 Yes Yes Yes
pBCA050 Yes Yes Not tested
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eGFP was produced from reporter fusions. To conclude, for nine small
proteins translation could be confirmed by at least one approach. This
suggests a biological role for these small proteins and highlights the
importance of using different approaches to confirm production of small
proteins.

To determine the role of the nine identified small proteins for which
translation could be confirmed by at least one method (BCAL0008a,
BCAL0683, BCAL2532, BCAL2734, BCAL3186, BCAM0271,
BCAML0971, BCAM2623 and pBCA050), overexpression mutants, in
which expression of the small protein is controlled by a rhamnose
inducible promoter [27,32], were constructed and the effect of the
overexpression on various phenotypes was determined.
3.3. Role of selected small proteins in growth and biofilm formation

When grown planktonically in LBB, most overexpression mutants
show a growth curve similar to WT (Fig. 2a). The pBCA050 over-
expression mutant showed a prolonged lag phase, while the BCAL0683
overexpression mutant showed an increased doubling time (893min vs.
550 min for WT) and grew to a lower maximal optical density in sta-
tionary phase. When overexpressed in E. coli DH5α, neither pBCA050 nor
BCAL0683 had an effect on growth (data not shown), therefore, neither
protein is generally toxic. Interestingly, for pBCA050 we observed anti-
sense transcription overlapping the CDS [19], suggesting pBCA050might
be the toxin part of a type I TA-module. Type I TA-modules are composed
of toxin protein and a small antisense RNA that plays the role of an
antitoxin by controlling the expression of its toxin counterpart [33].

As many of the genes encoding for small proteins were differentially
expressed in various growth conditions (Table 2), we investigated
whether overexpression had an impact on growth under stress. Overall,
stress affected WT and mutants similarly (Fig. S3), although minor dif-
ferences occurred under specific stress conditions. For example, while the



Fig. 1. eGFP production from small protein translational fusions. eGFP derived fluorescence per cell (arbitrary fluorescence units) determined by flow cytometry for
the different translational fusion reporters grown in a biofilm. Error bars represent SEM (n¼ 3� 2). Statistically significant differences compared to WT (P< 0.05) are
indicated by an asterisk.

Fig. 2. (a) Effect of overexpression of small proteins on the planktonic growth of B. cenocepacia J2315. Strains were grown in LBB supplemented with 0.2% (w/v)
rhamnose. (b) Effect of overexpression of BCAM0271 and BCAL0008a on growth in LBB supplemented with 0.2% (w/v) rhamnose (left panel) or LBB pH 4.2 sup-
plemented with 0.2% (w/v) rhamnose (right panel). Experiments were carried out twice and similar results were obtained. Curves from one experiment are shown.
WT¼ vector control.
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BCAL0008a and BCAM0271 overexpression mutants reached a slightly
higher OD than WT after 32 h in LBB, they reached a lower OD than WT
under acid stress (Fig. 2b).
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Biofilm biomass was quantified using crystal violet staining (Fig. 3a).
A significant reduction was observed for the mutants overexpressing
BCAL0683 or pBCA050 compared to the vector control, likely related to



Fig. 3. (a) Influence of small protein over-
expression on biofilm formation using a crystal
violet assay. The absorbance for WT (vector
control) was 0.71 (SEM: 0.07). Error bars repre-
sent SEM (n� 3). Statistically significant differ-
ences compared to WT (P< 0.05) are indicated
with an asterisks. (b) Confocal laser scanning
microscopy image of 24-h-old biofilms of
B. cenocepacia J2315 vector control and the
BCAM2623, BCAL2734, BCAL2532 and
BCAL0008a overexpression mutants. The mean
thickness of three experiments and SEM is indi-
cated and a representative image is shown.
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their growth phenotype. Overexpressing BCAL0008a, BCAL2532,
BCAL2734 and BCAM2623 significantly increased biofilm biomass and
this was confirmed using confocal scanning laser microscopy (Fig. 3b).
8

Overall, the results show that these four small proteins play a role in
biofilm development, while they have limited effect on planktonic
growth.
Fig. 4. Number of surviving cells (persisters) in small
protein overexpression mutants after treatment with
high concentrations (4 x MIC) Tob or Cip. Data are
expressed as the ratio of the fraction surviving per-
sisters in the overexpression mutant and the fraction
surviving persisters in the vector control. The fraction
of surviving cells for the WT (vector control) was
0.03% (SEM: 0.02) and 4.16% (SEM: 1.26) after
treatment with Tob or Cip, respectively. Error bars
represent SEM (n� 3). Statistically significant differ-
ences (P< 0.05) are indicated by an asterisk.



Fig. 5. Infection of A549 lung epithelial cells with B. cenocepacia J2315 small
protein overexpression mutants. (a) Percentage adherence of bacteria to A549
lung cells, expressed as the number of CFUs that adhered 2 h post-infection
compared to the initial inoculum. (b) Percentage of invasion, expressed as the
number of CFUs recovered 4 h post-infection compared to the number that
adhered. (c) Percentage of intracellular growth/survival, expressed as the
number of CFUs recovered 24 h post-infection compared to the fraction that
invaded. Error bars represent SEM (n¼ 4). Significant differences are indicated
with an asterisk. WT¼ vector control. MOI¼ 100:1.
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3.4. Role of selected small proteins in antimicrobial susceptibility and
persistence

Overexpression of the nine small proteins did not change the MIC for
tobramycin (MIC¼ 256 μg/ml), ciprofloxacin (MIC¼ 4 μg/ml) or mer-
openem (MIC¼ 8 μg/ml). However, overexpression of several small
proteins affected the number of surviving cells recovered after treatment
with high doses of tobramycin (persister cells) (Fig. 4). For three small
proteins an interesting link between numbers of persisters in treated
biofilms and expression patterns in biofilm was observed. BCAM0271
was upregulated after treatment with Tob [34] and a significant increase
in persisters was observed after Tob treatment (335-fold increase) in the
BCAM0271-overexpression mutant (Fig. 4). BCAM0971 and BCAL2532
were downregulated after treatment with Tob [34] and overexpression of
these proteins significantly decreased the number of persisters after
treatment with Tob, 5-fold and 16-fold decrease, respectively. We have
previously shown that bacteria lower the production of NADH in the TCA
cycle in order to reduce antibiotic-induced ROS production [3,35].
Whether BCAM0971 (part of a larger operon also containing genes
encoding subunits of succinate dehydrogenase, an enzyme involved in
the tricarboxylic acid cycle (TCA)), plays a role in metabolism remains to
be determined, although its location, the downregulation upon Tob
exposure and the decrease in cells surviving Tob exposure in the
BCAM0971-overexpression mutant, suggest it does. For the BCAM0271
overexpression mutant, the number of persisters recovered after treat-
ment of selected with high concentration of ciprofloxacin was also
significantly increased (6-fold). For the other overexpression mutants
differences in numbers of persisters after ciprofloxacin were small
compared to the WT (Fig. 4) and it remains to be determined whether
these small differences are biologically relevant. We had previously
already shown that overexpression of BCAM0272 significantly increased
persisters after treatment with Tob and Cip [34].

3.5. Optimization of the antibiotic protection assay to study intracellular
B. cenocepacia

To evaluate the role of small proteins in the infection of human lung
epithelial cells, the available antibiotic protection assay had to be
modified. To quantify bacterial invasion in eukaryotic cells, a gentamicin
protection assay is typically used but as B. cenocepacia is resistant to
gentamicin, this method was not applicable. Martin and Mohr (2000)
proposed a different approach in which cells are treated with a combi-
nation of 1mg/ml ceftazidime and amikacin for 2 h, followed by an in-
cubation period without antibiotics [36]. More recently Taylor et al.
(2010) treated the cells for 3 h and added 1mg/ml meropenem to the
antibiotic mix [37]. We observed that when using a mix of the three
antibiotics and 2 h of treatment, no surviving cells were detected
(detection limit of five CFU/ml) in a planktonic culture with an initial
inoculum of 5� 107 CFU/ml. However, when A549 epithelial cells
infected with B. cenocepacia J2315 and treated with this combination
were further incubated for an additional 22 h, we observed significant
bacterial growth in the supernatant. This could be due to re-growth of
surviving cells or due to growth of cells released by dead epithelial cells.
To investigate this further, a rhamnose-inducible eGFP-producingmutant
was used to infect the cells and a light and fluorescent microscopic image
was taken. After 24 h bacterial cells and biofilm-like structures can be
observed on the host cells, despite the initial 2 h exposure to antibiotics
(Fig. S4). This indicates that extracellular bacteria survive the antibiotic
treatment. To prevent extracellular growth, this experiment was repeated
in the presence of various dilutions of the antibiotic mix (ceftazidi-
me/amikacine/meropenem) during the 22 h incubation period (Fig. S4).
A 100-fold diluted antibiotic solution, in GTSF-2, was found to suffi-
ciently limit extracellular bacterial growth, i.e. resulting in <2% extra-
cellular bacteria compared to the bacterial population that
survived/grew intracellularly. Based on these results, cultures were
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treated for 2 h with a combination of ceftazidime, meropenem and
amikacin (1mg/ml each), with this treatment being initiated after 2 h of
infection. Subsequently, cells were washed twice with HBSS and a 1/100
dilution of the antibiotic mix was added for an additional 22 h. Using this
protocol, on average 3.7� 105 CFU/ml (standard error mean (SEM):
2.2� 105) for wild type B. cenocepaciawere recovered from the cells after
24 h, whereas only 5.2� 103 CFU/ml (SEM: 3.2� 103) were recovered
from the supernatant; this low number (less than 2% of the total popu-
lation) does affect the outcome of the experiment.
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3.6. Role of selected small proteins in the infection process and cytotoxicity
of lung epithelial cells

Using this optimized protocol, we first determined whether the small
proteins were expressed during infection of A549 lung cells. Only small
proteins for which expression was confirmed using the translational
fusion reporters were included. For all reporter strains, fluorescent bac-
teria were observed associated with the epithelial cells, confirming
expression of these small proteins during infection (Fig. S5).

Next, the role of the different small proteins in adhesion, invasion and
intracellular survival was investigated. The vector control and all the
mutants were able to adhere and invade the lung cells (Fig. 5). For the
WT 58.8% (SEM: 11.0%) of the cells present in the inoculumwere able to
adhere and 1.2% (SEM: 0.6%) of the adhered bacteria also invaded the
lung cells. This is similar to results obtained by Pirone et al. (2008) who
found that approx. 1% of the adhered B. cenocepacia J2315 invaded the
lung cells after 2 h of infection [38]. There were no significant differences
in adherence and invasion between the overexpression mutants and the
WT, but significant differences were observed in intracellular growth/-
survival. While for the WT and most of the overexpression mutants full
survival or even growth was observed, this was not the case for the
BCAL0683 overexpression mutant for which only 20.0% of the cells
survived intracellularly (Fig. 5). This could be in part due to its observed
slower growth and decreased biofilm formation (Figs. 2 and 3). For the
BCAM2623 overexpression mutant a 40.3-fold increase in the number of
intracelullar CFUs was observed between 2 and 24 h whereas only a
2.5-fold increase was observed for the WT. Due to inherent variability of
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the assay this difference was not statistically significant, but interest-
ingly, overexpression of this gene also increased biofilm formation
(Fig. 3).

Finally, cytotoxicity of the different mutants was evaluated based on a
LDH assay. The release of cytosolic LDH by the lung epithelial cells
following exposure to B. cenocepacia for 48 h was measured (Fig. S6). No
statistically significant differences in cytotoxicity were observed between
vector control and the mutants overexpressing the different small pro-
teins. However, for two mutants (BCAL0683 and BCAL2532) cell death
was consistently lower in all four biological replicates compared to vector
control. For BCAL0683 this might be due to the slower growth and poor
intracellular survival of the overexpression mutant compared to vector
control (Figs. 2 and 6).
3.7. The small protein BCAM0271 is part of a type II toxin antitoxin
module

The small protein BCAM0271 is located adjacent to another small
protein, BCAM0272 which was identified as a toxin belonging to a type II
TA-module in a previous study [34]. Type II TA-modules are small ge-
netic entities that usually consist of two genes: one encoding a toxin
which can inhibit an important cellular function and another encoding an
antitoxin which can form a complex with the toxin and inactivate it [11].
RNA-Seq coverage data suggest that BCAM0271 and BCAM0272 form
one operon [19], and expression values are similar for both genes across
all RNA samples investigated [17] (Fig. S7).

To confirm that BCAM0271 is part of a TA-module, we cloned
Fig. 6. (a) The BCAM0271-2 gene pair constitutes a
type II TA system. Overnight cultures of E. coli strains
expressing BCAM0272 or BCAM0271-2 were serially
diluted (10�3 to 10�8, left to right). Dilutions were
spotted on LBA with repressor (glucose 0.2%) and
inducer (arabinose 0.2% (w/v) or rhamnose 0.2% (w/
v)). (b). Synthesis of GFP-StrepII reporter protein
expressed from the T7 promoter in an in vitro
transcription-translation system in presence of
BCAM0272 with (þ) and without (�) acetyl-
Coenzyme A. Products of reaction resolved by SDS-
PAGE and visualised by Western Blot with anti-
strepII-tag antibodies. (c) Acetylation of tRNA pool
in an in vitro transcription-translation system by
different GNAT toxins with (þ) and without (�) [14C]
acetyl-Coenzyme A. RNAs resolved by native PAGE
and stained with methylene blue (top panel), gel was
then dried and exposed to phosphor storage screen
(bottom panel).
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BCAM0272, encoding the putative toxin, alone or in combination with
BCAM0271, encoding the putative antitoxin, in vectors carrying induc-
ible promoters and tested the effect on E. coli viability. Growth was
significantly inhibited in the presence of the inducer when only
BCAM0272 was expressed, while the presence of the inducer had no
effect on growth when BCAM0271 and BCAM0272 were coexpressed,
confirming that BCAM0271 can neutralize BCAM0272 toxicity (Fig. 6)
and that the operon thus consists of a true TA-module.

Free toxins can impede various cellular processes like DNA replica-
tion, ATP or cell wall synthesis, but most toxins interfere with translation
[39]. The most common mechanism of action of toxins relies on mRNA
degradation [40], while other mechanisms include degradation of tRNA
[10,41], phosphorylation of EF-Tu [42], and inhibition of glutamyl-tRNA
synthetase which leads to the accumulation of uncharged tRNAglu [43].
Recently, a novel TA-family inhibiting translation was described, in
which the toxins are tRNA acetyltransferases [44]. BCAM0272 possesses
a Gcn5-related acetyltransferase (GNAT) domain and was predicted to
encode a N-acetyltransferase, suggesting similar activity. To confirm in-
hibition of translation by the BCAM0272 toxin, in vitro translation of a
reporter protein (GFP-strepII) was tested in the presence and absence of
acetylcoenzyme A. Products of the reaction were resolved by SDS-PAGE
and visualized using Western Blot with anti-strepII-tag antibodies. No
product was observed in the presence of acetyl-CoA confirming that
BCAM0272 inhibits translation in the presence of acetyl-CoA (Fig. 6). To
date, AtaT, identified in E. coli and TacT, identified in Salmonella typhi-
murium, are the best-characterized acetyltransferase toxins [44,45].
Both were found to block translation by acetylating tRNA, but the spec-
ificities of these toxins are different. While AtaT inhibits translation
initiation by N-acetylating tRNAfMet, TacT acetylates elongator tRNAs. To
test whether BCAM0272 also targets tRNAs, a purified mixture of tRNAs
from E. coli was treated with BCAM0272 in the presence and absence of
[14C]acetyl-CoA. Autoradiography confirmed that BCAM0272 also
acetylates tRNAs (Fig. 6). Based on these results we can conclude that
BCAM0271-2 encodes a bona fida TA-module which targets translation
by acetylating tRNAs. TA-modules are thought to be involved in several
biological processes including regulation of gene expression, growth
control, programmed cell death, biofilm formation, the stabilization of
mobile elements, phage propagation and persistence [46]. We found that
the antitoxin overexpression mutant grew slightly better in LBB
compared to the vector control, but worse in acidic conditions (Fig. 2b),
suggesting a role for this module in growth under stress conditions.
Antitoxin BCAM0271 was also upregulated after treatment with Tob or
Cip [34] and an increase in persisters was observed for the antitoxin
overexpression mutant after treatment with Tob or Cip, suggesting a role
in persistence. Since bactericidal antibiotics kill cells by corrupting
cellular functions which are inhibited by toxins, it has been suggested
that overexpression of the toxin can prevent antibiotics from killing and
give rise to persister cells [47].

While the role of TA-modules in persistence has previously been
documented [46], their role was recently questioned [48]. We previously
found that overexpression of the toxin BCAM0272 [34] led to an increase
in survival after treatment with high concentration of Tob or Cip. Inter-
estingly, in the present study we found that overexpression of the anti-
toxin BCAM0271 similarly increased survival. The link between toxins
and persistence, with more toxin production leading to increased
persistence may thus not always be as straightforward as previously
thought.

4. Conclusion

A large number of small proteins are present in the genome of
B. cenocepacia J2315. The function of many of them is still unknown, but
our data suggest that at least some of them are expressed and involved in
important biological processes like growth, biofilm formation, persis-
tence, and intracellular survival. We used two different approaches to
investigate production of small proteins, an LC-MS based proteomics
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approach and construction of translational eGFP fusion reporters. Both
approaches allowed to identify expressed small proteins, but the overlap
between small proteins identified with both approaches was limited,
highlighting the importance of using different techniques. One of the
small proteins identified in this study, BCAM0271, is the antitoxin in a
TA-module which targets translation by acetylating tRNAs.
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