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Background.  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people globally. Virus 
infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and 
-RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about 
immunoglobulin isotypes capable of blocking infection.

Methods.  We studied spike- and RBD-specific immunoglobulin isotypes in convalescent and acute plasma/serum samples using 
a multiplex bead assay. We also determined virus neutralization activities in plasma and serum samples, and purified immunoglob-
ulin fractions using a vesicular stomatitis pseudovirus assay.

Results.  Spike- and RBD-specific immunoglobulin (Ig) M, IgG1, and IgA1 were produced by all or nearly all subjects at variable 
levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 
contributed most to neutralization, consistent with IgM and IgG fractions’ neutralization potency. IgA also exhibited neutralizing 
activity, but with lower potency.

Conclusion.  IgG, IgM, and IgA are critical components of convalescent plasma used for treatment of coronavirus disease 2019 
(COVID-19).

Keywords.   SARS-CoV-2; COVID-19; antibody isotypes; neutralization; convalescent plasma.

Since the first patients with coronavirus disease 2019 (COVID-
19), caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), were identified in Wuhan, China [1], the 
epidemic has spread worldwide, infecting millions of people. 
Effective therapeutics and vaccines are urgently needed. 
Convalescent plasma transfusions have shown promising re-
sults in patients with severe COVID-19 [2–4]. Clinical trials to 
evaluate the efficacy of this treatment in ambulatory and hospi-
talized patients are underway [5–7] and FDA Emergency Usage 
Authorization has been issued [8]. To this end, information is 
needed about immunoglobulin isotypes in convalescent plasma 
that have antiviral activities. The data would likewise inform 
vaccine development [9]. Most vaccines are based on the SARS-
CoV-2 spike protein [9, 10], a membrane-anchored protein 
present on the virus envelope along with 2 others (membrane 

and envelope proteins) and it contains the receptor-binding do-
main (RBD) for binding and entry into cells [11–13]. The vac-
cines aim to protect by inducing neutralizing antibodies (Abs) 
that block viral infection.

SARS-CoV-2 spike-, RBD-, and nucleocapsid-specific serum 
and plasma Abs of immunoglobulin (Ig) M, IgG, and IgA 
isotypes are found in most patients with COVID-19 [14–19], 
with neutralizing activities developing within 2 weeks of in-
fection and declining over time [16, 17, 20, 21]. However, the 
neutralizing titers vary greatly [16, 17, 20, 21] and are correl-
ated with Ab binding levels against RBD, spike, and/or nucleo-
capsid, and with age, symptom duration, and symptom severity 
[16, 17]. Several RBD-specific monoclonal IgG Abs with neu-
tralizing activity have been generated, and these confer pro-
tection in animal models [16, 20, 22, 23]. A monoclonal Ab of 
IgA isotype recognizing both SARS-CoV-1 and SARS-CoV-2 
spike proteins and blocking angiotensin-converting enzyme 2 
receptor binding was recently described [24]. However, no di-
rect evidence is available regarding the neutralizing capacity of 
plasma IgM and IgA from patients with COVID-19.

Studies on other respiratory viruses such as influenza show that, 
in addition to IgG, IgA could also mediate virus neutralization, 
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and their relative contributions depend on the physiologic com-
partment in which they are found, with IgA contributing to the 
protection of mostly the upper respiratory tract, while IgG pro-
tects the lower respiratory tract [25, 26]. An anti-hemagglutinin 
monoclonal polymeric IgA has been demonstrated to mediate 
more potent anti-influenza activities than monoclonal IgG 
against the same epitope [27]. An IgM monoclonal Ab with neu-
tralizing activity against influenza B has also been described [28]. 
In addition, respiratory syncytial virus–specific mucosal IgA is a 
better correlate of protection than serum IgG counterparts [29]. 
In the case of SARS-CoV-1, high titers of IgA in the lungs are cor-
related with reduced pathology in animal models [30]. Whether 
IgA in the blood and the respiratory tract mucosa offer protection 
against SARS-CoV-2 remains an open question. Moreover, scant 
data are available regarding the IgM contribution to neutraliza-
tion and protection against viruses, including SARS-CoV-2. Of 
note, in terminally ill patients, systemic SARS-CoV-2 infection 
affects multiple organs [31]. Thus, the capacity of plasma immu-
noglobulin to suppress virus spread is critical for effective therapy 
against severe COVID-19.

Our group recently described a multiplex bead Ab-binding 
assay using Luminex technology to detect total immunoglob-
ulin against spike and RBD [32]. In this study we characterized 
the immunoglobulin isotype profiles using the Luminex assay 
that detects spike- and RBD-specific IgM, IgG1-4, and IgA1-
2. Using a pseudovirus assay [33], our group also measured 
plasma or serum neutralization and determined the neutral-
izing capacity of IgM, IgA, and IgG fractions. The data indi-
cate a high prevalence of spike- and RBD-specific IgM and IgA, 
similar to that of IgG1, in plasma and serum samples from pa-
tients with COVID-19, and their contributions to virus neu-
tralization. In addition, by testing purified IgG, IgM, and IgA 
fractions from convalescent plasma samples, the current study 
presents the first direct evidence that plasma IgG, IgM, and IgA 
all contribute to SARS-CoV-2 neutralization.

METHODS

Recombinant Proteins

SARS-CoV-2 spike and RBD proteins were produced as de-
scribed elsewhere [34, 35].

Human Samples

All COVID-19–positive and COVID-19–negative samples 
tested in this study are tabulated in Supplementary Table 1. 
Twenty-five citrated COVID-19–convalescent plasma samples 
destined for transfusion to SARS-CoV-2-infected individuals 
(TF1–25, collected between 26 March and 7 April 2020) and 10 
contemporary COVID-19–negative specimens (N4–13) were 
obtained from the Division of Transfusion Medicine of the 
Department of Pathology, Molecular and Cell-Based Medicine 
(Mount Sinai Hospital System, institutional review board [IRB] 
no. 20-03574). The convalescent specimens TF1–25 were from 

donors prescreened to have serum IgG reciprocal titer ≥320 
in the Mount Sinai Hospital enzyme-linked immunosorbent 
assay anti-IgG COVID-19 assay. Four serum samples from 
deidentified individuals with COVID-19 (P5–8) were pro-
vided by the Clinical Pathology Division of the Department 
of Pathology, Molecular and Cell-Based Medicine at the Icahn 
School of Medicine at Mount Sinai. 

The following samples were obtained from volunteers en-
rolled in IRB-approved protocols at the Icahn School of 
Medicine at Mount Sinai (IRB nos. 16-00772, 1600791 and 
17-01243) and the James J.  Peter Veterans Affairs Medical 
Center (IRB BAN-1604): serum samples from 7 participants 
with documented SARS-CoV-2 infection (P1 on days 8, 11, and 
15 after symptom onset, P2 on days 7 and 10 after symptom 
onset, and RP1–5 after convalescence), and prepandemic serum 
samples from 12 healthy donors (N1–3 and N14–22). All study 
participants provided written consent. All samples were heat in-
activated before use.

Immunoglobulin Fractionation

IgA was isolated first from plasma using peptide M agarose 
beads (InvivoGen; GEL-PDM). The pass-through plasma was 
enriched sequentially for IgG using protein G agarose beads 
(InvivoGen; GEL-AGG) and for IgM using a HiTrap IgM 
column (GE Healthcare; no.  17-5110-01). An additional step 
was performed using Protein A Plus mini-spin columns to sep-
arate IgG from IgM. Protein concentrations were determined 
with a NanoDrop spectrophotometer (Thermo Scientific).

Multiplex Bead Ab-Binding Assay

SARS-CoV-2 spike and RBD antigens were coupled to beads 
and experiments performed as described elsewhere [32], except 
for the use of different secondary Abs designated in the figure 
legends.

COV2pp Production and Titration

SARS-CoV-2 pseudoviruses (COV2pp) with wild-type (WT) 
or D614G-mutated spike proteins were produced as described 
elsewhere [33]. Pseudoviruses were titrated on 20  000 Vero-
CCL81 cells seeded 24 hours before infection. At 18–22 hours 
after infection, the infected cells were washed, and Renilla 
luciferase activity was measured with the Renilla-Glo Luciferase 
Assay System (Promega no. E2720) on a Cytation3 (BioTek) 
instrument.

COV2pp Neutralization

Virus was preincubated with diluted plasma or serum sam-
ples for 30 minutes. The virus-sample mix was then added to 
Vero-CCL81 cells seeded 24 hours earlier and spinoculated. 
Infection was measured after 18–22 hours by luciferase ac-
tivity. The percentage of neutralization was calculated as fol-
lows: 100 - 100[(sample RLU − cell control RLU)/virus control 
RLU], where RLU represents relative light units. Inhibitory 
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concentration (IC50) and 90% inhibitory concentration (IC90) 
titers were calculated as the reciprocal sample dilution or puri-
fied immunoglobulin fraction concentration achieving 50% 
and 90% neutralization, respectively.

Statistical Analysis

Two-tailed Mann-Whitney test, Spearman rank-order correla-
tion test, and simple linear regressions were performed as de-
scribed in the figure legends, using GraphPad Prism 8 software.

RESULTS

Variable Levels of Immunoglobulin Isotypes Against SARS-CoV-2 Spike 

and RBD in Convalescent Individuals

A total of 29 serum (P5–8) and plasma (TF1–25) specimens from 
COVID-19–convalescent individuals was tested. TF1–25 were 
collected about 4–8 weeks after the initial outbreak in North 
American, and used for transfusion into hospitalized patients 
with COVID-19 [2]. Ten plasma samples from COVID-negative 
contemporaneous blood bank donors (N4–13) were included for 
comparison. Serum or plasma samples from 12 uninfected indi-
viduals banked before the COVID-19 outbreak (N1–3 and N14–
22) were used to establish background values. The specimens 
were initially titrated for total immunoglobulin against spike and 
RBD (Figure 1). All 29 COVID-19–positive specimens exhibited 
titration curves of total immunoglobulin Abs against spike, while 
none of the negative controls displayed reactivity. 

Similar results were observed with RBD, except that 1 con-
temporaneous COVID-19–negative sample had a low level of 
RBD-specific immunoglobulin (N10). Overall, the background 
mean fluorescence intensity (MFI) values were higher for RBD 
than spike. To assess the reproducibility of the assay, the samples 
were tested in ≥2 separate experiments run on different days, 
and a strong correlation was observed between the MFI values 
from these independent experiments (Supplementary Figure 
1). The areas under the curve highly correlated with the MFI 
values from specimens diluted 1:200 (P < .001; Supplementary 
Figure 2); consequently, all samples were tested for isotyping 
at this dilution. At the 1:200 dilution we were able to discern 
a diverse range of immunoglobulin isotype levels among indi-
vidual samples (Figure 2). To evaluate for the presence of spike-
specific and RBD-specific total immunoglobulin, IgM, IgG1, 
IgG2, IgG3, IgG4, IgA1, and IgA2, the specificity and strength 
of the secondary Abs used to detect the different isotypes were 
first validated with Luminex beads coated with myeloma pro-
teins of known immunoglobulin isotypes (IgG1, IgG2, IgG3, 
IgG4, IgA1, IgA2, and IgM). All 8 secondary Abs were able to 
detect their specific immunoglobulin isotypes with MFI values 
reaching >60 000 (Supplementary Figure 3).

All 29 convalescent individuals had anti-spike and anti-
RBD total immunoglobulin (Figure  2), but the immunoglob-
ulin levels were highly variable, with MFI values ranging from 
36 083 to 190 150. In addition, all 29 convalescent individuals 

also displayed IgM Abs against spike at varying levels, and 93% 
were positive for anti-RBD IgM when evaluated using cutoff 
values calculated as mean + 3 standard deviations of the 12 
prepandemic samples (Figures 2B and 2C). In contrast, IgG2, 
IgG3, and IgG4 Abs against spike and RBD were detected in 
only a small fraction of the subjects, and the levels were very 
low (MFI < 1300) (Figure 2). 

Surprisingly, almost all individuals produced IgA1 Abs 
against spike (97%) and RBD (93%), while 17% exhibited IgA2 
against spike, and 48% exhibited IgA2 against RBD (Figure 2). 
Low levels, slightly above cutoff, of spike- and RBD-binding 
total immunoglobulin, IgM, IgG1, and IgA1 were detected 
sporadically in contemporaneous COVID-19 samples, such 
as N8, N10, and N11. The responses against spike and RBD 
were highly correlated for every isotype (Supplementary Figure 
4). Overall, these data demonstrate that IgM, IgG1, and IgA1 
Abs were induced against spike and RBD in all or almost all 
COVID-19–convalescent individuals (Figure  2). The levels, 
however, were highly variable among individuals. No signifi-
cant difference was observed between female and male individ-
uals (Supplementary Figure 5).

In Figure  3, regression analyses to assess the impact of in-
dividual isotypes on the total immunoglobulin binding 
showed that IgG1 had the highest r2 values (0.83 and 0.70 for 
spike-binding and RBD-binding IgG1, respectively; P <  .001), 
indicating that IgG1 is the major isotype induced by SARS-
CoV-2 infection against spike and RBD (Figures 3A and 3B). 
IgG2 Abs against RBD had an r2 value of 0.55 (P <  .001), but 
IgG2 levels were very low. For all other isotypes, including IgM, 
the r2 values were <0.40 (Figure 3C). Thus, despite the presence 
of many isotypes in serum and plasma samples, as expected, the 
major isotype of spike and RBD-specific Abs is IgG1.

Specimens from 2 patients (P1 and P2) were obtained during 
the acute phase of the infection. Serial specimens from these pa-
tients were tested to determine the isotypes of Abs present early 
in infection. The earliest samples from both patients, drawn at 
7 or 8 days after symptom onset were already positive for total 
immunoglobulin, IgG1, IgA1, and IgM Abs against spike and 
RBD (Supplementary Figure 6), and these levels increased 
over the following 3–7  days. On the contrary, IgA2 Ab levels 
were near or below background on days 7–8 and remained un-
changed over the 2 weeks after onset. IgG4 Abs also remained 
low or near background, whereas IgG2 and IgG3 Abs increased 
slightly to above background after 10–15 days.

Neutralizing Activity in Specimens From All Individuals With Convalescent 

COVID-19 

We subsequently tested the ability of samples from conva-
lescent subjects to neutralize a VSV∆G pseudovirus bearing 
the SARS-CoV-2 spike protein (COV2pp). This pseudovirus 
assay demonstrated a strong positive correlation with neutral-
ization of the authentic SARS-CoV-2 virus [33]. The titration 
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of neutralizing activity against the WT COV2pp is shown in 
Figure 4A for specimens from 28 COVID-19–convalescent in-
dividuals and 11 uninfected individuals, tested over a range of 
7 serial 4-fold dilutions. A soluble recombinant RBD (sRBD) 
protein capable of blocking virus infection was tested in par-
allel as a positive control.

All specimens from COVID-19–convalescent individ-
uals were able to neutralize the virus at levels above 50% 
(Figure  4A). For 26 of 28 specimens, neutralization reached 
>90% (Figure 4A). The sample with the lowest titer (reciprocal 
IC50 titer,  37) reached a neutralization plateau of only about 
60%. Of note, 1 sample (TF11) demonstrated highly potent 

neutralization with a reciprocal IC50 titer > 40 960, and neutral-
ization was still 75% at the highest dilution tested. None of the 
samples from uninfected individuals reached 50% neutraliza-
tion (Figure 4A), while the sRBD positive control demonstrated 
potent neutralization with an IC50 of 0.06 µg/mL (Figure 4A), 
similar to that recently reported [33].

The samples were also tested for neutralization against a 
COV2pp bearing the spike with a D614 mutation (D614G mu-
tant), as the D614G variant has become the most prevalent cir-
culating strain in the global pandemic [36]. Similar to the WT 
COV2pp, all COVID-19–convalescent samples had neutralizing 
activity reaching >50%, while none of the negative samples did 
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Figure 2.  Levels of immunoglobulin isotypes against the severe acute respiratory syndrome coronavirus 2 spike and receptor-binding domain (RBD) vary in plasma 
or serum samples from individuals with convalescent coronavirus disease 2019 (COVID-19). A, B, Total immunoglobulin and immunoglobulin (Ig) M, IgG1, IgG2, IgG3, 
IgG4, IgA1, and IgA2 against spike (A) and RBD (B) in specimens from 29 COVID-19–convalescent individuals, 13 COVID-19–negative contemporaneous samples, and 
prepandemic controls were detected using the following secondary antibodies: rabbit biotinylated-anti-human total immunoglobulin (Abcam; catalog no. ab97158) at 2 μg/
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(Figure 4B). The IC90 titers against WT and D614 mutant dif-
fered on average by only 1.7-fold and correlated strongly with 
each other (P < .0001, Figure 4C).

Contributions of IgM and IgG1 to SARS-CoV-2 Neutralization

Given our observation that Ab isotype levels and neutralization 
titers varied tremendously among individuals with convales-
cent COVID-19 (Figures 2 and 5), we investigated the relative 
contribution of each Ab isotype to the neutralizing activities. 
Regression analyses were performed on 27 COVID-19–conva-
lescent samples (TF11 was excluded due to its outlier neutral-
ization titer). As expected, relatively high r2 values (0.32–0.62) 
and significant P values were observed with total immunoglob-
ulin, IgM and IgG1; in each case, r2 values were higher for spike 
than for RBD (Figure 6A). The highest r2 value was achieved in 
the analysis of IC90 neutralizing titers and IgM binding to spike 
(r2 = 0.62). For other isotypes, significant P values were sporad-
ically achieved, but r2 values were weak (Figures 6A and 6B).

Mediation of Neutralizing Activities by Plasma IgM, IgG, and IgA Fractions

To assess directly the capacity of different isotypes to mediate 
neutralization, we evaluated the neutralization activities of IgM, 
IgG, and IgA fractions purified from the plasma of 5 COVID-
19–convalescent individuals (RP1–5). The enrichment of IgM, 
IgG1, and IgA1 Abs reactive with spike and RBD was validated 
using the isotyping method used above (Supplementary Figure 
7 and data not shown). These IgM, IgG, and IgA fractions were 
then evaluated for neutralizing activity along with the original 
plasma (Figure  7). The RP1–5 plasma neutralizing reciprocal 
IC50 titers ranged from 35 to 690 (Figures 7A and 7B). Purified 
IgM and IgG fractions from RP1–5 all mediated neutraliza-
tion reaching >50%. Unexpectedly, plasma IgA fractions also 
displayed neutralizing activity, although not with the same po-
tency as IgM and IgG (Figures 7C, D). In contrast, IgM, IgG, 
and IgA fractions from the negative control (RN1) showed no 
neutralization (Figures 7C, D).

DISCUSSION

Our study demonstrates that IgG1, IgA1, and IgM Abs against 
SARS-CoV-2 spike and RBD were prevalent in plasma of pa-
tients with convalescent COVID-19 approximately 1–2 months 
after infection. These isotypes were present within 7–8  days 
after the onset of symptoms. Importantly, all 3 isotypes showed 
the capacity to mediate virus neutralization. While regression 
analyses demonstrated the strongest contributions of IgM and 
IgG1 to neutralizing activity, direct testing of purified isotype 

fractions showed that IgA also was able to neutralize, indicating 
the protective potential of all 3 major immunoglobulin isotypes. 
These data carry important implications for the use of conva-
lescent plasma and hyperimmunoglobulin as COVID-19 thera-
peutics, suggesting that their selection would optimally be 
based on the presence of all of these immunoglobulin isotypes.

While all COVID-19–convalescent individuals exhibited 
neutralization activities reaching >50% and 26 of 28 specimens 
attained 90% neutralization, neutralization levels were highly var-
iable with IC50 and IC90 titers ranging over 3 orders of magnitude. 
The titers were comparable against the initial Wuhan strain and 
the currently prevalent D614G strain of SARS-CoV-2. Similarly, 
the levels of spike-binding and RBD-binding total immunoglob-
ulin and immunoglobulin isotypes varied greatly.

A trend toward higher levels of total immunoglobulin and 
each immunoglobulin isotype was seen in female compared with 
male subjects, as reported in another study [37]. Moreover, ex-
cept for TF11 (a male elite neutralizer), the median neutralizing 
IC90 titer was higher in female than in male subjects, although 
the difference did not reach significance (data not shown). Sex 
differences in Ab induction have been observed following influ-
enza vaccination in humans and mice and were shown to result 
from the impact of sex-related steroids [38]. Whether and to 
what extent this contributes to the sex differences seen in clin-
ical outcomes of COVID-19 remains to be investigated. Other 
studies have shown that Ab levels were associated with multiple 
factors, including time from disease onset [39] and disease se-
verity [15]. However, other than sex, clinical data are not avail-
able for the subjects studied here, limiting our analysis only to 
neutralization and immunoglobulin isotypes.

One remarkable finding from our study is that although 
neutralization titers correlated with binding levels of IgM and 
IgG1 and not with those of IgA1 or IgA2, purified IgA fractions 
from patients with convalescent COVID-19 exhibited signifi-
cant neutralizing activities. The importance of this finding is 
underscored by the data showing that IgA1 was the prominent 
isotype in some samples such as TF7 and TF24 and that IgA1 
could be detected early after symptom onset. Data from other 
studies also support the significance of IgA in that purified IgA 
fractions exhibited more, or as potent neutralizing activities as 
purified IgG, and that RBD-binding IgA correlated as strongly 
as IgG with microneutralization titers [40]. 

IgA was also detected in saliva and bronchoalveolar lavage 
from patients with COVID-19 [41]. Nonetheless, Wang et  al 
[42] reported that plasma IgA monomers were less potent than 

mL, mouse biotinylated-anti-human IgG1 Fc (Invitrogen; no. MH1515) at 4 μg/mL, mouse biotinylated-anti-human IgG2 Fc (Southern Biotech; no. 9060-08) at 1 μg/mL, mouse 
biotinylated-anti-human IgG3 hinge (Southern Biotech; no. 9210-08) at 3 μg/mL, mouse biotinylated-anti-human IgG4 Fc (Southern Biotech; no. 9200–08) at 4 μg/mL, mouse 
biotinylated-anti-human IgA1 Fc (Southern Biotech; no. 9130-08) at 4 μg/mL, mouse biotinylated-anti-human IgA2 Fc (Southern Biotech; no. 9140-08) at 4 μg/mL, or goat 
biotinylated-anti-human IgM (Southern Biotech; no. 2020-08) at 3 μg/mL. The samples were tested at a dilution of 1:200 and data are shown as mean fluorescence intensity 
(MFI) (+ standard deviation [SD]) of duplicate measurements from ≥2 independent experiments. The prepandemic controls are shown as MFI (+ SD) of 12 samples (Pre; black 
bar). Horizontal red dotted lines represent cutoff values, determined as mean + 3 SDs of 12 prepandemic samples for each of the isotypes. C, Percentages of responders above 
the cutoff for each spike- or RBD-specific immunoglobulin isotype.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa784#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa784#supplementary-data
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the plasma IgG and secretory IgA counterparts. In our study, 
neutralization activities detected in the IgA fractions were me-
diated mainly by IgA1, the predominant IgA isotype in plasma, 
and the IC50 potency of the IgA fraction was approximately 
4-fold lower than the potency of IgM and IgG1 fractions. This 
difference cannot be explained entirely by lower amounts of 
spike-specific IgA1 in the tested fractions, as estimations using 

spike-specific monoclonal IgA and IgM Abs yielded similar 
IgA and IgM concentrations in the respective purified frac-
tions (median, 2 and 2.5  µg/mL, respectively). Fine epitope 
specificities and affinities may differ for IgA, IgM, and IgG to 
affect neutralization potency but have yet to be evaluated.

In addition to neutralization, nonneutralizing Ab activities 
have been implicated in protection from various virus infections 
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Figure 3.  Immunoglobulin (Ig) G1 is the dominant isotype induced in individuals with convalescent coronavirus disease 2019 (COVID-19). Results are shown for samples 
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through potent Fc-mediated functions such as Ab-dependent 
cellular cytotoxicity, Ab-dependent cellular phagocytosis, and 
complement-mediated lysis; this is reported for human immuno-
deficiency, influenza, Marburg, and Ebola viruses [26, 43–45]. The 
Fc activities were not evaluated in our study, and their contribu-
tion to protection against SARS-CoV-2 is yet unclear [46, 47]. 

A recent study demonstrated enrichment of spike-
specific IgM and IgA1 Abs and spike-specific phagocytic and 
Ab-dependent complement deposition (ADCD) activity in 
plasma of individuals who recovered from SARS-CoV-2 infec-
tion, while nucleocapsid-specific IgM and IgA2 responses and 
nucleocapsid-specific ADCD activity were features enriched in 
deceased patients [48]. DNA vaccines expressing full-length and 
truncated spike proteins could curtail SARS-CoV-2 infection 
in the respiratory tract by varying degrees in rhesus macaques. 
This virus reduction correlated with levels of neutralization and 
also with Fc-mediated effector functions, such as ADCD [45]. 
Interestingly, these DNA vaccines elicited spike- and RBD-
specific IgG1, IgG2, IgG3, IgA, and IgM Abs, and similar to our 
findings, neutralization correlated most strongly with IgM. 

Adenovirus serotype 26 vaccine vectors encoding 7 SARS-
CoV-2 spike variants also showed varying protection levels, 
and virus reduction correlated best with neutralizing titers to-
gether with IgM-binding levels, FcγRII-binding, and ADCD 
responses [49]. Defining the full functional potential of Abs 
against SARS-CoV-2—including neutralizing, nonneutralizing, 
and enhancing activities—are vital for determining the optimal 
Ab treatment modalities against COVID-19 and the potential 
efficacy of COVID-19 vaccine candidates.

When we examined plasma specimens collected within 
7–8 days after COVID-19 symptom onset, we detected IgG and 
IgA against spike and RBD, as well as IgM. This is consistent with 
published reports showing that 100% of COVID-19–infected 
individuals developed IgG within 19 days after symptom onset 
and that IgG and IgM seroconversion could occur simultane-
ously [15]. IgA was also found early after infection (4–6 days 
after symptom onset) and increased over time [14, 19, 41]. 
These studies suggest that measuring total immunoglobulin, 
rather than IgG only, could contribute to improved outcomes 
for early disease diagnosis. We found no correlation between 
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the levels of different isotypes in the specimens examined in 
our study (data not shown). Of note, IgA presence early during 
acute infection may suggest the potential contribution of nat-
ural IgA, which, similar to natural IgM, arises spontaneously 

from innate B1 cells to provide the initial humoral responses 
before the induction of adaptive classic B cells [50].

In summary, the current study demonstrates that spike- 
and RBD-specific IgM, IgG1, and IgA1 are produced by all 
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or almost all analyzed COVID-19–convalescent subjects 
and can be detected at early stages of infection. The plasma 
samples of convalescent individuals also display neutrali-
zation activities mediated by IgM, IgG, and IgA1, although 
neutralization titers correlated more strongly with IgM 
and IgG levels. The contribution of IgM, IgG, and IgA to 
SARS-CoV-2–neutralizing activities demonstrates their 
importance in the efficacy of passively transferred Abs for 
SARS-CoV-2 treatment.
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