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Abstract

Background: Understanding how widely COVID-19 has spread is critical information for

monitoring the pandemic. The actual number of infections potentially exceeds the num-

ber of confirmed cases.

Development: We develop a demographic scaling model to estimate COVID-19 infec-

tions, based on minimal data requirements: COVID-19-related deaths, infection fatality

rates (IFRs), and life tables. As many countries lack IFR estimates, we scale them from a

reference country based on remaining lifetime to better match the context in a target

population with respect to age structure, health conditions and medical services. We in-

troduce formulas to account for bias in input data and provide a heuristic to assess

whether local seroprevalence estimates are representative for the total population.

Application: Across 10 countries with most reported COVID-19 deaths as of 23 July 2020,

the number of infections is estimated to be three [95% prediction interval: 2–8] times the

number of confirmed cases. Cross-country variation is high. The estimated number of

infections is 5.3 million for the USA, 1.8 million for the UK, 1.4 million for France, and 0.4

million for Peru, or more than one, six, seven and more than one times the number of

confirmed cases, respectively. Our central prevalence estimates for entire countries are

markedly lower than most others based on local seroprevalence studies.

Conclusions: The national infection estimates indicate that the pandemic is far more

widespread than the numbers of confirmed cases suggest. Some local seroprevalence

estimates largely deviate from their corresponding national mean and are unlikely to be

representative for the total population.
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Introduction

The number of COVID-19 infections is a key indicator for

understanding the spread of the pandemic. Although this

indicator is potentially higher than the number of con-

firmed cases, it is largely unknown. Existing seropreva-

lence studies for COVID-19 have largely relied on non-

representative samples,1–4 and population-representative

studies are only slowly becoming available.5 Other

approaches to estimate the spread of COVID-19 rely on

complex statistical methods6,7 that typically have high data

demands.

We introduce a demographic scaling model to nowcast

the number of COVID-19 infections in a population on the

country level. It is inspired by indirect estimation techni-

ques8 and methods to model and forecast mortality9–11

from the field of demography. Our approach serves two

major aims. It is designed first to estimate the total number

and prevalence of COVID-19 infections, and second to as-

sess whether local seroprevalence measurements could be

representative of the total population. Depending on the

data available, our model can be regarded either as com-

plement or as an alternative to the more complex models

that already exist for estimating the numbers of infections.

Our model can be broadly applied in contexts with

both rich and poor data, as it requires minimal input: the

number of COVID-19-related deaths for the population of

interest; age-specific infection fatality rates (IFR; deaths

over infections) from a reference population; and life tables

used to scale IFRs to match the target population with

respect to age structures, health conditions and medical

services. Borrowing and scaling IFRs is necessary, as IFRs

are not available for many countries.

We apply the demographic scaling model to estimate

the total number and prevalence of COVID-19 infections

in 10 countries that have the most reported COVID-19

deaths as of 23 July 2020. We also compare local

seroprevalence for Germany, the USA and Italy with our

nationwide infection prevalence estimates. Given the rapid

progress of the COVID-19 pandemic, we refer the reader

to latest results and the R source code to (re)produce them

at [https://github.com/christina-bohk-ewald/demographic-

scaling-model].

This research project does not require ethics approval as

it uses only macro data that are freely available online.

Methods

The demographic scaling model

The demographic scaling model estimates the total number

I and prevalence k of infections. We start with the basic

identity that represents the age-specific number of infected:

Ix ¼ Px � kx; (1)

where I is the unknown number of infected, P is the known

population size, k is the unknown fraction of the infected

population, and x denotes the age group. We estimate kx

by using the equation: Dx ¼ IFRx � Px � kx, where D is

the number of deaths and IFR is the infection fatality rate.

We rearrange the equation to get kx ¼ Dx=½IFRx � Px�,
and estimate the total number of infected by:

I ¼
X

x

Px � kx (2)

Replacing kx with its definition yields:

Key Messages

• The demographic scaling model facilitates the timely monitoring of the spread of the COVID-19 pandemic in many

settings.

• The demographic scaling model allows estimation of the total number and prevalence of COVID-19 infections on the

country level with and without accounting for bias in input data on deaths and infection fatality rates.

• The demographic scaling model is broadly applicable in contexts with both rich and poor data through minimal input

data requirements, which make it a complement or an alternative to more complex methods.

• The estimates for the 10 countries with most reported COVID-19 deaths as of 23 July 2020 are uncertain and vary

across countries, but consistently indicate that the pandemic is more broadly spread than the numbers of confirmed

cases suggest.

• The demographic scaling model can also be used to indicate whether local seroprevalence measurements could be

representative of the total population by assessing how much bias would be required in its input data on deaths and

infection fatality rates in order to reproduce them.
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I ¼
X

x

Dx=IFRx (3)

The model estimates infections at a discrete time point,

using input data that most closely refer to that time point.

If data on time-varying IFRs becomes available, this can be

incorporated in the model.

The key challenge is to arrive at credible estimates of

IFRx and Dx , as the demographic scaling model assumes

that COVID-19 deaths and IFRs are fairly accurately

recorded and that IFRs borrowed from a reference country

reflect the true IFRs of the target country after appropriate

scaling. We show below how our method can be used if

these assumptions are violated.

Credible estimates of IFRx and Dx

IFRx are not available for many countries. To obtain

country-specific estimates of IFRx we borrow them from a

reference country and scale them to better match the con-

text in a target population with respect to age structures,

underlying health conditions and medical services. This

scaling is particularly important as the presence of older

age and underlying health conditions—such as cardiovas-

cular diseases, diabetes, chronic respiratory diseases, hy-

pertension and neoplasms—increase the risk of death with

a given COVID-19 infection.12,13 In addition, the ability of

health care systems to treat illnesses effectively may also

affect COVID-19 mortality and vary among countries.

To account for the differential vulnerability to

COVID-19 in each target population, we map IFRs be-

tween a reference and a target population based on their

remaining lifetime, denoted by ex. Remaining lifetime is a

function of chronological age, health conditions and a

health care system’s effectiveness in curing diseases.14 The

younger people are, the fewer underlying health conditions

they have; and the more effective medical care is in treating

illnesses, the more life-years people have left.

We assign the same infection fatality rate (IFR) to peo-

ple of two countries who have, on average, the same num-

ber of life-years left (ex):

IFRCOI
ex
¼ IFRRC

ex
; (4)

where COI denotes the country of interest and RC denotes

the reference country. For example, if 70-year-olds in a

reference country have, on average, the same number of

life-years left as 75-year-olds in a country of interest, the

infection fatality rate of the 70-year-olds in the reference

country is used for the 75-year-olds in the country of

interest.

We assume that remaining lifetime is a good proxy for

overall health conditions and medical services in a popula-

tion, and note that it is readily available for many coun-

tries. Scaling IFRs should be the more effective, the more

similar the overall structure and distribution of causes of

death are in a target and reference population, even more

so when these diseases affect the vulnerability to COVID-

19.12,13 The scaling should not work well when one of the

two countries has disproportionately many people dying

from, for example, external causes (suicide, homicide and

accidents) which have not been shown to be related to

COVID-19, but which have a big effect on remaining life-

time. In most countries, however, mortality of people at

ages above 50—being most vulnerable to COVID-19 and,

consequently, particularly relevant for the proposed

method—is mostly driven by cardiovascular diseases, neo-

plasms, and chronic respiratory diseases.15 Therefore we

consider it reasonable to assume that scaling IFRs should

be effective to approximate the true IFRs in many countries

of interest.

Whereas COVID-19 deaths are available in total num-

bers for many countries worldwide,16 they are often not

available by age. We disaggregate total deaths into age

groups using a global average pattern over age that we de-

rived from data provided by Dudel et al.17 (Supplementary

Appendix 3, available as Supplementary data at IJE

online).

Accounting for bias in input data

Our input parameters on COVID-19 deaths and IFRs are

both prone to bias. The number of COVID-19 deaths may

be under- or overestimated. Reporting delays and inconsis-

tent practices for defining and testing COVID-19 deaths

are among the key sources of error. (Scaled) IFRs may also

be under- or overestimated. In addition to reporting, classi-

fication and testing errors, the population structure by age

and precondition, the performance and occupancy rate of

medical services and the taken control measures and their

acceptance in a population, are main factors that impact

on both the IFRs in the reference population and their scal-

ability to other countries of interest.

If this bias could be quantified for (i) deaths, for exam-

ple through emerging studies on COVID-19-related excess

mortality,18–20 and for (ii) IFRs, for example through

more, better and consistent surveillance data becoming

available,21 the demographic scaling model could account

for it in formula (3) by introducing the relative amount of

under- or overestimation B. For example, if B denotes the

relative amount of misreporting deaths, our estimate of the

number of infections with bias IB can be written as:
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IB ¼ B
X

x

Dx=IFRx ¼ B � IT ; (5)

assuming that bias affects all ages to the same extent and

that IT is the true number of infections. Equation (5) shows

that a biased estimate of infections could be adjusted in or-

der to derive the true number of infections, IT ¼ IB=B. For

example, if B is below or above one, then COVID-19

deaths are under- or overreported, respectively. Bias in

IFRs can be handled in a similar fashion. Note that the po-

tential bias in our infection estimates could be unequally

distributed by age due to, for example, differential vulnera-

bility and testing coverage by age.22

Assessing whether local seroprevalence

estimates are representative of total population

Adapting equation (5) allows us to assess whether local se-

roprevalence estimates IS could be representative of the to-

tal population, by quantifying the bias B that would be

required in deaths and IFRs in order to match our esti-

mates, IE. We can express our estimates IE in terms of the

local seroprevalence estimates IS and an under/overestima-

tion factor B as IE ¼ B
P

x Dx=IFRx ¼ B � IS. Then B is

simply given by IE/IS. The two estimates IE and IS might

be considered inconsistent if B is very high or low. This in-

consistency can indicate that the local seroprevalence esti-

mate IS was not representative of the total population, or

that the COVID-19 deaths (or IFRs) used in our estimate

for IE are biased by a factor of B (or 1=B). For instance,

reproducing an IS that is much larger than our original IE

could be achieved by assuming that COVID-19 deaths are

underestimated by a factor of B. If this estimate of underre-

porting COVID-19 deaths is large, the interpretation that

IS is not representative of the total population may be

more plausible. What is ‘large’ is likely to be context de-

pendent, and information on estimates of excess mortal-

ity18–20 may be useful when making this judgment.

Empirical data for estimating COVID-19 infections

We use the demographic scaling approach (i) to estimate

COVID-19 infections for the 10 countries that have

reported most COVID-19 deaths as of 23 July 2020, and

(ii) to assess whether recent local seroprevalence studies for

the USA, Italy and Germany are likely to be representative

of the corresponding total population. As input data, we

use (i) 2019 population counts and life tables of the United

Nations (UN),23 (ii) accumulated COVID-19 deaths from

Johns Hopkins University Center for Systems Science and

Engineering (CSSE),16 and (iii) IFRs for Hubei, China.21

The UN23 provides remaining lifetime of China, which

is comparable to remaining lifetime of Hubei.24 We select

Hubei’s IFRs because they were the first to be published in

a peer-reviewed journal, are based on a relatively large

population sample, account for potential biases, and have

passed several robustness checks.21 For example, Verity et

al.21 account for potential bias in IFRs caused by, for ex-

ample, different surveillance settings. We acknowledge,

however, that there may be problems with Hubei’s IFRs

and note that our method can flexibly use better IFR esti-

mates when they may emerge over time. We use the lower

and upper bound of the 95% credible interval of Hubei’s

IFRs, which have been derived through Bayesian analysis,

to generate the boundaries of the 95% prediction interval

of our infection estimates. The uncertainty estimates of our

model might be too large (or conservative) as we do not ac-

count for covariance in IFR across ages. As the IFRs are

provided by 10-year age groups, 0 � 9, 10 � 19, . . .,

80þ, we prepare all input data to match them. Model

details and additional findings are given in Supplementary

Appendices 1-7, available as Supplementary data at IJE

online.

Results

Figure 1 shows the infection estimates for 10 countries that

have reported most COVID-19 deaths as of 23 July 2020:

the USA, Brazil, the UK, Mexico, Italy, France, India,

Spain, Iran and Peru. The infection estimates are uncertain

and vary across countries, but consistently indicate that the

pandemic is more broadly spread than the numbers of con-

firmed cases suggest. Across the 10 countries in our sam-

ple, the total number of infections is estimated to be

approximately three [95% prediction interval: 2–8] times

higher than the number of confirmed cases. For example,

for the USA, which has 4 million confirmed cases, we esti-

mate that the total number of infections might range from

approximately 2.5 million to 11.4 million, with a central

estimate of 5.3 million infections, which is only slightly

more than the number of confirmed cases. For a large num-

ber of countries, the central infection estimate is more than

three times higher than the number of confirmed cases. For

example, for France, we estimate that there are approxi-

mately 1.4 million infections [95% prediction interval:

0.6–3.7 million], whereas the total number of confirmed

cases, 205 000, is almost one seventh of the estimated

infections. India, where the pandemic struck relatively late

and testing has been comparatively limited, stands out in

this context, as our central estimate of infections, 668 000

[95% prediction interval: 348 000–1.3 million], is smaller

than the number of confirmed cases, 1.2 million. Case fa-

tality rate in India is low, lower than in well-performing

South Korea and in many other high-income countries.25

This suggests that it is possible that a comparatively large
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number of COVID-19 deaths may be undetected in India,

which would bias our estimates downward. Moreover,

the time from disease onset to death from COVID-19,

which can be several weeks,26–28 and the rapidly increasing

number of confirmed cases in India, could also partially

explain why our estimates are low compared with the con-

firmed cases. Supplementary Appendix 7, available as

Supplementary data at IJE online, provides information

about test coverage, which appears to increase with the

duration of the pandemic and the number of confirmed

cases.

Figure 2 shows that the COVID-19 prevalence is

estimated to have increased for most countries in our sam-

ple over time. As of 23 July 2020, we find the central

Figure 1 Confirmed cases versus estimated infections. Confirmed cases (non-floating, coloured bars) and estimated COVID-19 infections (quantiles

0.025, 0.5 and 0.975; floating, grey bars) for the 10 countries that have the largest numbers of reported deaths from COVID-19 as of 23 July 2020. Own

calculations using data from Verity et al.,21 United Nations World Population Prospects23 and Johns Hopkins University Center for Systems Science

and Engineering16

Figure 2 Estimated COVID-19 infection prevalence. Estimated population share of COVID-19 infections (quantiles 0.025, 0.5 and 0.975), from 22

January to 23 July 2020, for the 10 countries that have the largest numbers of reported deaths from COVID-19 as of 23 July 2020. Own calculations us-

ing estimates of Verity et al.,21 United Nations World Population Prospects23 and Johns Hopkins University Center for Systems Science and

Engineering16
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prevalence estimate to be on average 1.6% [95% predic-

tion interval: 0.7–3.9%]. It ranges: from 2.8% in Spain; to

between 2% and 2.6% in the UK, Italy and France; to ap-

proximately 1% and 1.6% in the USA, Peru, Brazil and

Mexico; and to 0.5% or less in Iran and India. The upper

bound includes values as high as 8.2%, 6.8% and 6.1%

for Spain, Italy and the UK, respectively. It is striking that

infection prevalence appears to stabilise for Spain, France

and Italy, whereas it continues to increase for the other

countries in our sample.

The relatively wide prediction intervals for the esti-

mated number and prevalence of COVID-19 infections

reflect the high level of uncertainty in input data on

COVID-19 during the early stages of the pandemic. Despite

the high uncertainty, the bounds provide useful information.

In most cases the lower bound is well above the number of

confirmed cases, suggesting that the latter underestimates

the number of infections. The upper bound, high as it often

is, is also important information that should be factored in

as a possibility in planning. Moreover, for estimates of

change over time, the uncertainty may be lower than for a

single point in time if the sources of error stay constant.

As the COVID-19 prevalence is much higher according

to local seroprevalence studies for the USA, Italy and

Germany than our model estimates, we assess their repre-

sentativeness with our model by showing how many more

COVID-19 deaths would have been required to match

them. For example, Bendavid et al.3 reported in the middle

of April 2020 a seroprevalence between 1.1% and 5.7%

for Santa Clara County in the USA, compared with our

central estimate of 0.4% for the entire USA at the same

time (17 April 2020). Assuming the seroprevalence esti-

mate of 1.1% is correct, only one in three COVID-19-

related deaths would have to be registered. Bendavid et al.3

cite a seroprevalence of 10% for the city of Robbio in

Italy, and a seroprevalence of 14% for the German munici-

pality of Gangelt. Table 1 shows that to be compatible

with our central prevalence estimates of 1.7% in Italy and

0.2% in Germany, only one in five and fewer than two in

100 COVID-19-related deaths would have to be recorded

in Italy and Germany, respectively. However, when using

the upper bound of our prevalence estimates, only one in

two COVID-19-related deaths would have to be missed for

the USA and Italy, which is possible; whereas for

Germany, the number is still unrealistically high. Either

way, the infection estimates based on local seroprevalence

studies appear to be much higher than our prevalence esti-

mates, which may indicate that they are not representative

of the total population.

Discussion

The actual number of infections is among the key

unknowns of the COVID-19 pandemic. Several studies

have provided infection estimates, based either on local se-

roprevalence measurement3,4 or complex statistical mod-

els.6,7 None of the identified studies have provided a

broadly applicable data-based approach that estimates

COVID-19 infections using only a few inputs, and that

takes into account cross-country differences in age struc-

tures, health conditions and health care systems.

We have developed a demographic scaling model to es-

timate COVID-19 infections on the country level, based on

modest data requirements, allowing its application also in

contexts with poor data. Our model estimates vary across

the 10 countries with most COVID-19 deaths as of 23 July

2020, but consistently point in the same direction, as the

total number of infections is approximately three [95%

prediction interval: 2–8] times higher than the number of

confirmed cases.

Considering the urgent need for population-based sero-

prevalence studies in order to measure the actual progress

of the COVID-19 pandemic, it is also critically important

to assess whether local measurements could be representa-

tive of the corresponding total population. Analysing re-

cent local seroprevalence estimates for the USA, Italy and

Table 1 Bias required in reported COVID-19 deaths to reproduce local seroprevalence estimates

Country Seroprevalence estimate Scaling model estimate B (bias required)

USA (Santa Clara) 3% 0.4% 0.15

Italy (Robbio) 10% 1.7% 0.20

Germany (Gangelt) 14% 0.2% 0.01

Central COVID-19 prevalence estimates for middle of April 2020, percent, according to local seroprevalence studies and our demographic scaling model, for

the USA, Italy and Germany. Also shown is the amount of bias (B; here: under-reporting) that would be required to explain their discrepancy. For example, a bias

of 0.2 for Italy could suggest that only one in five COVID-19 deaths would have been reported in order to explain the seroprevalence estimate with our scaling

model estimate. Data source for seroprevalence estimates: Bendavid et al.3 Own calculations using estimates of Bendavid et al.,3 Verity et al.,21 United Nations

World Population Prospects23 and Johns Hopkins University Center for Systems Science and Engineering as of 17 April 2020.16
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Germany suggests that they are likely not representative of

the total population, in particular in Germany. Local sero-

prevalence estimates may be biased due to false test results

and to population samples that are not nationally

representative.29

Our model estimates build on two key assumptions,

that at best, only partially hold. Our first key assumption

implies that COVID-19 deaths are fairly accurately

recorded. However, COVID-19 deaths may be misre-

ported, particularly in regions that are heavily affected by

the pandemic.30 Reporting delays and inconsistent practi-

ces for defining and testing COVID-19 deaths may also in-

fluence the accuracy of reported deaths.12 If the numbers

of reported deaths were too small, the infection estimates

would be biased downward, and vice versa. However, if

the amount of reporting bias is known, for example

through studies gauging COVID-19-related excess mortal-

ity,18–20 our approach could easily incorporate this

information.

Our second key assumption implies that infection fatal-

ity rates from a reference country are (i) fairly accurately

recorded and (ii) become applicable in a target population

through proper scaling based on remaining life expectancy.

Infection fatality rates from a reference country could be

biased due to, for example, test errors that can lead to mis-

classification of deaths. Watson and Brush31 note that

COVID-19 tests have high specificity and only moderate

sensitivity. Kumleben et al.32 point out that there can be

many false-positives despite high test specificity if many

tests are conducted and infection prevalence is low. This

could result in over-reporting COVID-19 deaths.

However, recent results on excess mortality18–20 indicate

that deaths are more likely to be under-reported. Another

source of bias is misspecification in the statistical model

used to estimate reference infection fatality rates. In the

case of Hubei, this should be only a minor concern as

Verity et al.21 have run several robustness checks.

Nevertheless, Supplementary Appendix 5, available as

Supplementary data at IJE online, shows how infection

estimates increase when they are based on scaling French

(instead of Chinese) infection fatality rates.33 If data are

(or become) available, we recommend use of infection fa-

tality rates of population-representative serological studies,

as it would avoid circling effects between modelling

approaches.

Although scaling the infection fatality rates between a

reference and a target country increases the applicability of

our estimation approach, such borrowing and scaling strat-

egies cannot fully reflect country-specific trends. We argue

that remaining lifetime is a useful marker to account for

overall cross-country differences in age structure, health

conditions and medical services, but also acknowledge that

it cannot directly account for cross-country differences in,

for example, the progress of the pandemic, the control

measures taken and their acceptance in each population in

order to prevent medical services from becoming overbur-

dened. Scaling IFRs could be substantially impaired if ref-

erence and target population considerably differ: (i) in

structure and distribution of major diseases that affect

both vulnerability to COVID-19 and remaining lifetime;

and (2) in the occupancy rate of medical services caused by

different levels of preparedness for dealing with this

pandemic.

Considering the rapidly changing pandemic, it is impor-

tant to note that the proposed model can account for time-

varying input parameters. This is useful, as not only the

numbers of deaths change on a daily basis, but also IFRs

may decrease as experience with best treatment practices

accumulates.34,35

Our model can account for the duration between dis-

ease onset and death, which may be several weeks,26–28

without the need to change any equations. Supplementary

Appendix 6, available as Supplementary data at IJE online,

compares estimated infections as of 23 July 2020, with

confirmed cases 18 days ago, which results in an increase

of unknown infections. Not adjusting for this time lag

leads to infection estimates that are generally too low.

More specifically, this underestimation is likely to be

greater or smaller when infection numbers increase or de-

crease. However, data about time to death are uncertain

and vary by source.26,27

Our demographic scaling model estimates COVID-19

infections in a simple and fast manner in settings with rich

and poor data. It can be the only option in situations in

which the detailed data needed for precise estimation are

unavailable and population-representative seroprevalence

studies are lacking. Our model can be implemented

broadly and provides useful information about the magni-

tude of the unknown number and prevalence of infections

in countries worldwide. It is also a suitable tool to quantify

the deviation of local seroprevalence estimates from their

corresponding national mean. The model outcomes can be

used in decision making and as input in more advanced

models.1,6,7,36–38 Moreover, as the information about the

key input parameters of our approach—deaths and infec-

tion fatality rates—improves, it will produce increasingly

accurate infection estimates.

Supplementary data

Supplementary data are available at IJE online.
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