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Abstract

Background: Cancer has been a leading cause of death in the United States with significant 

health care costs. Accurate prediction of cancers at an early stage and understanding the genomic 

mechanisms that drive cancer development are vital to the improvement of treatment outcomes 

and survival rates, thus resulting in significant social and economic impacts. Attempts have been 

made to classify cancer types with machine learning techniques during the past two decades and 

deep learning approaches more recently.

Results: In this paper, we established four models with graph convolutional neural network 

(GCNN) that use unstructured gene expressions as inputs to classify different tumor and non-

tumor samples into their designated 33 cancer types or as normal. Four GCNN models based on a 

co-expression graph, co-expression+singleton graph, protein-protein interaction (PPI) graph, and 

PPI+singleton graph have been designed and implemented. They were trained and tested on 

combined 10,340 cancer samples and 731 normal tissue samples from The Cancer Genome Atlas 

(TCGA) dataset. The established GCNN models achieved excellent prediction accuracies (89.9–

94.7%) among 34 classes (33 cancer types and a normal group). In silico gene-perturbation 

experiments were performed on four models based on co-expression graph, co-expression

+singleton, PPI graph, and PPI+singleton graphs. The co-expression GCNN model was further 

interpreted to identify a total of 428 markers genes that drive the classification of 33 cancer types 

and normal. The concordance of differential expressions of these markers between the represented 

cancer type and others are confirmed. Successful classification of cancer types and a normal group 
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regardless of normal tissues’ origin suggested that the identified markers are cancer-specific rather 

than tissue-specific.

Conclusion: Novel GCNN models have been established to predict cancer types or normal tissue 

based on gene expression profiles. We demonstrated the results from the TCGA dataset that these 

models can produce accurate classification (above 94%), using cancer-specific markers genes. The 

models and the source codes are publicly available and can be readily adapted to the diagnosis of 

cancer and other diseases by the data-driven modeling research community.
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1 INTRODUCTION

Cancer has been the leading cause of death in the United States (U.S.) and cancer mortality 

is 163.5 per 100,000 people. About 1.7 million new cases of cancer were diagnosed in the 

United States and 609,640 people died from cancer in 2018. Further, about 38.4% of the 

U.S. population will be diagnosed with cancer at some point during their lifetimes based on 

the 2013–2015 data. This has led to an estimated $147.3 billion in cancer care in 2017. The 

cancer care cost will likely increase as the population ages and cancer prevalence increases 

thus causing more expensive cancer treatments to be adopted as standards of care.[1] 

Extensive research has shown that early-stage cancer diagnoses predict cancer treatment 

outcomes and improve survival rates.[2; 3; 4; 5] Therefore, early-stage screening and 

identifying cancer types before arising symptoms have significant social and economic 

impacts.

Newly adopted technologies and facilities have generated huge amounts of cancer data 

which has been deposited into the cancer research community. In the past decade, the 

analysis of publicly available cancer data has led to some machine learning models.[6; 7; 8; 

9; 10; 11] Recently, deep-learning-based models for cancer type classification and early-

stage diagnosis have been reported. Li et al. proposed a k-nearest neighbor algorithm 

coupled with a genetic algorithm for gene selection and achieved >90% prediction accuracy 

for 31 cancer types based on The Cancer Genome Atlas (TCGA) dataset in 2017.[10] Later 

on, Ahn et al. designed a fully connected deep neural network trained by 6,703 tumor 

samples and 6,402 normal samples and assessed an individual gene’s contribution to the 

final classification in 2018.[12] Lyu et al. proposed a convolutional neural network (CNN) 

model with a 2-dimensional (2-D) mapping of the gene expression samples as input matrices 

and achieved >95% prediction accuracy for all 33 TCGA cancer types.[13] Since the gene 

expression profiles are represented by 1-dimensional data and CNN models prefer a 2-

dimensional image type data, Lyu reorganized the original 10381×1 gene expression based 

on the chromosome number assuming that adjacent genes are more likely to interact with 

each other. With this positioned sequence, the 1-dimensional (1-D) data was reshaped into a 

102 × 102 image by adding some zeros at the last line of the image. Our group has 

developed a deep learning model, an auto-encoder system with embedded pathways and 

functional gene-sets to classify different cancer subtypes.[14] This research suggested that 
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embedding the 1-D data with respect to their functional groups might be a promising 

approach. However, gene expression data are inherently unstructured but given that gene 

expression profiles measure the outcomes of gene-gene regulatory networks at the mRNA 

level, they should reside in a manifold defined by the functional relationship of genes. Our 

group also developed a CNN model that classified normal tissue and 33 cancer types from 

the TCGA dataset randomly imposing the gene expression data into a (2-D) space to achieve 

a 93.9%−95% accuracies.[15] In contrast, the CNN models proposed in the existing work 

are originally designed for data in the Euclidean domain such as images. As a result, they 

struggle to learn the manifold of the gene expression data.

Graph convolutional neural network (GCNN) was developed recently to model data defined 

in non-Euclidean domains such as graphs. [16] GCNNs perform convolution on the input 

graph through the graph Laplacian instead of on the fixed grid of 1-D or 2-D Euclidean-

structured data. GCNNs have been applied in studies of social networks and physical 

systems.[17; 18; 19; 20] Recently, GCNN models have been applied to predict metastatic 

breast cancer events and to integrate the protein-protein interaction database (STRING) into 

breast cancer study. [21; 22; 23; 24] This motivated us to investigate GCNN models for 

expression-based cancer type classification.

In addition to designing a proper deep learning model for gene expression data, another 

challenge in cancer type classification is to identify cancer-specific gene markers, 

disentangled with tissue-specific markers. This is because these primary cancer types are 

uniquely associated with their tissues/organs of origin and therefore the tissue-specific 

markers have the same discriminating power as cancer-specific markers. It is non-trivial to 

determine if a discriminate gene in a cancer type classifier is cancer- or tissue-specific.

To investigate GCNN for cancer type prediction and identify cancer-specific markers, we 

proposed and trained four GCNNs models using the entire collection of TCGA gene 

expression data sets, including 10,340 tumor samples from 33 cancer types and 731 normal 

samples from various tissues of origin. Graphs of the four models were generated, namely, 

the co-expression network, the co-expression+singleton network, the PPI network, and the 

PPI+singleton network. The models proposed successfully classified tumor samples without 

confusion from normal tissue samples, suggesting the markers identified are likely cancer-

specific without dependency on tissues. Also, we examined the co-expression graph model 

and effects of each gene on the accuracy of cancer type prediction using in silico gene 

perturbation, where we set one gene’s expression level to 0 or 1 in one sample before fed 

into the established model per simulation and then examined the perturbation in prediction 

accuracy of all cancer types. We expected that the largest changes in the accuracy of 

predicting a cancer type would yield the most discriminative marker genes to a designated 

cancer type.

2 MATERIALS AND METHODS

2.1 Data Preparation

RNA-seq data were downloaded from TCGA and processed as described previously. [15] 

Briefly, we downloaded the dataset using an R/Bioconductor package TCGAbiolinks.[25] 

Ramirez et al. Page 3

Front Phys. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The dataset includes the entire collection of 11,071 samples containing 10,340 samples from 

33 cancer types and 731 normal samples from 23 different tissues with 18 of those samples 

not having a tissue of origin but identified as non-cancer as of December 2018. The specific 

numbers of cancer and normal samples in each cancer type are shown in Figure 1. We note 

that normal tissue samples in a specific cancer study are referred to as the corresponding 

tissue types, not necessary from a matching tumor in the same study. For example, normal 

tissue samples in the BRCA study represent normal breast tissue. All of the abbreviations in 

this study are listed at the end of the manuscript.

The 56,716 genes’ expression levels are in the log2(FPKM+1) unit where FPKM is the 

number of fragments per kilobase per million mapped reads. To reduce the complexity of the 

model, a total of 7,091 most informative genes were selected, which had a mean expression 

level greater than 0.5 and a standard deviation greater than 0.8. We standardized the gene 

expression between 0–1 in this study to ensure the convergence of the model.

2.2 Graph Generated by Co-expressions

Two different input graphs were generated, a co-expression graph and a PPI graph from the 

STRING database (https://string-db.org/).[22; 23] To create the co-expression graph, 

Spearman correlation was calculated using MATLAB (Mathworks Inc, MA) to generate a 

correlation matrix between each gene in the dataset. Spearman Correlation is a widely 

adopted method to assess monotonic linear or nonlinear relationships in sequencing data.

[26] If the correlation between two genes is greater than 0.6 with a p-value less than 0.05, a 

weight of 1 is placed in an adjacency matrix, otherwise 0. If there is no correlation greater 

than 0.6 with a given gene, then that gene is removed from the gene list, leading to a total of 

3,866 genes in the co-expression graph. The graph structure is represented by a 3,866 by 

3,866 adjacency matrix, Wco-expr.

2.3 Graph Generated by PPI Database

All 7,091 genes were fed into the BioMart databased to find the corresponding unique 

Ensembl protein IDs.[27] All human protein interactions were downloaded from the 

STRING website.[22; 23] Due to the existence of non-coding genes in the TCGA dataset 

and a limited amount of proteins in the STRING database, a total of 4,444 genes were 

selected to build the graph. Connections among the genes with medium confidence in the 

STRING database were considered. If a connection between two genes is considered, a 

weight of 1 will be placed in an adjacency matrix. The PPI graph is represented by a 4,444 

by 4,444 adjacency matrix, WPPI. The string database is selected for the PPI interactions due 

to the quantity and quality of data coverage, convenient visualization support, and user-

friendly file exchange format. [28]

2.4 Graph Generated by Singleton Nodes

All 7,091 genes were used in PPI and singleton node graph where all 2, 647 genes not 

included in the PPI graph were treated as singleton nodes. The 7,091 by 7,091 adjacency 

matrix included the 4,444 by 4,444 adjacency matrix WPPI from the PPI graph at the upper-

left corner and zeros in other places. The same occurs in the co-expression and singleton 

graph. The additional 3,225 genes that are not included in the co-expression graph are 
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included as singleton nodes where Wco-expr upper-left corner and zeros in other places to 

generate a 7,091 by 7,091 adjacency matrix.

2.5 Proposed GCNN models

The GCNN includes an input graph represented by the adjacency matrix, graph 

convolutional layer (coarsening and pooling), and a hidden layer fully connected to a 

softmax output layer as shown in Figure 2. We trained four different ChebNet based on the 

co-expression, co-expression+singleton, PPI, and PPI+singleton networks.

2.5.1 Background on ChebNet—ChebNet is a computationally efficient 

implementation of GCNN, which approximates the computationally complex global filter on 

the graph by fast localized filters by using Chebyshev’s polynomials. To explain ChebNet 

for our problem, consider that the gene expression data, x ∈ Rn can be mapped to a graph, G 

= (V, E) where V is a list of vertices or nodes, E is a list of edges between the nodes, and n 

denotes the number of gene/nodes. The adjacency matrices generated previously were used 

to encode the connections, i.e., the edge weights between vertices. Let W = (wij) ∈ R n×n 

represent the matrix of edge weights and the graph Laplacian of W can express as

L = In − D− 1
2W D− 1

2 , L ∈ Rnxn (1)

where D is the diagonal matrix with Dii = ∑jwij, and In is an n × n identity matrix. The 

graph Laplacian L is a self-adjoint positive-semidefinite operator and therefore allows an 

eigendecomposition L = UΛU T, where U=[u1, u2, …, un] represents n eigenvectors of L 
and Λ= diag[λ1, λ2, …, λn] is a diagonal matrix composed of the eigenvalues of L. [29] 

Such decomposition admits a spectral-domain operation similar to the Fourier transform in 

the Euclidean. Application of a filter G to the input signal x on the graph can be calculated 

by the convolution of G and x, which can be computed in the spectral domain according to 

in the following equation,

y = g L x = g UΛUT x = Ug Λ UTx, (2)

where gθ is the spectral representation of the filter that gets increasingly complex with the 

dimension of the input data and the number of neighboring nodes.

To reduce the complexity, a polynomial expansion of g can be obtained as

gθ(Λ) = ∑k = 0
K − 1θkΛk, (3)

where Λk = diag λ1
k, λ2

k, …, λn
k  and θk are the polynomial coefficients. It is shown [29] that 

this expansion yields local filters with manageable computation. A Chebyshev 

approximation Tm(x) of order m have been proposed in [29] for this expansion and is 

represented by

Tm x = 2xTm − 1 x − Tm − 2 x , (4)
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where T0 (x) = 1 and T1(x) = x. [29; 30] Then, the local filter described in (3) can be 

expressed as

gθ(Λ) = ∑k = 0
K − 1θkTk(Λ), (5)

where Λ is a scaled Λ defined fas

Λ = = 2Λ/λmax − In, (6)

that maps the eigenvalues in [−1,1]. This makes the Chebyshev expansion to have x0 = x and 

x1 = Lx which greatly decreases the computational cost. This resulting implementation is 

called ChebNet.

2.5.2 Graph Convolutional Network—Kipf et al. further simplified this ChebNet by 

keeping the filter to be an order of 1 and set θ = θ0 = −θ1 to prevent overfitting. This 

reduced (2) into [18]

y = θ In + D− 1
2W D− 1

2 x . (7)

A normalization with W = W + 1 and Dii = ∑jW ij is applied that leads to the final 

expression for the filtering as

y = θ D− 1
2W D− 1

2 x . (8)

This resulting implementation is also referred to as graph convolutional network (GCN).

2.5.3 Coarsening, Pooling, and Output Layer—A greedy algorithm was used for 

layer coarsening, which reduced the number of nodes roughly by half. The greedy rule chose 

an unselected node to be paired with another unpaired neighbor node and their vertices being 

summed together. When pooling and coarsening a singleton node, the node grouped with a 

random node that was unpaired.

The output nodes of the final GCNN layer served as the input to a single dense fully 

connected layer with a ReLu function which then led to the output layer with a softmax 

function to get the probabilities.

2.6 Loss Function, Optimization, and Hyperparameter Selection

Categorical cross-entropy was used as the loss function and the Adam optimizer was 

selected for all four GCNN models. Random Search was used to find the optimal pooling, 

learning rate, size of the hidden layer, and batch size. The hyperparameters were selected 

based on the highest accuracy and lowest loss function with multiple model parameters 

providing similar results. The parameters chosen remained consistent throughout the four 

models. The epoch and batch size was chosen as 20 and 200, respectively. Only one 

coarsened GCNN layer was used with 1 filter, an average pooling of 2, and one hidden layer 

Ramirez et al. Page 6

Front Phys. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was selected after the GCNN layer of 1,024 nodes. The only hyperparameter that changed 

was the learning rate which increased from 0.001 to 0.005 in the singleton graphs. 5-fold 

cross-validation was used to train and test the model.

2.7 Computational Gene Perturbation Post-modeling Analysis of GCNN Model

Determining the most influential gene to each cancer type or normal tissue classification is 

an important task for model analysis and verification, yet very difficult for the GCNN model 

due to the collapse of nodes in the graph. Inspired by Ahn’s model analysis for a single type 

of cancer, a computational gene perturbation analysis for multiple cancer classes was used in 

this study [12]. The pseudocode is shown in Figure 3. The gene perturbation post-modeling 

analysis examined how much the predictions of a trained model changed before and after a 

gene was perturbed in computer simulations, where significant prediction accuracy change 

suggested the importance of the gene in the classification.

Step 1: Screen samples

A sample without a satisfactory prediction (>0.5) given by the GCNN model was removed 

from this analysis since it did not represent the class adequately. A threshold of .5 was 

chosen since any prediction greater than that guaranteed that classification.

Step 2: Calculate the contribution score of each gene to 34 classification types

In the perturbation post-modeling analysis, each gene was set to the lowest value (0) and 

then the highest value (1) at a time to see how the expression change would affect the 

prediction accuracy of the trained model for each sample after the screening. The newly 

obtained prediction accuracies caused by a gene were compared to the original prediction 

accuracy from the model for the cancer type labeled by TCGA data. The larger prediction 

accuracy change of the labeled cancer type was chosen as a contribution score of that gene 

for that cancer type. The process was repeated for each gene in all cancer types and normal 

samples, resulting in a contribution score for each gene of all 34 classification groups (33 for 

cancer types and normal type). The contribution scores were represented by a matrix with 

dimensions of the number of classes (34) by the number of genes.

Step 3: Normalization

The final contributions were normalized to their respective class resulting in their gene-

effect score between 0 (lowest effect) to 1 (highest effect). The normalization was done to 

standardize the score onto the same scale because some tumor types have more samples thus 

having more contributions to that class. Min-max normalization was chosen since we only 

cared for the magnitude, not the direction in which the prediction changes — positively 

(higher confidence) or negatively (lower confidence). Min-max normalization equation is 

also shown in the pseudocode as shown in Figure 3. An additional class was added to 

investigate genes that may be associated with multiple cancer types. A summary statistic 

termed ‘Overall Cancer’ was calculated by adding the gene-effect scores from all 34 cancer 

types resulting in scores between 0 and 34.
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3 Results

All of the four models were implemented with Google’s TensorFlow package 1.14.1 in 

python and all codes are available at https://github.com/RicardoRamirez2020/GCN_Cancer.

3.1 Accuracy of Predicting Cancer Types

Inputs for co-expression, co-expression+singleton, PPI, and PPI+singleton GCNN are 3,866 

by 1, 7,091 by 1, 4,444 by 1, and 7,091 by 1 vectors, respectively. The property of the four 

graphs and the key hyperparameters for four GCNN models based on the graphs are all 

shown in Table 1. Though the co-expression graph has fewer nodes, it contains more links 

than the PPI based graphs, suggesting possible long convergence time.

The prediction accuracy of each GCNN model is shown in Table 2. The PPI+singleton 

GCNN model performed the best on average and peak values of accuracy. In addition, it was 

the most stable with the lowest standard deviation as shown in Table 2.

The four GCNN models were trained with a combined 11,071 tumor and non-tumor samples 

initially. To evaluate the training procedure and their robustness against overfitting, we 

examined loss functions for four models as shown in Supplement 1 using 5-fold cross-

validation for training and validation. The validation loss of PPI+singleton GCNN converged 

to a value less than 0.5 after 5 epochs with no obvious overfitting (Supplement 1g, 1h). The 

co-expression GCNN model demonstrated a similar convergence speed as the PPI+singleton 

model while having a little higher loss (Supplement 1a, 1b) and its singleton counterpart 

having similar convergence speed but a lower loss (Supplement 1c, 1d). The PPI GCNN 

model had the longest convergence time but lowest validation loss (greater than 0.5) among 

the four models (Supplement 1e, 1f).

The prediction accuracy of the PPI GCNN model was the lowest (88.98% ± 0.88%, mean ± 

std)% as shown in Table 2. The PPI graph only included genes that were mappable to 

proteins and have interactions based on the STRING database. Therefore, non-coding genes 

were not included in the PPI graph. In addition, the protein interaction network might not 

capture all gene regulations and activities at the transcriptomic level, which might be an 

explanation of the low performance of the PPI GCNN model. Similarly, another recent PPI 

based GCNN model for breast cancer subtype classification reported a prediction accuracy 

of 85%, suggesting the PPI graph itself may not be a complete graph representation for gene 

expression profiles from TCGA. [24] The GCNN model with the PPI+singleton graph 

included all the 7,091 genes and demonstrated a >5% increase in prediction accuracy 

compared with the PPI graph with a smaller accuracy variation as shown in Table 2, 

suggesting that the additional 2,647 genes could be important in determining cancer type.

Prediction accuracy of the co-expression GCNN model (94.24% ± 0.25%) is comparable to 

the PPI+singleton GCNN model (94.61% ± 0.11%) and both were better than the PPI 

GCNN model. While adding singleton nodes helped the PPI graph to achieve better 

classification, the co-expression graph with singleton nodes did not show a similar effect. 

GCNN model based on co-expression + singleton graph and co-expression graph 

demonstrated similar results. This might partially be due to the fact that the PPI network 
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only included 4,444 protein-coding genes from 7,091 selected genes in this study. Adding 

singleton nodes to PPI brought back the role of non-coding genes that were not in the 

STRING database and thus improved the performance. In the co-expression graph, 2,315 

genes were part of the PPI network, and 1,551 were other genes not inside the PPI network, 

probably included noncoding genes, which provided additional classification accuracy and 

robustness. Surprisingly, singleton nodes represented genes not passing the co-expression 

test and did not have a major impact on the cancer type classification, alluding that 

transcriptomic regulations between genes and their differential activities played a critical and 

sufficient role in cancer type prediction. The common genes in both singleton, PPI, and co-

expression graphs are shown in Figure 4.

Further evaluation of micro-averaged precision-recall statistics of the co-expression and co-

expression+singleton GCNN models with 34 output classes yielded very interesting 

observations shown in Figure 5 and Figure 6. The largest discrepancy in the precision-recall 

value appeared for tumor type rectum adenocarcinoma (READ) in all four models. This is 

due to a large number of READ samples were misclassified into COAD (colon 

adenocarcinoma), causing a much higher recall level. A total of 68%, 16%, 95.2%, and 

72.9%, out of 166 READ samples were classified into COAD cancer type by the co-

expression, co-expression+singleton, PPI, and PPI+singleton GCNN model respectively 

(confusion matrices in Figure 7 and, Figure 8, and further illustrated in Supplement 2, 3, 4, 

and 5). Meanwhile, 6.9%, 30.9%, 0.2%, and 6.4% of 478 COAD samples are misclassified 

into READ types. Adenocarcinomas of colon or rectum (a passageway connects the colon to 

anus) are two cancers having different staging procedures, and subsequent treatment, while 

different molecular aberrations were identified for both of them,[31] the overall expression 

profiles of READ and COAD are similar, probably lead to the higher misclassification. The 

much more tumor samples in COAD group (n = 478) vs 166 in READ resulted in model 

training to bias toward a classification of colon adenocarcinoma when confusion occurred, 

rather than to rectal adenocarcinoma.

Similarly, cholangiocarcinoma (CHOL), a type of liver cancer that forms in the bile duct, has 

only 36 tumor samples, while 22.2%, 22.2%, 19.4%, and 13.9% of the 36 samples were 

misclassified into hepatocellular carcinoma (LIHC) by the co-expression, co-expression

+singleton, PPI, and PPI+singleton model, respectively. Since cholangiocarcinoma can 

affect any area of bile ducts, either inside or outside the liver, it is often mixed with both 

cancerous tissues, thus difficult to separate these two types of cancer. Among 4 models, the 

PPI+singleton GCNN models performed pretty well to separate these two types of liver 

cancer with an accuracy of 72% for CHOL and 95% for LIHC, and the co-expression graph 

resulted in 34% for CHOL and 94.4% for LIHC (Supplement 5 and Figure 7).

Lastly, Uterine carcinosarcoma (UCS) had only 56 tumor samples, frequently confused with 

the uterine corpus endometrioid carcinoma (UCEC), two types of uterine cancers collected 

in the TCGA cohort.

UCS classification performed poorly (misclassification rate of 25%, 25%, 58.9%, and 21.4% 

for co-expression, co-expression+singleton, PPI model, and PPI+singleton GCNN model, 

respectively), and most of these misclassified samples were in UCEC as expected. We also 
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noted that there were no normal tissues collected within UCS type, the GCNN model might 

not learn to remove tissue-specific markers.

Not all samples from the same organ classified together. There are three types of kidney 

cancers, kidney chromophobe (KICH), kidney clear cell carcinoma (KIRC), and kidney 

papillary cell carcinoma (KIRP) in the TCGA dataset, and two lung cancers, lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) in the TCGA cohort. 

The co-expression GCNN model classified KICH, KIRC, KIRP, LUAD, and LUSC with 

accuracy rates at 93.8%, 94%, 91%, 94.6%, and 89.6%, while the PPI+singleton model has 

the accuracy at 90.7%, 94.6%, 93.8%, 95.3%, and 91.2. Other GCNN models have 

comparable performance.

3.2 Cancer-Specific Classification

Previous studies have demonstrated promising classification results on TCGA data. Hoadley 

and colleagues have identified 28 distinct molecular subtypes arising from the 33 different 

tumor types analyzed across at least four different TCGA platforms including chromosome-

arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and 

reverse-phase protein arrays. [32] Their results illustrated significant molecular similarities 

among anatomically related cancer types. Meanwhile, other recent studies have 

demonstrated the successful classification of cancer types using either clustering or deep 

learning algorithms.[10; 13] However, these studies did not include normal samples in the 

classification and there remained a doubt on whether these classifications were tissue-

specific or cancer-specific. Anh and our group have recently reported the classification of 

the tumor and normal tissues that suggest possible cancer-specific classification.[12; 15]

To verify the cancer-specific classification of the GCNN algorithm, the co-expression 

GCNN model was used to separate all 1,221 breast tissue samples from the TCGA dataset, 

among which 113 were normal samples and 1,108 were cancerous. The result showed a 

mean accuracy of (99.34%±0.47%) using 5-fold cross-validation. Overall, about 92% (672 

out of 731) normal tissues classified correctly into NT groups, regardless of their origins, 

suggesting the GCNN models identify cancer-specific samples’ class designation without 

using biomarkers related to specific tissues.

3.3 Post-modeling Analysis

Post-modeling analysis of the co-expression GCNN was performed for two reasons. There 

was no significant difference in accuracy between the coexpression graph and either the PPI

+singleton or coexpression+singleton graph. In addition, in silico gene perturbation in a 

combined co-expression + singleton graph heavily favored singleton nodes, while connected 

nodes would be compensated by its connected neighbors. Therefore, considering the PPI 

graph’s worst classification performance, the post-modeling analysis was performed on the 

co-expression GCNN.

A total of 428 potential markers found in the 34 classes with a gene-effect score greater than 

or equal to 0.3 (see Methods section), giving an average of approximately 38 genes per 

class. None of the 428 genes are unique to one specific class, indicating that the co-

expression GCNN model relied on the combinations of genes to perform the cancer type 
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classification. The threshold for the gene-effect score of 0.3 was selected based on their 

histogram of all gene-effect scores (Supplement 6). Thymoma (THYM), testicular germ cell 

tumors (TGCT), glioblastoma multiforme (GBM), and cervical cancer (CESC) has less than 

10 marker genes with their gene-effect scores > 0.3, while mesothelioma (MESO), sarcoma 

(SARC), and skin cutaneous melanoma (SKCM) had the largest number of genes (>100)s 

affecting the prediction accuracy in the co-expression GCNN model as shown in Figure 9.

The top 20 genes selected for breast cancer and the top 20 “Overall Cancer” summary 

statistics were shown in Table 3. The features learned in breast cancer were interesting: the 

first 9 genes were Y chromosome related, suggesting that the network learned gender feature 

first since TCGA breast cancer were obtained all from females. The 11 remaining genes 

were reported in breast cancer studies, however, whether their functions were actually 

learned by the GCNN model were yet to be discovered. Genes from the “Overall Cancer” 

column are those effective in multiple cancer classification.

4 DISCUSSION

This is the first study to establish a data-driven model for cancer type classification using a 

graph convolutional neural network approach. The proposed method successfully integrated 

four different graphs into the deep learning framework. The models were trained by gene 

expressions from the entire TCGA collections and achieved cancer type prediction accuracy 

at 94.6%, which is better than or comparable to other machine learning algorithms 

previously reported.[10; 13; 15] Our GCNN model successfully integrated normal and tumor 

samples together to further enrich for cancer-specific prediction. Our unique implementation 

of model interpretation is also novel, where an in silico gene perturbation procedure was 

executed to evaluate the role of each gene in classification through a novel gene-effect 

scoring method.

In the study presented here, a total of 7,091 genes from the complete TCGA dataset were 

chosen with a mean greater than 0.5 and a standard deviation greater than 0.8. Obviously, 

changing the threshold on mean and standard deviation could generate different numbers of 

genes to be selected. Our earlier deep learning studies suggested that genes selected captured 

sufficient information for the proposed objectives, [15; 33] however, the sensitivity of the 

chosen threshold for the GCNN models may require further investigation. The graph 

complexity was also tested with similarly, multiple different correlations thresholds to 

generate co-expression graphs. Correlation of 0.6 with a p-value less than 0.05 gave the best 

results, the model had a sufficient number of discriminative genes to classify each cancer 

type but not overly generalized where the Laplacian of the graph lost its significant meaning. 

Meanwhile, if the correlation threshold is too high, some discriminative genes may be 

excluded from the graph. Though it might be computationally costly, these thresholds can be 

included as learning parameters in our future studies.

FPKM unit was used in this study because it is one of the normalized measures available 

from the TCGA data portal (GDC) and it is widely used in official TCGA publications. 

Another gene expression unit, TPM, or transcriptions per million, is another measure of 

gene abundance potentially with higher consistency among samples. We downloaded TPM 

Ramirez et al. Page 11

Front Phys. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data from the UCSC TumorMap and compared it to the FPKM dataset used in the present 

study. Among the 6,583 genes and 9,617 samples common between the two datasets (total 

numbers in our manuscript, 7,091 genes, and 11,071 samples), TPM and FPKM values were 

greatly consistent (Pearson correlation coefficient, 0.94). Furthermore, 84.8% and 94.1% of 

the edges in the coexpression network built using FPKM (correlation > 0.6 in FPKM) 

remained to be highly correlated with correlations greater than 0.6 and 0.5, respectively, in 

the TPM dataset. A total of 86.1% of genes remained in the coexpression network 

constructed in the TPM dataset with an identical threshold of correlation > 0.6. Thus, we 

expect the coexpression network and GCNN performance achieved using the TPM dataset to 

be very similar to FKPM.

The co-expression graph generated using correlation coefficients captures linear regulation 

relationships predominantly. The mutual information (MI) method including ARACNe and 

MINDY may serve as an alternative to correlation-based methods to measure gene 

interactions, especially non-linear relationships.[34; 35] However, due to a requirement of 

permutations for each gene pair to assess statistical significance, MI consumes tremendously 

more computation capacity than correlation and thus is hardly possible for a genome-wide 

search. Therefore, the most successful applications of MI methods are mainly limited to 

small pre-defined networks, such as transcript factor bindings and miRNA targets (known as 

the ceRNA regulation). In our previous papers, we compared the two types of methods and 

showed that correlation-based methods achieved higher performance and efficiency in 

capturing the dynamic gene regulations using gene expression data.[36; 37] Furthermore, it 

was reported that gene regulation is typically linear or monotonic and thus correlation-based 

methods can achieve equivalent or even better performance.[38] Thus, to enable our GCNN 

model to a genome-wide network that incorporated as much information as possible, we 

utilized correlation to construct co-expression networks.

In the PPI+singleton GCNN model, isolated genes, such as non-coding genes, are integrated 

as singleton nodes in the graph. Since these singleton genes may have higher gene-effect 

scores than the coding genes, (2,674 genes are not in PPI-graph), databases for non-coding 

genes, RNA-RNA interaction, and transcription factors should be considered to establish 

links between these genes and genes inside the PPI graph for a complete GCNN model. 

Another possible approach to build a graph for a GCNN model is a literature-derived graph. 

There are over 4 million cancer-related manuscripts in the PubMed database and building a 

literature-derived graph will be time-consuming and therefore is not included in this study. 

Previously, we established a knowledge map of post-myocardial infarction responses by 

automatically text-mining more than 1 million abstracts from PubMed.[39] We will use 

literature review tools to build a literature-derived network for cancer study in our future 

research. One thing worth mentioning is that the deep-learning algorithm is purely a data-

driven method and some techniques to integrate biological meaning to the graph-related 

network may require an overhaul of our current GCNN model design, such as the 

development of a GCNN model based on the latest results of explainable networks. [40; 41]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nomenclature

ACC adrenocortical cancer

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CESC cervical and endocervical cancer

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

DLBC diffuse large B-cell lymphoma

ESCA esophageal carcinoma

GBM glioblastoma multiforme

GCNN graph convolutional neural network

HNSC head and neck squamous cell carcinoma

KICH kidney chromophobe

KIRC kidney clear cell carcinoma

KIRP kidney papillary cell carcinoma

LAML acute myeloid leukemia

LGG lower grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma
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MESO mesothelioma

OV ovarian serous cystadenocarcinoma

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PPI protein-protein interaction

PRAD prostate adenocarcinoma

READ rectum adenocarcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma

std standard deviation

TCGA The Cancer Genome Atlas

TGCT testicular germ cell tumor

THCA thyroid carcinoma

THYM thymoma

UCEC uterine corpus endometrioid carcinoma

UCS uterine carcinosarcoma

UVM uveal melanoma
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Figure 1. 
The distribution of the samples for each tumor group. The samples are separated from 

cancerous and normal tissue samples.

Ramirez et al. Page 17

Front Phys. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Structure of the proposed GCNN model. The model includes two parts: graph convolution 

and a fully connected output layer for classification. Input is 1D gene expression levels of 

TCGA samples and the adjacency matrix of genes ( input graph). The graph is then pooled 

into a single GCNN layer to be fed into the hidden and output layers.
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Figure 3. 
The pseudocode for the in silico gene perturbation post-modeling analysis.

Ramirez et al. Page 19

Front Phys. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Venn diagram of genes included in four GCNN models. Both singleton graphs contain 7,091 

genes. The PPI graph contains 4,444 from the 7,091 genes. The co-expression graph 

contains 3,866 from the 7,091 genes. The intersection of the PPI graph and the co-

expression graph is 2,315 genes.
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Figure 5. 
Precision (blue) and recall (red) of the co-expression GCNN models trained with combined 

33 different cancer types and normal samples.
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Figure 6. 
Precision (blue) and recall (red) of the co-expression+singleton GCNN models trained with 

combined 33 different cancer types and normal samples.
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Figure 7. 
Confusion matrix of all samples predicted by the co-expression GCNN model with 

combined 33 different cancer types and normal samples.
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Figure 8. 
Confusion matrix of all samples predicted by the coexpression+singleton GCNN model with 

combined 33 different cancer types and normal samples.
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Figure 9. 
The number of genes significantly affect each cancer type classification with a gene-effect 

score greater than 0.3.
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Table 1.

Property of four graphs established and the hyperparameters for four GCNN models trained by combined 

tumor and normal samples.

Co-expression +singleton graph Co-expression graph PPI+singleton graph PPI graph

Number of nodes 7091 3,866 7,091 4,444

Number of links 175,688 175,688 53,372 53,372

Learning rate 0.005 0.001 0.005 0.001

Batch size 200 200 200 200

Size of hidden layer 1024 1024 1024 1024

Convergence time (Epochs) 15 15 10 10
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Table 2.

Performance of predicting cancer types of four GCNN models trained by combined tumor and normal 

samples.

Co-expression+singleton graph Co-expression graph PPI+singleton graph PPI graph

Mean ± std 94.23% ± 0.146 94.24% ± 0.251 94.61% ± 0.107 88.98% ± 0.883

Peak 94.43% 94.67% 94.71% 89.99%

Mean precision 91.39% 92.06% 92.76% 87.75%

Mean recall 92.30% 91.39% 92.19% 83.79%

Mean training loss 0.19 0.51 0.2 0.38

Mean validation loss 0.30 1.05 0.49 0.91
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Table 3.

Top 20 Genes in Breast Cancer and Overall Cancer Scores.

TCGA-BRCA Overall Cancer

Ensmbl geneID Gene Name Score Ensmbl geneID Gene Name Score

ENSG00000129824 RPS4Y1 1** ENSG00000202198 *RF00100 20.49

ENSG00000067048 DDX3Y 0.99 ENSG00000129824 RPS4Y1 9.95

ENSG00000012817 KDM5D 0.99 ENSG00000274012 *RN7SL2 9.37

ENSG00000198692 EIF1AY 0.99 ENSG00000171560 FGA 9.05

ENSG00000114374 USP9Y 0.99 ENSG00000067048 DDX3Y 9.00

ENSG00000131002 *TXLNGY 0.99 ENSG00000198692 EIF1AY 8.97

ENSG00000067646 ZFY 0.99 ENSG00000012817 KDM5D 8.95

ENSG00000183878 UTY 0.99 ENSG00000067646 ZFY 8.94

ENSG00000233864 *TTTY15 0.99 ENSG00000114374 USP9Y 8.94

ENSG00000275410 HNF1B 0.55 ENSG00000183878 UTY 8.94

ENSG00000160862 AZGP1 0.37 ENSG00000131002 *TXLNGY 8.94

ENSG00000259974 *LINC00261 0.33 ENSG00000233864 *TTTY15 8.94

ENSG00000181449 SOX2 0.33 ENSG00000113924 HGD 8.904

ENSG00000118526 TCF21 0.31 ENSG00000134020 PEBP4 8.89

ENSG00000184661 CDCA2 0.30 ENSG00000128709 HOXD9 8.68

ENSG00000163734 CXCL3 0.30 ENSG00000173432 SAA1 8.58

ENSG00000101076 HNF4A 0.26 ENSG00000181449 SOX2 8.22

ENSG00000212694 *LINC01089 0.26 ENSG00000184661 CDCA2 8.12

ENSG00000125798 FOXA2 0.25 ENSG00000128713 HOXD11 8.11

ENSG00000103855 CD276 0.24 ENSG00000103254 FAM173A 7.96

Y chromosome-specific genes are specified to the right of the genes-effect score as

**
The high gene-effect score most likely is due to the GCNNs learned these genes are non-essential genes for breast cancer, but perhaps useful for 

other types, such that perturbing these gene expressions will lead to large prediction accuracy changes.

The * symbol is associated with genes that do not code to proteins.
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