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Abstract

Reinforcement learning (RL) is a framework of particular importance to psychology, neuroscience, 

and machine learning. Interactions between these fields, as promoted through the common hub of 

RL, has facilitated paradigm shifts relating multiple levels of analysis within a singular framework 

(e.g dopamine function). Recently, more sophisticated RL algorithms have been incorporated to 

better account for human learning, and in particular its oft documented reliance on two separable 

systems. However, along with many benefits, this dichotomous lens can distort questions, and may 

contribute to an unnecessarily narrow perspective on learning and decision making. Here we 

outline some of the consequences that come from over-confidently mapping algorithms, such as 

model-based vs. model-free RL, with putative cognitive processes. We argue that the field is well 

positioned to move beyond simplistic dichotomies, and we propose a means of re-focusing 

research questions toward the rich and complex components that comprise learning and decision 

making.

1 Introduction

The empirical study of learning and decision making, in both human and non-human 

animals, has catalogued a wealth of evidence consistent with the idea that behavior is 

governed by at least two separable controllers. Behavior has been dichotomized across 

several dimensions, including emotion (Hot/Cold)1, action selection (habitual/goal-

directed)2, judgements (associative vs. rule based)3, and more recently, model-free/model-

based (MF/MB)4. Although the terms used to characterize these controllers vary, and have 

largely been absorbed into the terms System1/System25,6, many seemingly ‘irrational’ 

behaviours have been argued to emerge from a system that is fast, reactive, implicit, 

retrospective and emotionally charged. This has been contrasted with a system described as 

slow, deliberative, explicit, prospective and calculating5,6. Our understanding of the 

processes driving behavior, from the neural implementations to social factors, has advanced 

considerably through the use of these dichotomies in terms of both experimental and 

theoretical development.
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However, despite a common philosophical core, the various frameworks used to describe 

these behavioral controllers vary in terms of their formalism and scope, and as such, they are 

not interchangeable, nor are the phenomena they purport to explain. More importantly, the 

aforementioned dichotomies do not constrain the neural or cognitive mechanisms that 

dissociate the two systems, making it deceptively difficult to uniquely and reliably classify 

behavior as being driven by any one particular controller. To address this, dual-system 

theories of learning and decision making have been drawn toward the formalization offered 

by the field of machine learning, readily found in the literature as a mapping to model-based 

(MB) / model-free (MF) reinforcement learning (RL)7.

Computational formalization promises important benefits: it promotes a precise quantitative 

definition of important concepts, and often enable us to bridge levels of analysis8 across 

cognitive concepts to their underlying neural mechanisms. Parameters of formal 

computational models are often thought to capture meaningful information about how we 

learn, in a low-dimensional and easily quantifiable (parameter) space. While the MB/MF RL 

formalization has realized such benefits9, it has also brought some challenges10. Here we 

address some of the limitations presented by dual-system theories that have the potential to 

impede progress in the associated fields of study. We argue that the dimensionality of 

learning – the axes of variance that describe how individuals learn and make choices – is 

well beyond two, as proposed by any given dual-system theory. We contend that attempts to 

better understand learning and decision making by mapping it onto two a-priori defined 

components may cause the field to lose sight of some essential features of learning. We 

focus on the example of the MB vs. MF RL dichotomy for one key reason: MB vs. MF is 

one of the most well-defined dichotomous theories of learning and decision-making, and has 

often been interpreted as capturing the essence of other dual-system theories 

computationally. We show that this confidence induced by a strong formalism does not 

obviate the limitations of the dual-system approach. Although the strengths offered by the 

MB/MF RL framework are well documented9,11, it has become increasingly clear that 

accurately labelling behavior or neurological signals as uniquely associated with one 

algorithm or the other can be deceptively difficult12–16. Here, we address some of the 

MB/MF framework’s limitations, highlighting sources of misattribution, the challenges 

associated with aligning computational and mechanistic primitives, and what is lost when 

our theoretical lens is narrowed to a single dimension. We propose that refocusing on the 

computationally defined primitives of learning and decision making that bridge brain and 

behavior may offer a more fruitful path forward.

2 What is Reinforcement learning?

Reinforcement learning (RL) is a term widely used in at least three separate, though 

overlapping, fields of research: computational sciences (machine-learning, artificial 

intelligence, computer science); behavioral sciences (psychology, cognitive sciences); and 

neuroscience (systems, cellular) (fig. 1). Although use of a shared language has mutually 

enriched these three disciplines, slight conceptual distinctions can lead to confusion across 

the three domains. In computational settings, RL refers to a class of learning environments 

and algorithms in which learning is driven by a scalar value (the reinforcement) and the 

algorithm’s goal is to optimize the future cumulative reinforcement (see box 1 for details). 
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Behavioral sciences use RL in reference to learning processes that promote behavior by 

pairing it with a valued outcome (or the removal of an undesired outcome), and discouraged 

otherwise. The field of neuroscience typically treats RL as a process through which neuronal 

pathways are shaped in the brain, and is most often thought of as dopamine-dependent 

plasticity that shapes learning within and between various brain regions (including cortico-

striatal networks).

2.1 RL algorithms

Computational RL defines a class of learning problems and algorithms such as model-free 

(MF) and model-based (MB) RL. In contrast to supervised learning where correct answers 

are provided, or unsupervised learning where no feedback is available at all, RL problems 

involve learning how to achieve a goal by using the rewards and punishments induced 

through interactions with the environment. The family of RL algorithms is defined by their 

objective function: to find a strategy that maximizes the accumulated future reward. Some 

tasks are simple enough that an RL approach can solve the learning problem completely by 

identifying the best actions from start to finish in all possible scenarios (e.g. playing tic-tac-

toe). However, most real world problems (like driving to work) are far more complex: the 

number of possible circumstances in which the agent might find itself (the state space) can 

be huge, as are the number of available actions, while measures of progress can be murky. In 

cases such as this, RL algorithms are limited to learning how to make ‘good’ decisions as 

opposed to completely solving what is often an intractable problem.

A formal description of an RL problem consists of a set of states in which the learning agent 

might find itself, and a set of actions the agent can take. It also includes a transition function 

that describes how the environment will respond to the agent’s actions, and a reward 

function that defines how good (or bad) observed events are. It is important to note that a 

formal specification is, as with any model, an approximation of the real problem. Most RL 

algorithms decompose decision making into two steps: first, derive value estimates for the 

different states or action available, then choose actions that are deemed most valuable.

RL algorithms can be categorized along many dimensions. MB vs. MF algorithms are 

contrasted based on the extent to which they represent the environment. MB algorithms 

maintain a representation of the problem beyond the state and action space, usually the 

transition and reward function. Equipped with a task model, the agent guides its decisions by 

considering the consequences of its actions to construct a plan that will move it toward its 

goal. Model-free (MF) algorithms, as their name implies, do not maintain such an explicit 

model. Instead, they store a set of value estimates, each representing the aggregated reward 

history of choices selected by the agent in the past, from which the algorithm can gauge the 

expected benefit of the options on offer (see Box 1).

These two strategies can be contrasted with respect to how they respond to changes in the 

environment or the agent’s goal. MB algorithms adapt more readily as they can leverage 

their task model to dynamically plan toward an arbitrary goal, though they suffer the 

additional hindrance of computing this action plan, which can rapidly become intractable. 

MF algorithms cannot adapt as easily due to their strategy of integrating reward history into 

a single value estimate; however, they offer an efficient approach to learning and decision 
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making. Consider, for example, a student arriving at the main cafeteria for lunch, where they 

unexpectedly find a stand offering samples from a new cafe on campus (fig. 2). In contrast to 

the bland offerings from the cafeteria, the sample food is fresh and delicious and would 

clearly be a better lunch option. The next day the student considers their meal options. A 

MB strategy would consult its map of the campus and the items available to devise a plan of 

action that would route the student to the new cafe for lunch. In contrast, a MF strategy 

would consult its value estimates and simply repeat yesterday’s choice to visit the cafeteria 

since that option has been rewarding in the past, particularly after the last visit. In contrast to 

the potentially complex, and often intractable planning problem faced by a MB agent, MF 

choice is considerably less effortful as it relies on a cached value estimate that can be 

derived using simple computation that rely only on easily accessible information (see box 2) 

signalling how “off” the current estimate is. However, the computational efficiency of a MF 

approach causes it to be relatively inflexible as it can only look to the past to inform its 

choices, whereas the prospective capacity of the MB agent17 allows it to flexibly adapt to 

changes in the environment or its own goals.

The scientific progress resulting from applying a RL computational framework is plainly 

apparent through the rapid advances in cognitive neuroscience. RL has been pivotal in 

providing a sound quantitative theory of learning, and a normative framework through which 

we can understand the brain and behavior. As an explanatory framework, RL advances our 

understanding beyond phenomenology in ascribing functional structure to observed data. 

Here we highlight some of the key findings.

2.2 MF-RL and the brain

Early research into the principles that govern learning likened behavior to the output of a 

stimulus-response association machine that builds links between stimuli and motor 

responses through reinforcement18. Various models described the relationship between 

stimuli, response, and reward, with nearly all sharing a common theme of an associative 

process driven by a surprise signal19–21. Computational reinforcement learning theory built 

on the principles animal behaviorists had distilled through experimentation to develop the 

method of temporal difference (TD) learning (a model-free algorithm), which offers general 

purpose learning rules while also formalizing the reinforcement learning problem22.

The TD-RL algorithm sparked a turning point in our understanding of dopamine function in 

the brain. In a seminal set of studies, the phasic firing patterns of dopamine (DA) neurons in 

the ventral tegmental area (VTA) were shown to mirror the characteristics of a TD-RL 

reward prediction error (see equ 1), offering a bridge between behaviorally descriptive 

models and a functional understanding of a learning algorithms embodied by the brain23–25. 

Continued work along this line of research has probed the details of DA activity in greater 

detail, linking it to various flavors of MF-RL26,27. Importantly, this work has shifted the 

conceptualization of S-R instrumental learning away from inflexible reflex-like behaviour 

toward one of adaptable value based learning.

The role of DA as a MF-RL teaching signal is supported by work in both human and non-

human animals showing that DA affects cortico-striatal plasticity as predicted by the 

theory28. Subsequent research has focused on the causal import of dopaminergic input to 
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show that systematic modulation of DA cell activity is sufficient for the development of cue-

induced reward seeking behavior29,30. Work in humans using fMRI has implicated striatal 

targets of DA as learning about state values (ventral striatum) and action policies (dorsal 

striatum)31,32, suggesting that dopaminergic signals support both instrumental (action-value) 

and non-instrumental (state-value) learning in striatum. Consistent with MF value learning, 

additional research has shown shown that dopaminergic targets, such as dorsal striatum, 

appear to track MF cached value representations33,34. Drug and genetic studies involving 

humans have shown that variation in dopaminergic function and manipulation of striatal DA 

sensitivity foster altered learning from positive and negative reward prediction errors35–37. 

Furthermore, DA signals need not be limited to learning outwardly observable ‘actions’, as 

projections to cortex have also been suggested to be involved in learning cognitive ‘actions’ 

such as determining which items should be held in working memory36,38–40, implicating the 

DA learning signal as a general purpose learning signal. In sum, a broad set of 

methodologies and experimental protocols have shown a consistent link between brain/

behavior and computationally defined MF signals associated with the predictive value of the 

current state (e.e V(s)) and/or actions (e.g. Q(s,a)) according to motivationally significant 

events (rt). Although some work challenges the DA/TD-RL framework41–43, a broad corpus 

supports it; the computational RL theory has driven very rich new understanding of learning 

in the brain.

2.3 Learning as a mixture of MB and MF-RL

More research has built on the successes of using MF RL algorithms to explain brain and 

behavior by including MB RL as a mechanism through which a broader spectrum of 

phenomena may be understood. It has long been recognized that animal behavior is not 

solely determined by reinforcement history, but also exhibits planning characteristics that 

depend on a cognitive representation of the task at hand44. Model-based RL presents a 

useful computational framework through which this aspect of behavior may be captured.

Attention to MB RL has increased considerably since the creation of the 2-step task in which 

the behavioral signatures of MF response and MB planning can be dissociated7. In this task, 

a choice between two available options stochastically leads to one of two second stage 

states, where a second choice can lead to reward. Each first-level option typically moves the 

participant into a specific second-stage state (e.g. a1 → s1, and a2 → s2). However, on rare 

occasions, the participant’s choice will lead to the alternative state (e.g. a1 → s2). Choices 

following rare transitions can dissociate MB from MF RL: MF-RL agents credit reward to 

the option that was chosen irrespective of the path that led to that reward and will thus be 

more likely to repeat a rewarded first-stage choice after a rare transition. In contrast, a MB 

strategy will plan to reach the rewarded second-stage state once more17, and thus will be less 

likely to repeat the first-stage choice, favoring the alternative option that most reliably 

returns it to the reward state (see Figure 2).

Investigations into the relationship between MB/MF-RL and other cognitive/psychological 

processes have identified links to MB-RL45–49 more readily than to MF processe50. There 

are several potential explanations for this, one being that the experimental protocols used to 

probe MB/MF processes, such as the two-step task, are more sensitive to MB control. 
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Additionally, MB-RL could broadly relate to multiple processes that are highly dependent 

on a singular mechanism such as attention, offering a unique and easily manipulable 

cognitive resource through which a disparate processes may be disrupted. Alternatively, this 

may highlights a problem in the strict dichotomization in learning from MB-MF, as we 

develop in the next section.

3 Risks

Like any conceptual framework, the MB-MF theory of learning and decision making has 

intrinsic limitations. Ironically, its increasing popularity and scope of application could 

erode its potential by advancing a misinterpretation that data must be described along this 

singular dimension10. Indeed, researchers may be led to force a square peg through a round 

hole when analyzing separable components of their data through the lens of a coarse grained 

MB-MF dichotomy. Here, we detail some of the more important limitations this presents and 

how much richer learning theory should become.

3.1 Challenge of disambiguation

3.1.1 MF behaviour can look MB, and vice versa—Despite the ubiquity of MB 

control51, labelling behaviour as uniquely MB has been surprisingly difficult52. Notably, 

there are several channels through which behavior rooted in MF cached valuation may 

emerge to appear reflective of planning, and thus be labeled MB. For example, a MF 

strategy can flexibly adapt to outcome revaluation in a MB-like way when compound stimuli 

are formed using previous observations in conjunction with current stimuli14, a process that 

has been suggested as a means of transforming a partially observable markov decision 

processes (POMDPs) into a more tractable MDP53. The same can occur when contextual 

information is used to segregate circumstances in which similar stimuli require different 

actions54, or when a model is used retrospectively to identify a previously ambiguous 

choice13. Furthermore, applying a MF learning algorithm to a specific state representation 

that captures features of trajectories in the environment (e.g. the successor 

representations55), mimics some aspects of MB-behavior (while also making separate 

predictions). In sum, coupling additional computational machinery such as working memory 

with standard MF algorithms can mimic a MB planning strategy.

Similarly, there are several paths through which a MB controller may produce behavior that 

looks MF. For example, one critical measure of MB control is sensitivity to devaluation, 

where an outcome that had been previously desired is rendered aversive (e.g. by associating 

that outcome with illness). However, it is not always clear which aspect of MB control has 

been interfered with should the test subject remain devaluation insensitive (and thus appear 

MF). In order for MB control to materialize, the agent must first identify its goal, search its 

model for a path leading to that goal, then act on its plan. Should any of these processes fail 

(e.g. using the wrong model, neglecting to update the goal, or planning errors), then the 

agent could appear to be acting more like a MF agent if that is the only alternative under 

consideration12,56,57.

Further contributing to the risk of strategy misattribution, non-RL strategies can masquerade 

as RL when behavior is dichotomized across a singular MB/MF dimension. Simple 
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strategies that rely only on working memory, such as win-stay/lose-shift, can mimic, or at 

the very least be difficult to segregate from MF control. Although simple strategies such as 

WS/LS can be readily identified in tasks explicitly designed to do so58, more complex non-

RL strategies, such as superstitious behavior (e.g. gambler’s fallacy, in which losing in the 

past is though to predict a better chance of winning in the future), or intricate inter-trial 

patterns (e.g. switch after 2 wins or 4 losses) can be more difficult to identify59. 

Unfortunately, when behavioral response patterns are analyzed within a limited scope along 

a continuum of being either MB or MF, non-RL strategies are necessarily pressed into the 

singular axis of MF/MB.

3.1.2 Model use in MF-RL—More generally, other theories of learning assume that 

agents employ a model of the environment but do not adopt a MB-planning strategy for 

decision making. For example, the specific type of model used by classic MB algorithms for 

planning (the transition function) can be used to apply MF-RL updates on retrospectively 

inferred latent states13. This constitutes an example of a class of model-dependent MF-RL 

algorithms. Models of the environment in this class can include knowledge other than 

transition and reward functions. A model of the relationship between the outcome of two 

choices, for example, facilitates counterfactual MF value updates60,61, while a model of the 

environment’s volatility can be used to dynamically adjust and optimize MF-RL learning 

rates62. Other features of learning using MF-RL updates in conjunction with models of the 

environment’s include work on hidden states, such as non-directly observable rules54,63–65, 

demonstrating a rich set of phenomena to which a strict segregation between MB and MF 

learning and decision making is not well suited.

3.2 MB/MF are not primitive

MB and MF learning are often treated as a singular learning primitives (e.g. “manipulation 

X increases model-based-ness”). However, the measurable output of either algorithm relies 

on many computational mechanisms that need not be considered as unique components 

associated with a singular system. Indeed, MB/MF learning and decision making is arguably 

better understood as a high-level process that emerges through the coordination of many 

separable sub-computations, some of which may be shared between the two systems. Thus, 

the MB/MF dichotomy may not be helpful in identifying unique, separable mechanisms 

underlying behavior.

3.2.1 Independent underlying computations—It is often forgotten that MB and MF 

algorithms contain many independent computational sub-components. Although these sub-

components are usually thought of from a theoretical perspective as parts uniquely 

contributing to a particular whole, they may also be recombined in beneficial ways that 

make the strong separation between MB and MF-RL less meaningful, particularly in light of 

research investigating their neural implementation and behavioral signatures (fig. 3 B).

For example, MB-RL is characterized by its use of both reward and transition functions to 

dynamically re-compute expected values. This process, commonly called forward planning, 

is in fact a high level function that incorporates multiple separable processes. Planning relies 

on a representation of reward and transition functions; however, it is important to bear in 
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mind that those representations may not necessarily be used for planning at all66, or they 

may serve other processes such as credit assignment, indicating they are not uniquey 

associated with a ”planning” system13,63. Furthermore, the transition function, which is 

often assumed to be known and learned using explicit reasoning7, may also be shaped using 

MF-RL-like learning strategy that relies on state prediction errors67, opening the potential 

for very different representational structures over which planning must take place. Lastly, 

planning is simplified by using a mixture of MF and MB valuation whereby MF cached 

values can be substituted for more costly MB derivations (e.g. by substituting QMF(s′) for 

γmaxa′ [QMB(a′,s′) in equation 3 at some point in the planning process68, suggesting a 

highly adaptable and varied planning capability. Thus, indicating that manipulation X affects 

model-based-ness is only weakly informative, as any independent computational sub-

component contributing to MB-RL could drive the effect.

Some sub-components may even be shared by the two systems. RL agents make choices by 

considering scalar values, whether those be dynamically derived (MB) or aggregated cached 

values (MF). However, agents operating in a real-world environment do not encounter scalar 

value; rather, they encounter sensory phenomena that must be converted into a valued 

representation. This translation could be a simple mapping (e.g. a slice of apple is worth 5 

units), or it could be conditioned on complex biological and cognitive factors such as the 

organism’s state (hunger, fatigue etc…), the environment (e.g seasonal change, rival 

competition etc…), or components of the reward itself69. Thus, both MF and MB strategies 

demand some form of reward evaluation process, be it a common resource, or unique to each 

controller (fig. 3 B).

Similarly, both MB and MF RL algorithms prescribe methods through which option values 

may be derived, but neither specify how those values should be used to guide decisions (the 

policy). However, the policy has an often important influence on learning: agents need to 

balance their drive to exploit (pick the best current estimate) and a drive to explore (pick 

lesser valued options in order to learn more about them). Exploration can be independent of 

task knowledge (e.g. ε-greedy, where a random choice is made with some probability22), or 

directed toward features of the task model (e.g. uncertainty-guided exploration70,71). As 

such, the action policy, which ultimately guides observable behavior, should be considered 

independent of the strategy through which valuation, be it MB or MF, occurs.

3.2.2 Independent underlying mechanisms—As we have previously noted, 

studying brain, behavior, and computational theory through the lens of a MB/MF dichotomy 

has propelled important advancements across many fields. However, we argue that a 

singularly dichotomous approach risks promoting an artificial segregation where in fact the 

computational components that constitute each algorithm are not necessarily unique to either 

strategy, suggesting they are more richly interconnected than they are distinct. But more 

importantly to our understanding of brain function and its applicable import (e.g. treatment 

of mental disease), we suggest that these computations themselves may not map cleanly 

onto singular underlying neural mechanisms (fig. 3 C). For example, learning a model of the 

environment and using that model to plan a course of action may rely on shared use of 

working memory resources67,72, suggesting some functional overlap at the level of 

implementation in the brain.
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An important, but often overlooked detail is that the primitive functions of RL algorithms 

assume a pre-defined state and action space22. When humans and animals learn, the task 

space must be discovered, even if MF-RL learning mechanisms then operate over 

them54,64,65,73–76. State space creation likely involves separate networks, such as medial 

prefrontal cortex77, lateral prefrontal cortex74, orbitofrontal cortex78,79, and hippocampus80. 

Furthermore, a state identification process likely shares functions such as categorization, 

generalization or causal inference54,63,64,81. Critically, the process through which a state 

space comes to be defined can have dramatic effects on behavioral output. For example, 

animals can rapidly reinstate response rates following extinction82,83. A learning and 

decision mechanisms that relies on a singular cached value (as is commonly implement 

using MF-RL) has difficulty capturing this response pattern as it learns, and relearns value 

symmetrically. However, some implementations can readily elicit reinstatement by learning 

new representational values for the devalued option, and as such, return to prior response 

rates rapidly not as a result of learning per se, but as a result of state identification81,84,85.

Finally, MF value updates may not, in all cases, be a relevant computational primitive 

matching a clear underlying mechanism to describe behavior, despite the fact that it seems to 

account for behavioral variance and be reflected in underlying set of neural mechanisms. 

The family of MF algorithms is extremely broad, and can describe extremely slow learning 

(such as used to train deep-Q-nets over millions of trials86, with very low learning rates) or 

very fast learning (as is often observed in human bandit tasks with high learning rates87). It 

is unlikely that the functions embodied by a singular dopamine-dependent brain network 

implementing a form of MF-RL are solely responsible for such a broad range of phenomena. 

Instead it is more likely that the DA-dependent neural MF-RL process is fairly slow (as 

reflected in the comparably slow learning of many non-human animals), and that faster 

learning, even when it seemingly can be captured by MF-RL algorithms, actually reflects 

additional underlying memory mechanisms, such as WM88–90 and episodic memory91–95.

In summary, it is important to remember that neither MB nor MF-RL are an atomic unified 

principal component of learning that map on to unique and separable underlying neural 

mechanism. The MB-MF dichotomy should be remembered as a convenient description of 

some aspects of learning that includes forward planning, knowledge of transitions, and 

outcome valuation, but one that depends on multiple independent sub-components.

3.3 The challenge of isomorphism

The computational MB/MF RL framework has drawn attention as a promising formal lens 

through which some of the many dichotomous psychological frameworks of decision 

making may be reinterpreted and unified11, offering a potential successor to the commonly 

used but vaguely defined System1/System2 rubric5,6. However, hybrid MB/MF RL cannot 

be the sole basis of a solid theoretical framework for modeling the breadth of learning 

behavior. In this section, we highlight separable components of learning that do not cleanly 

align with a MB/MF dichotomization (fig. 3 D), focusing primarily on the habitual vs. goal-

directed dichotomy as it is often treated as synonymous with MB and MF RL.96.

A substantial body of evidence points to two distinguishable modes of behavior: a goal-

directed strategy that guides action according to the outcomes they bring about, and habitual 
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control in which responses are induced by external cues2. The principal sources of evidence 

supporting this dichotomy come from devaluation and contingency degradation protocols 

aimed at probing outcome directed planning, with the former indexing behavioral 

adaptations to changes in outcome values, and the latter manipulating the causal relationship 

between action and outcome (see97,98 for review). Behavior is considered to be habitual if 

there’s no detectable change in performance despite devalued outcomes or degraded action/

outcome contingencies.

The outcome-seeking and stimulus-driven characteristics of goal-directed and habitual 

behavior mirror the response patterns associated with MB and MF RL respectively99. 

However, as pertinent experimental variables have been probed in more detail, growing 

evidence suggests that these constructs are not interchangeable. Studies have investigated 

individual difference measures across the goal-directed/habitual dimension in attempts to 

relate those to indices of MB/MF control49,100. These studies have demonstrated the 

predicted correspondence between goal-directed response and MB control, but establishing a 

relationship between habits and MF control has proven more elusive. Indeed, eliciting robust 

habits is challenging101, more so than would be expected if habits related to in-lab measures 

of MF-RL.

Additional facets of learning and decision making have fallen along the emotional axis, with 

a ‘hot’ system driving emotionally motivated behavior, and a ‘cold’ system guiding rational 

decision making1,102,103. Likewise, others have contrasted decisions based on an associative 

system rooted in similarity based judgements, and a rule based system that guides choice in 

a logical manner3,5,6. Axes have further segregated strategic planning, where one can 

describe why and how they acted, and implicit “gut-feeling” choice104,105. It is tempting to 

map these contrast to MF/MB RL along a shared thoughtfulness axis, but they are 

theoretically distinct. The MF/MB distinction makes no accommodation for the emotional 

state of the agent. Both similarity-based judgements and rule creation are beyond most RL 

algorithms, highlighting fully independent axes of theory, nor has it been established that 

MB/MF maps cleanly to a contrast between explicit/implicit decision making.

In summary, many dual system frameworks share common themes, thus motivating the more 

general reference of System 1/System25,6. Although many of the phenomena explained by 

these dual system frameworks mirror the thrust of the MB/MF dichotomy, none are fully 

reducible to it. Contrasting some of these dichotomies highlights the fact that MB/MF is not 

simply a quantitative formalism for those more qualitative theories, but is indeed 

theoretically distinct from most (e.g. the hot/cold emotional dimension), and offers patchy 

coverage of others (e.g. habitual/goal-directed).

3.4 What is lost.

Considering other dichotomous frameworks highlights the multi-faceted nature of learning 

and decision making by showing independent axes along which behavior can be described. 

Although aligning cognitive/neural/behavioral data across various dualities offers a means 

by which key variables can be exposed and examined, something is necessarily lost when a 

system as complex as the brain is scrutinized through a dichotomous lens. Indeed, absorptive 

terms of description often lack predictive precision (e.g. System1 / System2), while a 

Collins and Cockburn Page 10

Nat Rev Neurosci. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proliferation of isolated contrastive frameworks tax our progress toward a coherent 

understanding of brain and behaviour106–108. The application of RL in this campaign marks 

notable headway by offering a formal framework through which theorems may be 

proven109, axiomatic patterns may be described110, brain function can be probed29, and 

theories may be falsified. However, distilling learning and decision making to a single 

MB/MF dimension risks conflating many other sources of variance, but more importantly, 

threatens to dilute the formal merits of the framework to that of a verbal theory (e.g. the 

agent ”uses’ a ”model”).

4 Paths forward

Identifying the computational primitives that support learning is an essential question of 

basic cognitive (neuro)science, but also has the potential to have important implications in 

all domains that rely on learning - education, public health, human factors, and so on. It is 

also of great importance if we are to gain deeper insight into learning differences across 

populations, including developmental trajectories111, across environmental factors, or for 

psychiatric or neurological diseases112. Here, we highlight ways in which past research has 

successfully identified learning primitives that go beyond the MB/MF RL dichotomy, 

covering many separable dimensions of learning and decision making. These successful 

approaches offer explicit paths forward in the endeavor of deconstructing learning into its 

interpretable, neurally implementable basic primitives. This is essential to bridging brain and 

behavior, and to better understand individual differences across the lifespan as well as in 

clinical populations111,112.

Disparities or inconsistencies between classic psychological theoretical frameworks offer 

opportunities to refine our understanding of the underlying computational primitives. For 

example, the apparent gaps between MB/MF RL and goal-directed/habitual behavior could 

promote both theoretical and experimental advances. Failure to elicit a detectable change in 

post-devaluation response rate using a devaluation protocol (i.e habits) could be caused by a 

range of mechanisms worthy of further investigation, some of which we have outlined here 

(e.g. degradation of the transition model, compromised goal maintenance, or engagement of 

a MF controller etc…). This points to the importance of considering additional dimensions 

of learning and decision making such as hebbian learning as a mechanism fostering value-

free response maintenance113, and other facets of behavior such as exploration or state-space 

composition as sources of behavioral variance that may unwittingly appear more MB or 

MF14,56.

Computer science research (see 1)also strongly inspires the identification of additional 

relevant dimensions of learning. For example, algorithms have used hierarchical 

organization as a means of embedding task abstraction. In hierarchical reinforcement 

learning (HRL), information is learned and decisions are made at multiple levels of 

abstraction in parallel. This offers potentially beneficial task abstractions that can span 

across time114–116 or the state/action space, and have been observed in 

humans54,63,74,117,118. Notably, HRL may be implemented using either MB planning or MF 

response, which offers a rich set of computational tools but also compounds the risk of 

misattribution when a singular MB/MF dimension is considered. Benefit can also come from 
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considering the classic AI partition between supervised learning, where explicit teaching 

signals are used to shape system output, and unsupervised learning in which the system 

relies on properties of the input to drive response. Research has shown that human behavior 

is shaped by, and exhibits interactions between instructed and experienced trajectories 

through an environment39. Proposals have outlined frameworks where supervised, 

unsupervised, and RL systems interact in order to build and act on representations of the 

environment119,120; which further bend the notion that a singular spectrum of MB/MF 

control can sufficiently explain behavior. A third algorithmic dimension that warrants 

consideration, as it may compound worries of misattribution, is the the distinction between 

offline and online learning. Online learning agents integrate observations as they arrive, 

while offline learners can use information at a later point for “batch” updating, relying 

heavily on information storage and the ability to draw from it22. Offline learning has been 

suggested to occur in between learning trials involving working memory or hippocampal 

replay121,122 or during consolidation in sleep123, and may contribute to both model and 

reward learning (e.g. the Dyna learning algorithm22).

Insights garnered from neuroscience should also continue contributing to enrich our 

understanding of the dimensions of learning and decision making, as regional specificity has 

implicated separable aspects of behavior across cortical and subcortical regions. For 

example, studies in which memory load was systematically manipulated exposed separable 

roles of MF-RL and working memory in learning88–90,124, with the two processes mapping 

on to expected underlying neural systems88,125,126. Further examples of using insights from 

neuroscience to illuminate the computations underlying learning behavior follow from a 

long history of research into hippocampal function. Previous work has fostered a dichotomy 

between the hippocampus and the basal ganglia, with the former being implicated in 

declarative learning, and the latter in implicit procedural learning127–129. More recent 

workhas begun to probe how these two systems may compete for control91, or 

collaborate130. This collaboration may emerge through relational associations maintained in 

hippocampus upon which value may be learned131,132, or through developing a 

representation that captures transition structure in the environment133. Further strengthening 

a functional relationship, research has also offered evidence of a cooperative computation 

role between systems during reward learning as a means of actively sampling previous 

events to improve value estimates93–95,95.

It is important to note that identifying separable components of learning and decision 

making is complicated by the existence of interactions between different neural systems. 

Most theoretical frameworks treat separable components as independent strategies in 

competition for control. However, they often interact in complex ways beyond competition 

for choice134. For example, in the MB/MF framework4, striatal signals show that MB 

information seeps into MF reward prediction error. Similar findings have also been observed 

in DA recordings135,136. Even functions known to stem from largely separable neural 

underpinning exhibit such interactions: for example information in WM appears to influence 

MF-RL’s RPE computations89,124–126. Going beyond simple dichotomies will not only 

necessitate increasing the dimensionality of the space of learning processes we consider, but 

also consider how different dimensions interact.

Collins and Cockburn Page 12

Nat Rev Neurosci. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, there are numerous axes along which learning and decision making vary, 

identified through various traditions of research (e.g psychology, AI and neuroscience). 

Future research should carry on identifying these axes, and recent work has made much 

progress identifying many additional dimensions of learning capture other important sources 

of variance in how we learn, such as meta-learning mechanisms137,138, learning to use 

attention73,139,140, strategic learning59, and uncertainty-dependent parameter 

changes62,141,142. This is evidence that learning and decision making vary along numerous 

dimensions that cannot be reduced to a simple two-dimensional principal component space, 

whether that axis is labelled as MB/MF, hot/cold, goal-directed vs. habitual, or otherwise.

5 Conclusions

We attempted to show the importance of identifying the primitive components supporting 

learning and decision making as well as the risks inherent to compressing complex and 

multi-faceted processes into a two-dimensional space. While dual-system theories are a 

means through which unique and dissociable components of learning and decision-making 

may be highlighted, key aspects could be fundamentally mis-attributed to unrelated 

computations, and scientific debate could become counterproductive when different sub-

fields use the same label, even as well computationally defined as as MB and MF-RL, to 

mean different things.

We also propose ways forward. One is to renew a commitment to being precise in our 

vocabulary and conceptual definitions. The success of the MB-MF RL framework had begun 

to transition clearly defined computational algorithms toward a range of terms synonymous 

to many with various dichotomous approximations that may or may not touch on shared 

functional or neural mechanisms. we have argued that this is a dangerous approximation of a 

much higher dimensional space. The rigor of computationally defined theories should not 

hide their limitations: the equations of a model are defined in a precise environment and do 

not necessarily expand seamlessly to capture neighboring concepts.

Most importantly, we should remember David Marr’s advice and consider our goal when 

attempting to find primitives of learning8. The MB and MF family of algorithms, as defined 

by computer scientists, offers a high-level theory of what information is incorporated and 

how it is used during decision making, and how learning is shaped. This may be satisfactory 

for research that cares about the application of learning science to other domains, such as AI 

or education. However, for all research whose goal is to understand something that is 

dependent on the mechanisms of learning (the brain’s implementation), such as the study of 

individual differences in learning, it is indeed particularly important to ensure that the high-

level theory of learning primitives proposes computational primitives that do relate carefully 

to the underlying circuits. This may benefit from a renewed enthusiasm from computational 

modelers for the basic building blocks of psychology and neuroscience143,144, and a better 

appreciation for the functional atoms formalized by a rich computational theory.
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Box 1:

Formal RL algorithms

Most commonly, RL problems are formalized as a Markov decision process (MDP), 

which is defined as; a set of states, S; a set of actions, A; a function R(s,a) that defines the 

reward delivered after taking action a ∈ A while in state s ∈ S, and a function T(s′|s,a) 

that defines which state, s′ ∈ S, the agent will transition into if action a ∈ A is performed 

while in state s ∈ S

MF-RL algorithms

One approach to solving a reinforcement learning problem is to re-distribute reward 

information in a way that reflects the environment’s structure. MF-RL methods make no 

attempt to represent the environment’s dynamics; rather, they store a set of state/action 

values that estimate the value of what’s expected without explicitly representing the 

identity of what’s to come. This implies that learned values reflect a blend of both the 

environment’s reward and transition structure as encountered reward values are 

propagated back to be aggregated in preceding states/actions values. For example, having 

chosen to visit the cafeteria (action a1) while hungry in their office (state s1), the student 

encounters new cafe’s booth (state s2) and samples their food (reward r1). In one variant 

of MF-RL, the agent learns about the circumstances that lead to reward using a reward 

prediction error:

δ = r1 + γ ⋅ Q a2, s2 − Q a1, s1 (1)

Q a1, s1 Q a1, s1 + α ⋅ δ (2)

where the difference between the predicted value of going to the cafeteria for lunch, 

Q(a1,s1), and the actual value (r1 + γ Q(a2,s2)), is quantified as a temporal difference 

reward prediction error (δ). The mismatch between expected and experienced outcomes 

is then used to improve the agent’s prediction according to learning rate α (equ 2). Note 

that both the reward value (r1) and the discounted expected value of subsequent events 

(Q(a2,s2)) are considered as part of the prediction error calculation, offering a path 

through which rewards can be propagated back to their antecedents.

MB-RL algorithms

As implied by their name, MB algorithms tackle RL problems using a model of the 

environment to plan a course of action by predicting how the environment will respond to 

its interventions. While model can have very different meanings, the model used in MB 

RL is very specifically defined as the environment’s transition function, T(s′|a,s), and 

reward function, R(a,s). Commonly referenced MB-RL methods either attempt to learn, 

or are endowed with the model of the task to work with from the start. With a model of 

the environment, the agent can estimate cumulative state-action values online by planning 

forward from the current state, or backward from a terminal state. The optimal policy can 

can be computed using the Bellman equation:
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QMB a1, s1 = R a1, s1 + ∑
s′

T s′ s1, a1 ⋅ γmaxa′ QMB a′, s′ (3)

where the value of each action available in the current state, QMB(a1,s1), considers the 

expected reward R(a1,s1), and the discounted expected value of taking the best action at 

the subsequent state, γmaxa′ [Q(a′,s′)] weighted by the probability of actually 

transitioning into that state T(s′|s1,a1). This approach can be recursively rolled out to 

subsequent states, deepening the plan under consideration. Thus, when faced with a 

choice of what to do for lunch, a MB strategy can flexibly consider the value of going 

back to the cafeteria or of visiting the new cafe by dynamically solving the Bellman 

equation describing the choice problem.

Collins and Cockburn Page 22

Nat Rev Neurosci. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2:

Learning as a mixture of MB and MF-RL

The original paper reporting the two-step task showed that human behavior exhibited 

both MB and MF components7. Since then, many have used versions of this task to 

replicate and expand on these findings in what has become rich and productive line of 

research, highlighting the relevance of MB vs. MF RL in understanding learning across 

many different domains. We do not provide an exhaustive review here (see145), but 

highlight the impact on neural systems, individual differences, and non-human research 

to show the breadth of the impact of this theoretical framework on the computational 

cognitive neuroscience of learning community, and beyond.

Separable neural systems in humans

Subsequent research showed that the dual systems identified by the 2-step task and MB-

MF mixture model can be largely mapped to separable systems, either by identifying 

separate neural correlates48, or by identifying causal manipulations that taxed the systems 

independently. Causal manipulations have typically targeted executive functions and as 

such, the majority (if not all) research using this paradigm have been found to modulate 

the MB, but not the MF, component of behavior. Successful manipulations that reduced 

the influence of the MB component included taxing attention via multi-task 

interference45 or task-switching72, inducing stress46, disrupting regions associated with 

executive function146, and pharmacology47. Manipulations targeting the MF system are 

largely absent, potentially pointing to that system’s primacy or heterogeneity.

Individual differences

Individuals vary in their decision making process and how they learn from feedback. The 

MB-MF theoretical framework, along with the 2-step task, was successfully used to 

capture such individual differences and relate them to predictive factors147. For example, 

in a developmental cohort,96 showed that the MB component increased from age 8 

through 25, while the MF component of learning remained stable. This framework has 

also been used to identify specific learning deficits in psychiatric populations, such as 

people with obsessive compulsive disorders148 or repetitive disorders149,addiction150, 

schizophrenia151 and other psychiatric constructs49,152.

Non-human studies

Early models of animal behavior described a causal relationship between stimuli and 

response153, which was expanded upon to show that some behavior was better accounted 

for by models that included a cognitive map of the environment44. However, more refined 

investigations suggested that both strategies, a stimulus-driven response and an outcome 

motivated action, can emerge from the same animals2. Anatomical work in rats has 

dissociated these strategies, indicating that pre-limbic regions are involved in goal-

directed learning98,154, while infralimbic cortex has been associated with S-R control155. 

This dissociation mirrors a functional segregation between dorsolateral and dorsomedial 

striatum, with the former implicated in S-R behavior, and the later being associated with 

goal-directed planning156–158.
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Figure 1. RL across fields of research
Many fields of research use the term reinforcement learning (RL), notably computational, 

behavioral, and neurosciences. The meaning of RL in each field is used in contrast to other 

concepts (e.g. supervised in machine learning). While computational sciences frames 

dichotomies between algorithmic approaches, behavioral sciences contrast and define 

cognitive constructs by way of experimental designs (e.g. habits are devaluation insensitive 

behaviors2), and neuroscience focuses on the brain’s separable neural circuits. It is also well 

accepted that the segregation, both conceptually and empirically, are practical though 

imperfect simplifications. For example, both memory and decision making processes make 

significant contributions to the neural circuits involved in RL, meaning that brain regions not 

uniquely associated with RL contribute to RL behavior nonetheless (dashed arrows). It is 

important to remember that while the three RL definitions are related (full arrows), they are 

not equivalent. dorso-lateral (DL); dorso-medial (DM); ventral-medial (VM); ventral-medial 

prefrontal cortex (vmPFC); dopamine (DA); anterior cingulate cortex (ACC); 

mediotemporal lobe (MTL).
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Figure 2. Contrast between MB and MF algorithms in response to environmental changes.
A student has learned that the cafeteria is to the east of their lab, and the coffee shop is to the 

west. Having visited both several times in the past, they have also learned that the lunch 

offerings at the cafeteria are passable (reward of +1), while the coffee shop does not offer 

food (reward of 0). On day n, the student opts to visit the cafeteria (which both MB and MF 

strategies agree to as the best option). However, the student encounters a stand in front of the 

cafeteria offering delicious items from a new menu at the coffee shop (reward of +10). The 

next day, the student must decide which direction to take for lunch. A MB strategy will 

consult its model of the environment to identify the path toward the best lunch option, which 

is now at the coffee shop (go west). A MF strategy, in contrast, will consult its value 

estimates, and owing to the unexpectedly good lunch the previous day, it will repeat the 

action of heading east (toward the cafeteria).
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Figure 3. 
Decompositions of learning. A. Classic interpretations of the MB-MF RL theory cast the 

space of learning behavior as a mixture of two components, with MB and MF as 

independent primitives implemented in separable neural networks (green). B) In reality, MB 

and MF are not independent computational dimensions, and rely on multiple partially shared 

computational primitives (red). For example, MB planning depends on learned transitions, 

which in turn, relies on state representations that may be shared across MB/MF strategies. 

C) MB and MF’s computations do not map on to unique underlying mechanisms. For 

example, MB learning may rely on prefrontal (PFC) working memory to compute forward 

plans, medial temporal lobe (MTL) to represent states and transition, and ventro-medial 

(vm) PFC to represent reward expectations. MF also relies on the latter two, as well as other 

specific networks, non-exhaustively represented here. D) Additional independent 

computational dimensions are needed to account for the space of learning algorithm 

behaviors, such as hierarchical task decomposition (HRL) or hebbian learning.
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