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DHEA-Box Helicase 37 (DHX37) is a putative RNA helicase. It is involved in various RNA secondary structure alteration processes,
including translation, nuclear splicing, and ribosome assembly. It is reported to be associated with the neurodevelopmental disorder
with brain anomalies, and a recent study suggests that DHX37 is a functional regulator of CD8 T cells. Dysregulation of the CD8 T
cell function is closely related to defective antitumor immune responses. In the present study, we investigated the expression,
mutation, and prognostic role of DHX37 in human cancers, mainly by mining publicly available datasets. Our results suggested
that DHX37 was significantly upregulated in 17 kinds of tumors. Mutations including deletions, insertions, and substitutions of
DHX37 were widely detected. Besides, the expression of DHX37 was negatively correlated with immune-related genes PD-L1,
RGS16, and TOX, and it was positively associated with TIM3, LAG3, and NCOR2. Through biofunctional analysis, we observed
that DHX37 was significantly enriched in cancer-related pathways such as cell cycle, DNA replication, mismatch repair, RNA
degradation, and RNA polymerase. In conclusion, the study explored the significance of DHX37 in human cancers. DHX37 may
serve as a potential target for cancer immunotherapy.

1. Introduction

With the rapid development of high-throughput sequencing
technology, vast amounts of data carrying genetic informa-
tion become publicly available. The Cancer Genome Atlas
(TCGA) database provides data on the gene expression,
mutation, methylation, and copy number variation in more
than 18 million cancer cases. Recent studies devoted their
efforts to developing bioinformatic methodologies to extract
new information from the TCGA database. For example,
prognostic signatures based on the gene expression or
ncRNA expression were constructed in various kinds of can-
cers using data in the TCGA database. These signatures pro-

vide new biomarkers or therapeutic targets for cancer
patients [1–4].

Human cancers have now become one of the leading
causes of death worldwide. According to data from the Inter-
national Agency for Research on Cancer, 9.6 million individ-
uals died from cancer in 2018 [5]. The course of cancer
initiation and development is still obscure, and great efforts
are needed to explore mechanisms of carcinogenesis and
develop potential therapeutic targets. Traditional treatment
for cancers mainly includes surgery, chemotherapy, and
radiotherapy. In recent years, immunotherapies such as
immune checkpoint blockade and chimeric antigen receptor
T cell therapy achieved great success in clinical trials [6–9].

Hindawi
BioMed Research International
Volume 2021, Article ID 6576210, 12 pages
https://doi.org/10.1155/2021/6576210

https://orcid.org/0000-0002-3873-5374
https://orcid.org/0000-0003-0316-8346
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6576210


However, the ability of cancer cells to escape from immuno-
surveillance limited the efficacy of immunotherapy [10].
Therefore, it is vital to reveal the mechanisms about how can-
cer cells evade the detection and elimination of the host
immune system.

DHX37 is a member of the DExD/H-box RNA helicase
family. Proteins in this family are evolutionarily conserved
and are involved in modifying RNA secondary structures.
A recent study suggested that DHX37 is highly expressed in
human activated CD4+/CD8+ cells. Tumor Immune Dys-
function and Exclusion (TIDE) analysis indicated that the
high expression of DHX37 is associated with worse prognosis
in breast cancer [11]. However, very little is known about the
expression, mutation, and prognostic role of DHX37 in
human cancers.

In the present study, by utilizing data in public datasets,
we compared the expression of DHX37 between normal tis-
sues and tumor tissues. We found that DHX37 was signifi-
cantly upregulated in 17/23 tumors. Various mutations of
DHX37 were detected in human cancers. In addition, we
investigated that the expression of DHX37 was correlated
with several tumor-related immune genes (PD-L1, TIM3,
LAG3, TOX, RGS16, and NCOR2), indicating that it may
play crucial roles in tumor immune dysregulation. For sur-
vival analysis, DHX37 showed diverse prognostic values in
different types of cancers. In conclusion, our study elucidated
the potential role of DHX37 in cancers, and it may serve as a
biomarker in some tumors. Further studies are still needed to
verify our findings.

2. Materials and Methods

2.1. UALCAN Database. The UALCAN database (http://
ualcan.path.uab.edu/) is a comprehensive, user-friendly,
and interactive website tool for analyzing the cancer OMICS
data [12]. The database can integrate gene expression data
and clinical information of cancer patients in the TCGA
database to provide gene expression graphs and plots in dif-
ferent patient groups. In the present study, we used the UAL-
CAN database to compare the DHX37 expression between
normal tissues and tumor tissues in 23 cancers from the
TCGA database. P < 0:05 was considered significant.

2.2. Human Protein Atlas. We utilized data in the Human
Protein Atlas to observe the DHX37 protein expression in
human cancers (https://www.proteinatlas.org/). Human Pro-
tein Atlas is a website tool aiming to map all human proteins
in cells, tissues, and organs by integrating various omic tech-
nologies [13]. In the present study, we checked the DHX37
protein expression in different cancer cells.

2.3. COSMIC and cBioPortal Database. The Catalog Of
Somatic Mutations In Cancer (COSMIC) (https://cancer
.sanger.ac.uk/cosmic) database is currently the broadest data-
base for analyzing the impact of somatic mutations on
human cancers. Over 4 million coding mutations, 13 million
noncoding mutations, 18 thousand gene fusions, and 180
thousand genome rearrangements were described in the
COSMIC database [14]. In this study, the COSMIC database

was used for identifying mutations of DHX37 in human can-
cers. The cBioPortal (https://www.cbioportal.org/) database
provides analysis and visualization of large-scale genomic
datasets. To visualize DHX37 mutation status in human can-
cers, we carried out cBioPortal analysis, and the results were
shown in bar plots.

2.4. Genome-Wide Association Analysis of DHX37. To iden-
tify genes that correlate with DHX37 and depict circus plots
about the expression of DHX37 and these genes, we utilized
the Multi-Scale Association Explorer (MSAE) tool on the
Cancer Regulome website (http://www.cancerregulome.org/
). Genes with −log10ðPÞ ≥ 6 were regarded as significant
genes and were shown in the circus plots.

2.5. Kaplan-Meier Curve for Survival Analysis. To investigate
the prognostic role of DHX37 in human cancers, we used a
website tool called The Kaplan-Meier Plotter (https://
kmplot.com/analysis/) to draw the Kaplan-Meier curve.
The website collects gene chip or RNA-seq data from
11,000 samples from 20 different cancer types. In the present
study, we utilized the TCGA datasets to create survival curves
for DHX37.

2.6. UCSC Xena for Gene Correlation Analysis. The UCSC
Xena website tool was designed to analyze and visualize can-
cer genomic data from public and researchers’ private data-
sets. As a previous study which demonstrated that DHX37
was associated with the CD8 T cell function, we analyzed
the correlation between the expression of DHX37 and
immune-related genes PD-L1 (CD274), HAVCR2 (TIM3),
LAG3, TOX, RGS16, and NCOR2. Heatmaps were created
using the Genes viewing mode.

2.7. KEGG and Metascape Enrichment Analysis. Biofunc-
tional analysis of DHX37 was conducted. KEGG, GO, Reac-
tome, and CORUM analysis were conducted using
Metascape (http://metascape.org). Bubble plot was depicted
by R Studio (Version 1.2.5033, ggplot2 package).

3. Results

3.1. The Expression of DHX37 Differs between Normal and
Tumor Tissues in a Variety of Human Cancers. Using the
UALCAN website, we compared the expression of DHX37
between normal samples and tumor samples in 23 human
cancers. DHX37 was significantly upregulated in 17 tumor
tissues, including rectum adenocarcinoma (READ), esopha-
geal carcinoma (ESCA), colon adenocarcinoma (COAD),
cholangiocarcinoma (CHOL), cervical squamous cell carci-
noma (CESC), breast invasive carcinoma (BRCA), bladder
urothelial carcinoma (BLCA), uterine corpus endometrial
carcinoma (UCEC), stomach adenocarcinoma (STAD), liver
hepatocellular carcinoma (LIHC), prostate adenocarcinoma
(PRAD), lung squamous cell carcinoma (LUSC), lung adeno-
carcinoma (LUAD), head and neck squamous cell carcinoma
(HNSC), kidney renal papillary cell carcinoma (KIRP), kid-
ney renal clear cell carcinoma (KIRC), and kidney chromo-
phobe (KICH) compared to that in corresponding normal
tissues (P < 0:05). No significant differences between normal
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and tumor tissues were observed in sarcoma (SARC), thy-
moma (THYM), thyroid carcinoma (THCA), pheochromo-
cytoma and paraganglioma (PCPG), glioblastoma
multiforme (GBM), and pancreatic adenocarcinoma
(PAAD) (Figure 1). In addition, we also observed the protein
expression of DHX37 in human cancer cells through the
Human Protein Atlas database. The results were shown in
Figure 2.

3.2. DHX37 Mutations in Human Cancers. The data of
DHX37 somatic mutations was obtained from the COSMIC
database (Figure 3(a)). In human cancers, nonsense, mis-
sense, and synonymous substitution were major types of
DHX37 somatic mutations. Nonsense substitutions were
mainly found in central nervous system carcinoma
(22.22%), endometrioid carcinoma (10%), large intestine car-
cinoma (2.78%), liver carcinoma (4.35%), lung carcinoma
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Figure 1: The expression of DHX37 in human cancers was investigated using the UALCAN database.
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(1.82%), prostate carcinoma (5%), skin carcinoma (3.03%),
stomach carcinoma (1.92%), thyroid carcinoma (14.29%),
and urinary tract carcinoma (9.09%). According to different
cancer types, missense substitutions were observed in all can-
cer types, with a percentage of 10%-100%. Cancers with over
50% missense substitutions were cervix carcinoma (50%),
large intestine carcinoma (52.78%), ovary carcinoma (50%),
salivary gland carcinoma (100%), skin carcinoma (63.64%),
thyroid carcinoma (85.71%), and urinary tract carcinoma
(54.55%). Synonymous substitutions occurred in many kinds
of cancers except salivary gland cancer and thyroid cancer.
The percentage of synonymous substitutions in different can-
cers was biliary tract carcinoma (23.08%), breast carcinoma
(5.26%), central nervous system carcinoma (77.78%), cervix

carcinoma(25%), endometrioid carcinoma (20%), hemato-
poietic and lymphoid carcinoma (14.29%), kidney carcinoma
(25%), large intestine carcinoma (13.89%), liver carcinoma
(10.87%), lung carcinoma (32.73%), esophagus carcinoma
(11.11%), ovary carcinoma (25%), pancreas carcinoma
(20%), prostate carcinoma (10%), skin carcinoma (21.21%),
stomach carcinoma (17.31%), upper aerodigestive tract carci-
noma (23.08%), and urinary tract carcinoma (36.36%),
respectively. Additionally, inframe insertion was observed
in stomach carcinoma (1.92%) and upper aerodigestive tract
carcinoma (7.69%). Inframe deletion was observed in endo-
metrioid carcinoma (10%), hematopoietic and lymphoid car-
cinoma (14.29%), liver carcinoma (2.17%), prostate
carcinoma (5%), skin carcinoma (3.03%), and stomach
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Figure 2: The protein expression of DHX37 in human cancer cells was evaluated using the Human Protein Atlas database.
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Figure 3: Continued.
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carcinoma (5.77%). Frameshift deletion was found in large
intestine carcinoma (2.78%), pancreas carcinoma (10%), skin
carcinoma (3.03%), and stomach carcinoma (3.85%). No
frameshift insertion of DHX37 was found in any cancer.
A>C mutation was found in hematopoietic and lymphoid
carcinoma (20%) and kidney carcinoma (20%). A>T muta-
tion was observed in biliary tract carcinoma (14.29%), endo-
metrioid carcinoma (7.69%), and lung carcinoma (4.55%).
C>Gmutation was seen in breast carcinoma (10%) and large

intestine carcinoma (7.41%). T>A was seen in breast carci-
noma (10%) and large intestine carcinoma (4.17%). T>C
was observed in large intestine carcinoma (4.17%), lung car-
cinoma (2.27%), and stomach carcinoma (4.76%). T>G was
seen in lung carcinoma (2.27%) and stomach carcinoma
(4.76%). As shown in Figure 3(b), cBioPortal analysis sug-
gested that 165 mutation points were detected in a total of
1157 amino acids of DHX37. The percentage of different
mutation types in different cancers was shown in Figure 3(c).
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Figure 3: DHX37 mutations in human cancers. (a) The percentage of different mutation types of DHX37 in human cancers according to the
COSMIC database. (b) Mutations of DHX37 in protein domains. (c) Mutation level of DHX37 using data from cBioPortal.
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3.3. Genome-Wide Association Analysis of DHX37 in Human
Cancers. To obtain correlations between genes and DHX37
in a range of the whole genome, we carried out genome-
wide association analysis. The results were mapped to the rel-
evant human genome and were plotted in circus plots using
Cancer Regulome (MASE). Mapping was based on the asso-
ciation among genes, copy number variants, microRNAs,
and other genetic features. As shown in Figure 4, DHX37
was associated with genes that could be detected in colorectal
cancer (CRC), STAD, BRCA, BLCA, LIHC, LUSC, LUAD,
KIRC, HNSC, UCEC, THCA, ovarian serous cystadenocarci-

noma (OV), adrenocortical carcinoma (ACC), brain lower
grade glioma (LGG), and skin cutaneous melanoma (SKCM).
Detailed information was listed in Supplementary 1.

3.4. Prognostic Role of DHX37 in Human Cancers. To inves-
tigate the prognostic value of DHX37 in human cancers, we
used the Kaplan-Meier Plotter to draw the survival curves.
Patients were divided into a high-risk group and a low-risk
group according to the website’s median DHX37 expression.
As shown in Figure 5, the DHX37 expression played different
prognostic roles in human cancers. The high expression of
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Figure 4: Correlation between DHX37 and other genes in different human cancers.
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Figure 5: Kaplan-Meier curve showed that DHX37 has different effects on prognosis in different tumors.
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DHX37 was significantly associated with unfavorable prog-
nosis in esophageal adenocarcinoma (P = 0:0055), kidney
renal clear cell carcinoma (P = 0:0011), liver hepatocellular
carcinoma (P = 0:025), lung adenocarcinoma (P = 0:00095),
head-neck squamous cell carcinoma (P = 0:017), and
sarcoma(P = 0:0014). However, the opposite results were
observed in lung squamous cell carcinoma (P = 0:0065), rec-
tum adenocarcinoma (P = 0:0023), stomach adenocarci-
noma (P = 0:0091), uterine corpus endometrial carcinoma
(P = 0:023), and thyroid carcinoma(P = 0:0015), in which
the high expression of DHX37 was correlated with favorable
prognosis. Besides, in bladder carcinoma, cervical squamous
cell carcinoma, esophageal squamous cell carcinoma, ovarian
cancer, kidney renal papillary cell carcinoma, pancreatic duc-
tal adenocarcinoma, pheochromocytoma, paraganglioma,
and thymoma, DHX37 had no association with prognosis.

3.5. Correlation between DHX37 and Immune-Related Genes.
As DHX37 was involved in the regulation of CD8 T cell func-
tion, we next checked whether its expression was associated
with the expression of some cancer-related immune genes
by UCSC Xena. According to the data in TCGA tumor sam-
ples, the copy numbers of DHX37 were positively correlated
with TIM3, LAG3 and NCOR2, while they were negatively
correlated with PD-L1, RGS16 and TOX (Figure 6).

3.6. DHX37 Is Involved in Cancer Signaling Pathways. To fur-
ther validate the function of DHX37 in human cancers, we
conducted biofunctional analysis. KEGG analysis was per-
formed using DHX37-related genes obtained from genome-
wide association analysis. As shown in Figure 7(a), enriched
signaling pathways related to DHX37 were cell cycle, homol-
ogous recombination, cellular senescence, DNA replication,
and base excision repair et al. The results indicated that
DHX37 was highly involved in cancer signaling pathways
and may play critical roles in human cancer development.
In addition, we carried out enrichment analysis based on all
GO terms, KEGG pathways, Reactome, and CORUM using
Metascape. The results were shown as the bar graph
(Figure 7(b)) and the network visualization graph
(Figure 7(c)).

4. Discussion

DHX37 is a member of the DExD/H-box RNA helicase fam-
ily. Proteins in this family are revolutionary conserved, and
they have either DExD or DExH amino acid sequence in
their helicase core domain. These proteins’ core domains
participate in RNA and NTP binding, hydrolysis, substrate
recognition, and helicase activity [15]. Although DExD/H
box RNA helicases are widely expressed in human tissues,
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DHX37 shows the tissue-specific expression. DHX37 is
expressed in most human organs, with the highest expression
in lymphoid tissues, including bone marrow, spleen, lymph
nodes, and appendix [16]. The function of DHX37 has not
been well studied yet. Previous studies showed that DHX37

is specifically expressed in somatic cells of developing human
testis, and pathogenic variants of DHX37 are a frequent cause
of nonsyndromic 46, XY gonadal dysgenesis [17–19].

Few studies focused on the role of DHX37 in the human
immune and cancers. Matthew et al. reported that in human
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breast cancer, DHX37 is expressed in both normal and
tumor-associated T cells. Interactions between DHX37 and
NF-κB core components result in T cell dysfunction [11].
In addition, the high expression of DHX37 is found in both
activated CD8+ and CD4 T+ cells, and the expression of
DHX37 is significantly higher in exhausted tumor infiltration
lymphocyte (TILs) compared to nonexhausted ones. These
results suggested that the increased expression of DHX37
might be involved in tumor cell evasion from immune
recognition.

In the present study, we found that the expression of
DHX37 was significantly upregulated in 17 of 23 human can-
cers, including invasive breast cancer. The result is consistent
with previous findings that DHX37 upregulation is associ-
ated with poor prognosis in breast cancer [11].

Next, we investigated the somatic mutations of DHX37 in
human cancers. Mutations were widely observed. Among all
the mutations, missense substitution was the most frequently
occurred mutation and was found in all tumor types. Salivary
gland carcinoma had 100% missense substitution, and thy-
roid carcinoma had 85.71%, suggesting that abnormal amino
acid sequence of DHX37 may account for tumor develop-
ment of these two cancers. The synonymous substitution
was the second most common somatic mutation of
DHX37. Besides, nonsense mutation, inframe insertion,
inframe deletion, and frameshift deletion were observed in
various tumor types, indicating that structural and functional
changes of DHX37 are vital to tumor initiation and
progression.

The relationship between DHX37 and tumor-related
immune genes was also investigated. Our results suggested
that the expression of DHX37 was positively correlated with
TIM3, LAG3, and NCOR2, while it was negatively correlated
with PD-L1, RSG16, and TOX. T cell immunoglobulin and
mucin domain-containing protein 3 (TIM3) is expressed as
the most on dysfunctional tumor-infiltrating CD8+PD1+
T cells in cancer [20–22]. Blocking TIM3 can restore CD8
T cell responses to antitumor immunity [22]. Lymphocyte
activation gene-3 (LAG3, CD223) is an inhibitory receptor.
The upregulation of LAG3 is essential for limiting T cell acti-
vation and preventing the start of tumor immune responses
in cancers [23]. As TIM3 and LAG3 are both potential targets
for cancer immunotherapy, the clinical trial about coinhibi-
tion of TIM3 and LAG3 for cancer treatment is currently
investigated [24]. These findings support our hypothesis that
the high expression of DHX37 indicates an increased risk of
tumor immune suppression and tumor progression.
DHX37 may serve as a targetable inhibitory receptor for
immunotherapy. PD-L1 is highly expressed in many tumors
and is an inducer of T cell exhaustion [25]. PD-L1 is reason-
able for cancer immune escape because it can weaken the
host immune responses towards tumor cells [26]. The PD-
1/PD-L1 axis is currently the most well studied inhibitory
checkpoint molecules. The axis can be modulated by various
signaling pathways, including PI3K/AKT, JAK/STAT3,
WNT, NF-κB, MAPK, and Hh pathway [26]. Targeting
PD-1/PD-L1 is proved to be effective in treating both solid
and hematological malignancies such as lung cancer [27],
head and neck cancers [28], and lymphoma [25]. TOX is

highly expressed in dysfunctional tumor-specific CD8 T cells.
Knockdown of TOX can abrogate T cell exhaustion [29].
Reverse correlation between the expression of DHX37 and
TOX or PD-L1 indicated that targeting DHX37 may be an
alternative option for patients who are not sensitive to TOX
or PD-L1 immunotherapy.

As far as we know, our study was the first to investigate
the prognostic role of DHX37 in human cancers. Interest-
ingly, the high expression of DHX37 was associated with
favorable prognosis in lung squamous cell carcinoma, rectum
adenocarcinoma, stomach adenocarcinoma, uterine corpus
endometrial carcinoma, and thyroid carcinoma, which
seemed to be not consistent with its role in cancer immune.
This may because DHX37 was in the complicated regulatory
networks of human cancers, and Figure 4 provides informa-
tion about these gene-gene interactions.

In conclusion, our study is the first to investigate the
expression, mutation, and prognostic role of DHX37 in
human cancers. Our results suggest that DHX37 is upregu-
lated in most human cancers, and it has different prognostic
values in various cancers. Somatic mutations of DHX37 are
widely found in cancers. In addition, the expression of
DHX37 is correlated with critical inhibitory receptors in can-
cers. Biofunctional analysis shows that DHX37 is highly
enriched in critical cancer signaling pathways. From the all
above, DHX37 might serve as a potential target for cancer
immunotherapy.
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