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Abstract
The new type of corona virus (SARS-COV-2) emerging in Wuhan, China has spread rapidly to the world and has become a 
pandemic. In addition to having a significant impact on daily life, it also shows its effect in different areas, including public 
health and economy. Currently, there is no vaccine or antiviral drug available to prevent the COVID-19 disease. Therefore, 
determination of protein interactions of new types of corona virus is vital in clinical studies, drug therapy, identification of 
preclinical compounds and protein functions. Protein–protein interactions are important to examine protein functions and 
pathways involved in various biological processes and to determine the cause and progression of diseases. Various high-
throughput experimental methods have been used to identify protein–protein interactions in organisms, yet, there is still a 
huge gap in specifying all possible protein interactions in an organism. In addition, since the experimental methods used 
include cloning, labeling, affinity purification mass spectrometry, the processes take a long time. Determining these interac-
tions with artificial intelligence-based methods rather than experimental approaches may help to identify protein functions 
faster. Thus, protein–protein interaction prediction using deep-learning algorithms has been employed in conjunction with 
experimental method to explore new protein interactions. However, to predict protein interactions with artificial intelligence 
techniques, protein sequences need to be mapped. There are various types and numbers of protein-mapping methods in the 
literature. In this study, we wanted to contribute to the literature by proposing a novel protein-mapping method based on the 
AVL tree. The proposed method was inspired by the fast search performance on the dictionary structure of AVL tree and 
was used to verify the protein interactions between SARS-COV-2 virus and human. First, protein sequences were mapped by 
both the proposed method and various protein-mapping methods. Then, the mapped protein sequences were normalized and 
classified by bidirectional recurrent neural networks. The performance of the proposed method was evaluated with accuracy, 
f1-score, precision, recall, and AUC scores. Our results indicated that our mapping method predicts the protein interactions 
between SARS-COV-2 virus proteins and human proteins at an accuracy of 97.76%, precision of 97.60%, recall of 98.33%, 
f1-score of 79.42%, and with AUC 89% in average.
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1  Introduction

The first corona virus incident occurred in Wuhan, China 
in December 2019, and spread rapidly to every region of 
the world [1, 2]. The disease caused by the SARS-COV-2 
virus is called COVID-19 (Corona Virus Disease-2019). 
Most of corona viruses affect animals, yet they can also be 
transmitted to humans due to the genomic nature of humans 
[3]. The SARS-COV virus that emerged in 2002 and 2003 
affected approximately 8000 people and had a mortality rate 
of 10% [4]. Similarly, the MERS-COV virus appeared in 
2012 and a total of 2500 confirmed cases were observed [4]. 
The mortality rate of this virus has been observed as 36% 
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[5]. These types of corona viruses reveal Acute Respiratory 
Distress Syndrome (SARS), which causes infection in the 
lungs and cause the death. It has been observed that the new 
type of corona virus spreads faster, is more difficult to con-
trol and has higher pandemic potential [5, 6]. Although 80% 
of infected people gently overcome this disease, COVID-19 
can be fatal for people with medical problems such as diabet-
ics, cancer, chronic respiratory failure, and heart failure [7]. 
Due to these reasons, it is vital to develop new strategies to 
counteract the SARS-COV-2 virus, to have knowledge of 
how the virus contacted the host during infection, and to 
develop new drugs or to reuse existing drugs.

So far, no medication has been developed for SARS-COV, 
MERS-COV, and SARS-COV-2 [8]. However, clinical trials 
are being conducted for any treatment, and both RNA and 
protein sequences are used effectively [9, 10]. One of these 
methods is based on protein–protein interactions. Thanks 
to these interactions, drug targets can be determined and 
drugs that can provide appropriate treatment can be identi-
fied [11, 12]. In addition to these, protein interactions are 
used effectively in determination of protein functions [13], 
diagnosis of cancer cells [14], phylogenetic analysis [15]. 
When determining interactions between proteins, two types 
of methods are generally applied; experimental and com-
putational. Experimental methods consist of cloning, tan-
dem affinity purification, nuclear magnetic resonance. All 
these experimental methods produce a large amount of data, 
and time and laboratory equipment are required to process 
these data [16]. In addition, the results of protein interac-
tions vary according to the experimental methods used. Fur-
thermore, since experimental methods are sensitive to both 
the environment and operational processes, false-positive 
and false-negative results may occur [17]. For these rea-
sons, recently, computational methods have been preferred 
more than experimental methods and their popularity has 
increased [18, 19].

There are many computational methods have been pro-
posed in the literature as complementary to experimental 
methods to predict interactions between proteins. These 
methods typically perform binary classification and pre-
dict whether the protein pairs interact or not. Prediction is 
usually performed based on protein domain information, 
gene expressions, gene neighborhood, protein structure 
information, and phylogenetic profiles. However, if there 
is no specific prior knowledge, these methods cannot be 
implemented. To perform the prediction process by com-
putational methods, the interaction information of the pro-
tein pairs must be known beforehand. In computational 
methods, first genomic sequences are mapped and then 
protein interactions are predicted by classifying them with 
machine-learning and deep-learning approaches. Com-
pared to experimental methods, computational methods 
are time efficient and can analyze the protein interactions 

with less equipment. Furthermore, with the recent devel-
opment of technology, protein sequence information can 
be obtained easily. Experimental results have shown that 
amino acid sequences alone are sufficient in predicting 
protein interactions [17].

In this work, a novel numerical mapping method was 
proposed to predict the protein interactions between SARS-
COV-2 and human, and the performance of the proposed 
method was validated on proteins belonging to COVID-19 
disease. In the first part of the study, SARS-COV-2 and 
human proteins were mapped with both the proposed method 
and various mapping methods. The protein sequences of 
COVID-19 disease and the human genome were obtained 
from the BioGRID data set. Then, the mapped genomic data 
were normalized and classified with DeepBiRNN (Bidirec-
tional Recurrent Neural Networks). The performance of 
numerical mapping methods was determined by accuracy, 
precision, recall, f1-score, and AUC (Area Under Curve) 
values. The experimental results showed that the proposed 
mapping method predicted the protein interactions between 
SARS-COV-2 virus proteins and human proteins at an accu-
racy of 97.76%, precision of 97.60%, recall of 98.33% and 
with AUC 89% in average. It has been observed that the 
proposed method is at least as effective and successful as 
other mapping methods. In some cases, it has even achieved 
the best evaluation results. Analyzing protein–protein inter-
actions is crucial to understand the biological activities of 
organisms. In this way, protein functions and protein families 
can be designated. Using computational methods rather than 
experimental methods provides faster acquisition of protein 
function, protein family and protein interaction informa-
tion. We have previously stated that experimental methods 
are both costly and time consuming. Thanks to the com-
putational methods, we have proposed and existed in the 
literature, these problems have been avoided. In addition, 
by proposing a novel protein numerical mapping method, 
we have provided an alternative to mapping method that 
are scarce in this field. The proposed mapping method is an 
algorithm-based method, and it was used for the first time 
in the field of protein mapping. The main difference of the 
proposed mapping method from other methods used in the 
study is that it belongs to a different category. One of the 
methods is character based, the other one is signal based and 
the another one is physicochemical based. Information about 
the methods is given in the following sections. However, 
as can be seen, the main difference of the proposed map-
ping method is that the mapping process is performed in an 
algorithm-based manner.

The main contributions of the study can be summarized 
as follows:

•	 A novel numerical mapping method has been proposed 
to map protein sequences.
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•	 To the best of our knowledge, for the first time in this 
study, protein interactions between SARS-COV-2 and 
humans were predicted and validated with computational 
methods.

•	 It has been observed that computational methods can be 
as successful as experimental methods.

•	 The proposed mapping method is aimed to be used in 
other protein studies by contributing to the literature.

•	 It has been observed that an algorithm-based mapping 
method is at least as successful as the methods of other 
categories.

The rest of the paper is organized as follows: Sect. 2 pro-
vides the related works based on protein interactions in the 
literature. Section 3 elicits the data used in this study. In 
addition, the proposed numerical method is explained in 
detail. In addition, in this section, information about other 
protein-mapping methods is given. Section 4 shows the 
interaction results of SARS-COV-2 and human protein pairs 
with both the proposed method and other mapping meth-
ods. Furthermore, the performance of each protein-mapping 
method is compared in this section. In the last section of 
the study, the importance and usage areas of the proposed 
method are discussed.

2 � Related Works

In this section, studies conducted to determine the interac-
tions between proteins are examined. In study [8], researches 
aimed to find potential drug targets by identifying protein 
interactions for COVID-19. A numerical method was not 
used in the study, and all results were obtained with the 
experimental methods. The interactions between SARS-
COV-2 and human protein pairs and potential drug targets 
were designated by cloning, labeling, and affinity purifica-
tion mass spectrometry. According to the results of the study, 
it was determined that 26 COVID-19 proteins interact with 
332 human proteins in total.

Machine-learning algorithms are used effectively in 
protein interaction studies. In study [20], authors used 
radial-based functional neural networks to determine the 
protein–protein interaction sites. Protein sequences were 
converted to the numerical representations at the first stage, 
and frequency values of each amino acid were calculated. 
Then, by calculating the relative entropy, a total of 1000 fea-
tures were obtained. Classification performance was deter-
mined by f1-score, and accuracy values, and these values 
were calculated as 99%, and 80%, respectively. In study [21], 
the interactions between proteins were specified using pro-
tein signatures. Helicobacter pylori protein data from human 
and mice were used in the study. Protein sequences were 
mapped by the protein signature method and classified using 

SVM (Support Vector Machine). The proposed method has 
been tested on three different species: Helicobacter pylori, 
Escherichia coli, and Saccharomyces cerevisiae. The perfor-
mance of the method was measured with accuracy, specific-
ity, and sensitivity.

In some cases, where protein sequences are numerous, 
machine-learning algorithms are not effective and key 
features cannot be obtained [16]. For this reason, besides 
machine learning, deep-learning models are also applied in 
this field. In study [22], the interactions between proteins 
were determined using CNN (Convolutional Neural Net-
work), and LSTM (Long-Short Term Memory) models by 
applying primary protein sequences. Motifs, semantic and 
long-short term relationships between proteins were speci-
fied and features were collected. Then fivefold cross-valida-
tion was performed and average accuracy was achieved as 
98.78%. In study [16], it was aimed to designate the inter-
actions between protein pairs using LSTM deep-learning 
model. In the study, protein sequences were mapped with 
protein signature and Prot2Vec (Protein2Vector) method. 
These converted genomic data were later classified by the 
LSTM deep-learning model and the performance of the 
two methods was compared. ROC (Receiver Characteristic 
Curve), log loss, and accuracy metrics were used, and the 
Prot2Vec method was the most effective of these two numer-
ical mapping methods. In study [20], protein interactions 
were specified using SNN (Siamese Neural Network) and 
the performance of the network was tested on four different 
datasets. Protein sequences were converted to the numbers 
with both protein signatures and Prot2Vec methods. The 
success of the SNN was measured by AUC scores and the 
average value was observed as 83.25%.

3 � Data and the Proposed Method

3.1 � The Protein Data

The genomic structure of the SARS-COV-2 virus, caus-
ing COVID-19 has been investigated and the proteins of 
the virus have been identified in the literature. The virus 
consists of four structural: S (surface), M (membrane), E 
(envelope), N (nuclecapsid), and six non-structural (orf3a, 
orf3b, orf6, orf7a, orf7b, and orf8) genes [23]. The structure 
of the genome of the virus is given in Fig. 1.

In this study, non-structural proteins were used and the 
interaction information between COVID-19, and human pro-
tein pairs were obtained from BioGRID dataset. The reason 
for using non-structural proteins in the study is that these 
proteins are thought to be necessary for the replication of 
viral genomes [24]. Similarly, non-structural proteins impor-
tant for viral RNA synthesis and for antagonizing host anti-
viral immunity [25]. Therefore, predicting or determining 
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the interaction network of non-structural proteins is key to 
understanding protein interactions. Table 1 shows the inter-
acting COVID-19 and human proteins and total protein 
numbers.

Since no interaction of the orf7b protein was observed 
[8], the orf7b protein was not considered in this study. The 
protein sequences were obtained from the NCBI dataset. A 
total of 3201 protein sequences were considered in the study. 
The same protein sequences were not used multiple times, 
but due to the small number of data, similar proteins were 
used in the study with the BLAST (Basic Local Alignment 
Search Tool) algorithm. The main reason for the lack of data 
is that COVID-19 is a new disease. This reveals the main 
limitation of our study. We tried to overcome this problem 
using the BLAST algorithm. Using the BLAST algorithm, 
we included protein sequences with a similarity rate of 90% 
and above.

3.2 � Protein Mapping Modules

In this study, as a novel protein numerical mapping method 
is proposed, the performance of the proposed method is 
compared with various numerical mapping models. For this, 
we used EIIP (Electron–Ion Interaction Potential), CPNR 
(Complex Prime Number Representation) and hydropho-
bicity methods in this study. The EIIP method was first 
proposed to determine protein–DNA interactions [26]. 
With this method, genomic sequences were first converted 
into signals. Then, the signals were converted again and 
the power spectrum values of these signals were obtained. 

Fourier transform method was used for all these transforma-
tion processes. Finally, the power spectrum values obtained 
were assigned to each amino acid and the amino acids were 
mapped. EIIP method is one of the most frequently used 
methods in the literature [27, 28]. The CPNR method was 
first proposed in the comparison of protein functions [29]. 
In this method, amino acid codes were divided to codon 
number and each amino acid code was assigned to a specific 
prime number. The main purpose in the development of the 
method is to eliminate the degeneration problem that occurs 
in the EIIP method. There are a few studies in the literature 
performed with the CPNR method [30, 31]. The hydropho-
bicity method was proposed based on the hydrophilic and 
hydrophobic tendencies of the polypeptide chains of proteins 
[32]. It is generally used in the prediction of protein interac-
tions and classification of protein functions [33, 34].

The biggest difference of the method we propose from 
these methods is the mapping process. In summary, it dif-
fers categorically. Since the mapping process in the EIIP 
method is performed depending on the signal, this method is 
a signal-based mapping method [35]. In the CPNR method, 
the mapping process is not based on a specific protein infor-
mation (structure, function, etc.). Therefore, the mapping 
process of this method can be expressed as character based. 
Finally, the hydrophobicity method is a physicochemical-
based method. In summary, mapping is performed based on 
the chemical information of the proteins [33]. The method 
we have proposed is an algorithm-based method. As far as 
we know, there are no numerical mapping methods in this 
category in the literature. In our method, as in the CPNR 

Fig. 1   Genomic structure of 
SARS-COV-2 virus
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Table 1   Interacting COVID-19 
and human proteins and the 
total number of these proteins

COVID-19 
proteins

Interacting human proteins Total 
number of 
proteins

orf3a ALG5, ARL6IP6, CLCC1, HMOX1, SUN2, TRIM59, VPS11, VPS39 8
orf3b STOML2 1
orf6 MTCH1, NUO98, RAE1 3
orf7a HEATR3, MDN1 2
orf8 ADAM9, ADAMTS1, CHPF2, CHPF, CISD3, COL6A1, DNMT1, EDEM3, 

EMC1, ERLEC1, ERO1LB, ERP44, FBXL12, FKBP7, FKBP10, 
FOXRED2, GDF15, GGH, HS6ST2, HYOU1, IL17RA, INHBE, ITGB1, 
KDELC1, KDELC2, LOX, MFGE8, NEU1, NGLY1, NPC2, NPTX1, 
OS9, PCSK6, PLAT, PLD3, PLEKHF2, PLOD2, POFUT1, PUSL1, PVR, 
SDF2, SIL1, SMOC1, STC2, TM2D3, TOR1A, UGGT2

47
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method, there is information acquisition depending on the 
amino acid character (codes). In other words, the mapping 
process is not based on a specific protein information. How-
ever, unlike CPNR, the mapped process is based on a spe-
cific algorithmic structure.

3.3 � A Novel Protein Mapping Method Based on AVL 
Tree

In computer science, algorithms are highly used to build a 
program. Algorithm can be described as the set of instruc-
tions to be followed to solve a problem. Once an algorithm 
is defined and modeled for a given problem, it is required 
to determine the how much time or space the algorithm 
will need. An algorithm that solves the problem in years 
or that requires thousands of gigabytes of main memory is 
not useful. Thus, it is essential to model a smooth algorithm 
for time and space efficient program. The performance of 
algorithms is determined with the time and space complex-
ity analysis [36]. Analysis depends on many environmental 
and internal conditions such as operating system, processor, 
and hardware. Yet these are not considered while analyzing 
and only the execution time of an algorithm is calculated. 
It is well known that when the input size increases the best 
performance is obtained from the constant O(c) time [36, 
37]. This is followed by O(logN) , O(N) , O(NlogN) , O(Nc), 
and O

(

cN
)

, respectively. For large amount of data like in 
bioinformatics, it is difficult to obtain a linear complexity. 
Therefore, a tree structure is needed since average running 
time of a tree is O(logN) in many cases [36, 38].

There are many tree structures, including binary tree, 
AVL tree, Red–Black tree, and N-ary tree in computer sci-
ence. These trees are important in terms of data structures 
and algorithm analysis. Today, tree structures are used in 
most of the computer-based applications. Tree structures 
are generally preferred for storing data with a hierarchical 
structure. In addition, trees are frequently used in search 
operations. Each tree has its own advantages and disad-
vantages. In this study, we developed a protein numerical 
mapping method based on the AVL tree within existing tree 

structures. We explained the advantages and why we use the 
AVL tree at the end of this section.

AVL tree is a kind of binary tree with a balance condition. 
A tree in which no node can have more than two children 
called a binary tree and it is useful in algorithm analysis 
applications. The balance of an AVL tree is determined the 
height of nodes. Basically, the left and right subtrees need 
to be at the same height. In detail, the differences between 
heights of right and left subtrees for each node must be less 
than or equal to 1.

In nature, there are 20 amino acids. We add these amino 
acid codes to AVL tree in alphabetical order. For instance, 
first we add Alanine (A) in the AVL tree since it is the first 
amino acid in alphabetical order and we insert Arginine (R), 
Asparagine (N), and so on. The final status of the proposed 
method AVL tree can be seen in Fig. 2.

According to Fig. 2, root node is the Asparagine (N) 
node. When we add nodes to the trees, the balance of the 
tree is corrupted. Yet we provide the balance with AVL tree 
insertion rules. The detailed information about insertion and 
deletion rules of AVL can be seen in [36]. Histidine (H) 
and Serine (S) are the siblings and children of root node N. 
Glutamic acid (E)–Lysine (K), and Glutamine (Q)–Trypto-
phan (W) amino acid pairs come later which are left subtree 
and right subtree of H and S nodes, respectively. Cysteine 
(C) is the left child of node E and have two children which 
are Alanine (A), and Aspartic acid (D). The right child of 
E is Glycine (G) which has only one child called Phenyla-
lanine (F). Isoleucine (I), and Leucine (L) are the siblings 
and children of K node. Methionine (M) is a grandchild of 
K node and is found right subtree of the L. Both Q and 
W nodes have two children including Proline (P), Arginine 
(R), Threonine (T), and Tyrosine (Y). Only the T node has 
child Valine (V). After the insertion process, we calculate 
the depth values of each node. Figure 3 depicts the depth 
values of each node visually.

We can see that only the root node has a 0 depth value. 
All other nodes have different depth values than root value. 
After calculation of the depth values, we convert amino 
acid sequences to the numerical representations. Let say 

Fig. 2   Insertion of amino acid 
codes to the AVL tree N
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we have a protein sequence S(n) = MHIILKFDASHN . The 
numerical representation of this sequence is calculated 
S(n) = 413332444110.

The performance of the proposed method is determined 
by DeepBiRNN deep-learning model by comparing the 
interaction results with other protein-mapping methods. 
This mapping method demonstrated high-performance for 
finding protein interactions between COVID-19 and human. 
We select an AVL tree since the execution time is good and 
the time complexity is O(logN) in most of the cases. It is 
well known fact that there are some other trees running in 
O(logN) time such as binary tree and splay tree. In binary 
tree, there is no balance condition. In splay tree, a balance 
exists yet, insertion and deletion operations take O(NlogN) 
time which requires more execution time than the AVL tree 
[39]. In addition, AVL tree is logical, however, splay tree is 
heuristic [40]. AVL trees are often compared consistently 
with Red–Black trees. However, the biggest advantage of the 
AVL tree over Red–Black trees or even other trees is that it 
has a fast search process [37]. As we have stated before, the 
biggest advantage of this tree is its balance condition. An 
unbalanced tree means that the operations take longer which 
causes in time intensive lookup applications. For these rea-
sons, AVL tree was chosen as the tree structure. The experi-
mental design of the study is given in Fig. 4.

In the first stage that can be seen from Fig. 4, proteins 
belonging to human were obtained from NCBI dataset. 
Proteins belonging to the virus were not used in the study. 
Since it is known which protein of the virus interacts with 
which human protein. For example, the orf3b protein inter-
acts only with STOML2. While STOML2 was considered 
as a positive interaction, other proteins were considered as 
a negative interaction. This approach has also been used for 
other protein interactions. Subsequently, proteins belonging 
to human were mapped using both the proposed numeri-
cal mapping method and other mapping methods. All map-
ping operations were done for each sequence one by one. 
The mapped protein sequences were then normalized. The 
z-score was used for normalization. Thus, the mean value 
was subtracted from each value in the dataset and divided 
by the standard deviation of the whole dataset. After the 
normalization process, interactions were classified with the 

DeepBiRNN deep-learning model. Prediction studies based 
on protein interactions are generally based on two scenarios: 
interaction either exists or does not exist. In other words, 
binary classification is made. Since it is known which pro-
teins belonging to the virus interact with which proteins 
belonging to humans, the output of the interacting proteins 
is determined as 1 and the others as 0. After performing 
binary classification with DeepBiRNN, the performance of 
each mapping method was determined by accuracy, preci-
sion, recall, f1-score and AUC scores.

4 � Application Results and Discussion

Numerous methods have been proposed for the diagnosis of 
COVID-19 disease so far and many studies have been car-
ried out in the literature. When the studies were examined in 
detail, it was observed that the majority were made based on 
X-ray images or CT images. Deep learning was frequently 
used in these studies, and it came to the fore as an effective 
method. These references can be cited as examples to stud-
ies conducted with deep learning [3, 41, 42]. The successes 
achieved in these studies and the popularity of deep learning 
have led us to use the deep-learning method for COVID-19 
disease. However, in this study, rather than the diagnosis of 
the disease, the internal structure of the virus was consid-
ered and the proteins of the virus were analyzed. For this, a 
protein–protein interaction study was carried out and a novel 
numerical mapping method was proposed. To find out the 
effect of the proposed mapping method and other mapping 
methods on predicting the protein interactions, in this study 
we applied DeepBiRNN as a deep learning. BiRNNs con-
nect two hidden layers of opposite directions to the same 
output. With this way, the output layer can get information 
from past (backward) and future (forward) states simultane-
ously. It is introduced the increase the amount of input infor-
mation available to network. The main difference between 
BiRNN and RNN (Recurrent Neural Network) models is 
how information is obtained and stored. In RNN, the future 
input cannot be obtained from the current state [43–45]. On 
the other hand, BiRNN does not require their input data to 
be fixed. The detailed information about BiRNN can be seen 

Fig. 3   Depth values of each 
amino acid
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in [39, 42]. The parameters of designed DeepBiRNN model 
were determined by trial and error approach and can be sum-
marized as follows:

•	 In the first layer, a total of 64 BiRNN units were used. 
Then output values were calculated with ReLU activation 
function.

•	 BiRNN was used again in the second layer. The number 
of units in this layer is determined as 32. ReLU was again 
used as the activation function.

•	 BiRNN was used again in the third layer. The number of 
units in this layer is determined as 16. ReLU was again 
used as the activation function.

•	 Then the Flatten function was applied to flatten the data 
in matrix format.

•	 Batch normalization was performed to prevent changes 
in data distribution.

•	 After flatten and batch normalization, dropout was per-
formed and 25% of the data was forgotten.

•	 Later, fully connected layers were designed and 512 neu-
rons were used in the first fully connected layer.

•	 Classification was carried out in the second fully con-
nected layer, and the interactions were predicted with the 
sigmoid function.

•	 SGD (Stochastic Gradient Descent) was applied as the 
optimizer and the learning rate and momentum values 
were designed to be 0.0001 and 0.9, respectively.

•	 For model loss, binary crossentropy was used and the 
model was complied with a value of 500 epochs.

We split the original dataset for training, testing and vali-
dation to evaluate the performance of mapping methods. 
Using the testing dataset as a blind dataset, we aimed to 
determine the performance of mapping methods. Only 15% 
of the original dataset was considered as a blind dataset (test 
data). The remaining 85% (70% for training and 15% for 
validation) was used in training and validation with tenfold 
cross-validation process. After the training and validation, 

Fig. 4   Experimental design of 
the study

Data collection
Mapping proteins

CPNR

EIIP

Hydrophobicity

Proposed method

Data preprocessing

Z-score 
normalization

Data classification

DeepBiRNN

Data evaluation

Accuracy

Precision

Recall

F1-Score

AUC

Obtaining proteins from 
the NCBI data set. Each 

dot refers to different 
proteins belonging to 

humans.

Mapping of each protein 
sequence using 4 different 

methods.

Normalization of mapped 
data with Z-score

Classification of mapped 
protein sequences with 

DeepBiRNN
Evaluation of the 

performance of the 
protein encoding methods



51Interdisciplinary Sciences: Computational Life Sciences (2021) 13:44–60	

1 3

the performance of the mapping methods was determined 
on the blind dataset. Information on the dataset used in 
this study can be obtained from https​://drive​.googl​e.com/
drive​/folde​rs/1emQV​3B8fR​QNgxV​WFPuy​NKqSC​xxDFo​
t2z?usp=shari​ng. In Fig. 5, the diagrammatic scheme of 
the validation phase of the PPI (protein–protein interaction) 
used in the study is given.

Protein sequences were mapped with the proposed 
numerical mapping and other mapping methods. In the 

study, the interaction of non-structural COVID-19 pro-
teins with other human proteins was predicted. Taking into 
account the data provided as a result of biochemical experi-
ments in Table 1, how much these interactions are compat-
ible with the proposed and other mapping methods is given 
in Tables 2, 3, 4, 5, 6.

As can be seen from Table 2, all mapping methods pro-
duced over 80% results. The best protein interaction of orf3a 
protein with eight other human proteins was predicted with 

Fig. 5   Validation process of the 
study. While 85% of the original 
dataset consists of training and 
validation data, the remain-
ing 15% is the blind dataset. 
After completing the iteration 
process, the performances of the 
mapping methods were deter-
mined with the blind dataset

Original Dataset

Training/Validation Dataset Blind Dataset (Test Dataset)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Iteration #
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7
Iteration 8
Iteration 9
Iteration 10

Iteration # Test Set
F1...F9

F1...F8, F10
F1...F7, F9, F10
F1...F6, F8...F10
F1...F5, F7...F10
F1...F4, F6...F10
F1...F3, F5...F10
F1, F2, F4...F10

F1, F3...F10
F2...F10

F10
F9
F8
F7
F6
F5
F4
F3

F1
F2

Table 2   Average interaction 
prediction results of orf3a 
protein with other human 
proteins (all values were 
obtained by averaging the 
tenfold cross-validation process)

Mapping methods Accuracy Precision Recall f1-score AUC score

CPNR 0.8398 0.7541 0.8911 0.8106 0.92
EIIP 0.8144 0.7200 0.8394 0.7737 0.91
Hydrophobicity 0.8019 0.7263 0.8488 0.7788 0.89
The proposed method 0.8107 0.8177 0.8169 0.8163 0.89

Table 3   Average interaction 
prediction results of orf3b 
protein with other human 
proteins (all values were 
obtained by averaging the 
tenfold cross-validation process)

Mapping methods Accuracy Precision Recall f1-score AUC score

CPNR 0.8065 0.6429 0.6953 0.6652 0.91
EIIP 0.6796 0.4770 0.4918 0.4843 0.67
Hydrophobicity 0.7472 0.7926 0.6406 0.7064 0.79
The proposed method 0.9065 0.8429 0.8953 0.8652 0.93

Table 4   Average interaction 
prediction results of orf6 protein 
with other human proteins 
(all values were obtained by 
averaging the tenfold cross-
validation process)

Mapping methods Accuracy Precision Recall F1-score AUC score

CPNR 0.7790 0.6629 0.7678 0.7081 0.90
EIIP 0.4109 0.4680 0.4888 0.4781 0.43
Hydrophobicity 0.6921 0.7225 0.6539 0.6827 0.81
The proposed method 0.8523 0.7291 0.7231 0.7176 0.93

https://drive.google.com/drive/folders/1emQV3B8fRQNgxVWFPuyNKqSCxxDFot2z?usp=sharing
https://drive.google.com/drive/folders/1emQV3B8fRQNgxVWFPuyNKqSCxxDFot2z?usp=sharing
https://drive.google.com/drive/folders/1emQV3B8fRQNgxVWFPuyNKqSCxxDFot2z?usp=sharing
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CPNR-mapping method with accuracy of 83.98%. The 
proposed mapping method was at least as effective as the 
CPNR- and EIIP-mapping methods. In the study performed 
by experimental methods, the interaction result of orf3a pro-
tein was obtained as 92% on average [8]. The interactions 
between orf3a and other human proteins were validated with 

the accuracy of 81.07% with the proposed method. ROC and 
PR (Positive Rate) plots of the protein-mapping methods are 
given in Fig. 6.

According to the study of [8], orf3b protein only inter-
acted with the STOML2 human protein and the interaction 
score was determined 92.9%. The interaction prediction 

Table 5   Average interaction 
prediction results of orf7a 
protein with other human 
proteins (all values were 
obtained by averaging the 
tenfold cross-validation process)

Mapping methods Accuracy Precision Recall f1-score AUC score

CPNR 0.8457 0.8182 0.8121 0.8133 0.90
EIIP 0.3840 0.4052 0.4385 0.4198 0.40
Hydrophobicity 0.8145 0.7939 0.7402 0.7147 0.85
The proposed method 0.8891 0.8181 0.9310 0.8709 0.95

Table 6   Average interaction 
prediction results of orf8 protein 
with other human proteins 
(all values were obtained by 
averaging the tenfold cross-
validation process)

Mapping methods Accuracy Precision Recall f1-score AUC score

CPNR 0.6409 0.6203 0.5927 0.6015 0.75
EIIP 0.6085 0.5729 0.4329 0.4914 0.78
Hydrophobicity 0.8002 0.7377 0.6528 0.6926 0.91
The proposed method 0.8078 0.7567 0.6605 0.7011 0.93

Fig. 6   ROC and PR plots of protein-mapping methods that predicted the interaction between orf3a protein and human proteins
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results of orf3b protein with numerical methods are given 
in Table 3.

The best evaluation values were obtained with the pro-
posed method. With the proposed method, an accuracy 
performance of 90.65% was achieved and this success was 
supported by the AUC score. The closest effective result to 
the proposed method was obtained with the CPNR-mapping 
method. The AUC scores were close to each other, although 
the accuracy was about 10% less from the proposed method. 
It was observed that the interaction values performed by 
numerical methods validated the experimental results. Only 
the accuracy of the interaction result with the EIIP-mapping 
method was lower than 70.00%. ROC and PR plots of the 
protein-mapping methods are given in Fig. 7.

According to the study of [8], it was determined that orf6 
protein only interacted with three human proteins. The inter-
action prediction results of orf6 protein with other human 
proteins are given in Table 4.

As can be seen in Table 4, the proposed method has 
achieved the best evaluation results for all but recall. While 
determining the interactions of orf6 protein, 85.23% accu-
racy, and 0.93 AUC score were obtained with the proposed 

AVL mapping method. Unlike other mapping methods, the 
EIIP method has been very unsuccessful in predicting this 
protein. All of the evaluation criteria fell below 50%. As 
with other previous protein interaction prediction, CPNR 
provided the closest performance to the proposed method. 
ROC and PR plots of the protein-mapping methods are given 
in Fig. 8.

In study [8], the orf7a protein interacted only with 
MDN1, and HEATR3 human proteins with 88.55% interac-
tion score. Table 5 provides the interaction prediction results 
of orf7a protein.

According to the results in Table 5, the proposed method 
was observed as the most successful method that predicts 
the best interaction between orf7a and other human pro-
teins. The accuracy value of the proposed AVL method was 
determined as 88.91%. While the CPNR and hydrophobicity 
methods were at least as successful as the proposed method, 
the EIIP method was again ineffective. Except for EIIP, all 
methods produced an accuracy of more than 80% and an 
AUC score, while these values were below 50% with EIIP. 
Figure 9 shows the ROC and PR plots of the protein-map-
ping methods.

Fig. 7   ROC and PR plots of protein-mapping methods that predicted the interaction between orf3b protein and human proteins
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The interaction network of orf3a, orf3bb, orf6, and orf7a 
proteins is given in Fig. 10.

Orf8 has the most protein interaction among the COVID-
19 proteins. The interaction score of this protein, which 
interacts with 47 human proteins in total, has been deter-
mined as an average of 87.78% according to the study [8]. 
The evaluation results of protein-mapping methods to pre-
dict protein interactions of orf8 are shown in Table 6.

The best interaction network of orf8 protein was pre-
dicted by the proposed method with the accuracy of 80.78%, 
and AUC score of 0.93. When all evaluation criteria were 
examined, it was observed that the best result was again 
obtained with AVL. Unlike other interactions, the second 
best accuracy performance for this protein was achieved with 
hydrophobicity. Hydrophobicity produced an accuracy and 
AUC result close to the proposed method and was at least as 
effective as the proposed method. In Fig. 11, the ROC and 
PR plots of the protein-mapping methods are given. In addi-
tion, the interaction network of the orf8a protein is shown 
in Fig. 12. Table 7 shows the average prediction accuracy 
results of all protein-mapping methods.

According to the comparison results given in Table 7, the 
best interaction accuracies between proteins were obtained 
by the proposed AVL method in average. In addition, all 
numerical mapping methods validated the results of the 
experimental method used in study [8].

When the results are examined in general, it is seen that 
all mapping methods make a successful prediction. How-
ever, prediction accuracy varies according to the methods 
used. The EIIP method is generally effective and works well 
in determining proteins with the same function information 
[46]. Moreover, with the EIIP method, the same or very 
similar representations can be obtained from two proteins 
that are functionally different from each other which, causes 
degeneration to occur [47]. Since COVID-19 is a new dis-
ease, the functions of its proteins are not fully known. EIIP 
may have been the most unsuccessful method, as we do not 
have protein function information. However, despite this, it 
achieved considerable success. Since hydrophobicity is a 
method developed based on the physicochemical knowledge 
of proteins, it is effective in studies where physicochemi-
cal information is at the forefront [33]. Physicochemical 

Fig. 8   ROC and PR plots of protein-mapping methods that predicted the interaction between orf6 protein and human proteins
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Fig. 9   ROC and PR plots of protein-mapping methods that predicted the interaction between orf7a protein and human proteins
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Fig. 10   The interaction network of orf3a, orf3bb, orf6, and orf7a proteins
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knowledge of amino acids plays an important role in pro-
tein-folding studies. Yet, since the protein folding-based 
physicochemical properties are unknown, providing an 
effective physicochemical properties encoding approach is 
still an open problem. This method may have been less effec-
tive than other methods, as non-structural genes are used 
rather than the physicochemical information of the virus that 
causes COVID-19. This method can produce more effec-
tive results in physicochemical-based studies (classification 
of protein families, coevolution analysis, etc.). The second 
most effective method in the study was CPNR. This may be 
because the CPNR method is fault-tolerant to point muta-
tions [48]. Another reason for this success may be that the 
protein sequences in the CPNR method are mapped without 
relying on a specific structure, protein and physicochemical 
information, as in the proposed method. Unlike the EIIP, 
CPNR, and hydrophobicity methods, it is no surprise that 
the proposed method works best. One of the biggest reasons 
for this is that the mapping process in the proposed method 
is not based on a specific structure, chemical or function 
information. The fact that the CPNR method also maps with 
a similar approach and gives the second best result supports 

this success. The reason why the proposed method succeeds 
the CPNR method may be that it uses an algorithm-based 
approach rather than a character-based approach. By propos-
ing an algorithm-based method, we aimed to map amino 
acids according to the tree structure frequently used in com-
puter science, rather than gene expression. For this purpose, 
we tried to propose an effective method that can be used 
without the need for any specific information about proteins. 
When looking at the results, there is a 1% difference between 
the proposed method and the CPNR in average. This shows 
that our method is at least as effective as CPNR.

The advantages of the study can be listed as follows:

•	 Although the number of data is small, both the pro-
posed numerical mapping method and other mapping 
methods performed a successful prediction process. 
The number of data is important in studies conducted 
with deep learning. However, success has also been 
achieved with a small dataset.

•	 By predicting protein interactions of the SARS-COV-2 
virus, drug studies may gain momentum. Protein inter-

Fig. 11   ROC and PR plots of protein-mapping methods that predicted the interaction between orf8 protein and human proteins
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actions are important in determining potential drugs or 
using existing drugs [8].

•	 Similarly, by predicting interactions, detailed information 
about host cells can be obtained.

•	 In addition, by predicting interactions, information about 
the functions of proteins belonging to SARS-COV-2 can 
be collected.

The disadvantages of the study can be listed as follows:

•	 At the time of the study, protein interactions were deter-
mined for five different non-structural genes. In future 
studies, interactions between proteins belonging to the 
SARS-COV-2 virus and human proteins may increase or 
decrease. Accordingly, the results obtained in this study 
may differ.

•	 In some cases, machine-learning algorithms can pro-
duce better results than deep-learning algorithms. Deep 
learning algorithms are mostly preferred to avoid feature 
extraction. However, combining feature selection with 
clustering and classification can produce better results. 
Clustering and machine learning were not used in this 
study. These approaches should also be carried out. Some 
text-based clustering studies can produce effective results 
[49, 50].

•	 In this study, optimization process was not performed. 
Maybe the results obtained can be improved with certain 
optimization algorithms. In this context, it is necessary 
to examine and evaluate certain optimization algorithms. 
Optimization algorithms are used in forecasting studies 
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Fig. 12   The interaction network of orf8 protein

Table 7   Average protein interaction accuracy results of all protein-
mapping methods

Mapping method Interaction 
accuracy

CPNR 78.24%
EIIP 57.95%
Hydrophobicity 77.12%
The proposed method 85.33%
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of COVID-19 disease [51]. It is necessary to determine 
whether these methods used in the process of forecasting 
COVID-19 disease will have an effect in this area.

•	 To predict these methods with artificial intelligence, 
certain prior knowledge is required. These preliminary 
information is also obtained by experimental methods. 
Currently, the inability to determine protein interactions 
without prior knowledge is one of the biggest problems 
in this field.

•	 In deep-learning studies, the number of data is generally 
expected to be large. However, the number of data may 
not be sufficient because COVID-19 is a new disease. We 
recommend that researchers consider this situation.

5 � Conclusion

In this study, a novel protein-mapping method was pro-
posed to predict the interactions of non-structural pro-
teins belonging to COVID-19. Orf3a, orf3b, orf6, orf7a, 
and orf8 proteins were considered in the study, and their 
interactions with other human proteins were designated. A 
bidirectional recurrent neural network deep-learning model 
was used to identify the interactions. In the first part of the 
study, proteins were collected from the NCBI dataset and 
protein sequences were mapped using both the proposed 
AVL method and three different mapping methods. Then, 
mapped protein sequences were normalized, and classified 
with the developed DeepBiRNN model. The performance of 
the numerical mapping methods was measured by accuracy, 
precision, recall, f1-score, and AUC scores. Orf3a protein 
interacted with eight different human proteins and these 
interactions were validated with the accuracy of 81.07% 
using the proposed AVL method. Orf3b protein only inter-
acted with the STOML2 human protein and this interaction 
was validated with the accuracy of 90.65% by the proposed 
method. Orf6 protein interacted with three different proteins 
in total, generating the protein interaction network. The best 
evaluation results were determined by the proposed method 
with the accuracy of 85.23%, precision of 72.91%, recall 
of 72.31%, f1-score of 71.76%, and AUC score of 0.93. It 
was validated that orf7a protein interacted with two pro-
teins. The proposed method achieved the second best per-
formance. Orf8 protein interacted with a total of 47 human 
proteins and formed a complex protein interaction network. 
With the proposed method, the best accuracy result was 
obtained. With the proposed method, the best interaction 
accuracy was obtained with an average of 85.33% accuracy. 
At the end of the study, it was observed that the proposed 
method is at least as effective as other methods and even 
more successful in some cases. One of the main reasons for 
this success may be that the amino acid codes in the protein 
sequence are dynamically placed on the tree and expressed 

in an algorithmic manner. Using the dictionary structure of 
the algorithm and considering the balance structure of the 
AVL tree caused the method to be more stable and robust. In 
this way, we have shown that an algorithm-based mapping 
method is as successful as the methods of other categories. 
As can be understood from the experimental results, protein 
interactions were successfully predicted without perform-
ing feature extraction with the proposed scheme. We also 
found that our mapping method can be an effective tool to 
accurately predict potential protein–protein interactions. In 
general, these results show the feasibility and superiority of 
the proposed algorithm-based mapping method in the PPI 
study. Different algorithm-based methods may be proposed 
in the future, and comparing these methods with methods 
belonging to other categories will reveal the performance 
of algorithm-based approaches in more detail. In addition, 
using more deep-learning strategies or performing protein 
prediction in different areas can provide more robust infor-
mation about the performance of the proposed mapping 
method. For this reason, the working area of the proposed 
method can be extended to other areas and can be used effec-
tively in the following areas;

•	 In determining the drug-target interactions,
•	 In drug therapy and drug development studies,
•	 In identification and classification of protein families,
•	 In phylogenetic analysis studies,
•	 In determining viral–host protein interactions,
•	 In predicting cancer–protein interactions,
•	 In identification of protein functions,
•	 In prediction of protein structure networks.

In the future studies, the proposed method will be used 
and tested on mentioned different protein studies.
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