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Identifying intracellular signaling 
modules and exploring pathways 
associated with breast cancer 
recurrence
Xi Chen1,2,5, Jinghua Gu1,5, Andrew F. Neuwald3, Leena Hilakivi‑Clarke4, Robert Clarke4 & 
Jianhua Xuan1*

Exploring complex modularization of intracellular signal transduction pathways is critical to 
understanding aberrant cellular responses during disease development and drug treatment. IMPALA 
(Inferred Modularization of PAthway LAndscapes) integrates information from high throughput 
gene expression experiments and genome-scale knowledge databases to identify aberrant pathway 
modules, thereby providing a powerful sampling strategy to reconstruct and explore pathway 
landscapes. Here IMPALA identifies pathway modules associated with breast cancer recurrence and 
Tamoxifen resistance. Focusing on estrogen-receptor (ER) signaling, IMPALA identifies alternative 
pathways from gene expression data of Tamoxifen treated ER positive breast cancer patient samples. 
These pathways were often interconnected through cytoplasmic genes such as IRS1/2, JAK1, YWHAZ, 
CSNK2A1, MAPK1 and HSP90AA1 and significantly enriched with ErbB, MAPK, and JAK-STAT 
signaling components. Characterization of the pathway landscape revealed key modules associated 
with ER signaling and with cell cycle and apoptosis signaling. We validated IMPALA-identified pathway 
modules using data from four different breast cancer cell lines including sensitive and resistant models 
to Tamoxifen. Results showed that a majority of genes in cell cycle/apoptosis modules that were 
up-regulated in breast cancer patients with short survivals (< 5 years) were also over-expressed in 
drug resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated 
in both patient and drug resistant cell lines. Hence, IMPALA identified pathways were associated 
with Tamoxifen resistance and an increased risk of breast cancer recurrence. The IMPALA package is 
available at https​://dlrl.ece.vt.edu/softw​are/.

A new direction1,2 in the design of anti-cancer drug therapies is to "globally" target multiple genes involved in 
crosstalk among various cancer-associated signaling pathways3 rather than the traditional approach of target-
ing a single molecular pathway. For example, BIRC5 intersects multiple pathways essential for cell proliferation, 
survival, and resistance to growth inhibition3. The goal is to identify anticancer drugs that interfere with multiple 
molecular targets in different subcellular compartments while minimizing damage to normal cells1,4,5. However, 
to be effective, such combinatorial drug design must address the complexity and heterogeneity inherent in most 
cancers, which, in turn, requires the development of systems biology tools to characterize multiple cancer-specific 
pathways and signaling networks6. Although there are computational methods for deciphering complex signal 
transduction pathways by integrating multi-platform genomic data with biological knowledge like GESA7 and 
PARADIGM8, their ability to discover novel pathway interactions is limited.

The current abundance of genome-wide protein–protein interaction (PPIs) data9 provides an alternative 
source of information for signaling pathway identification, which typically has been formulated as a math-
ematical problem of reconstructing paths between source and target genes10. The main challenge for such meth-
ods—which include, for example, Netsearch11, random color coding12, integer linear programming (ILP)10 and 
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ResponseNet13,14—is inferring signaling directions between genes given non-directed PPI network information. 
Gitter et al. proposed to use maximum edge orientation (EO) on a PPI network to determine the most likely 
signaling directions that fulfil global optimality15. However, EO relies heavily on the assumption that most bio-
logical pathways are short (length < 5) in order to accommodate the requirement of exhaustive enumeration of 
possible pathways and fails to utilize important biological knowledge such as subcellular information. Hence, 
assigned signaling directions are usually difficult to interpret in a biological meaningful way. Furthermore, EO 
fails to jointly analyze individual pathways for structural or functional similarities, which are important for 
studying pathway crosstalk.

IMPALA (Inferring Modularization of PAthway LAndscape) integrates gene expression data and biological 
knowledge within a Bayesian framework to reconstruct aberrant pathway modules. IMPALA defines three poten-
tial functions representing gene expression, gene co-expression and prior network interactions. These functions, 
which jointly measure the aberrancy of individual pathways, are converted to probability distributions for path-
way sampling. IMPALA estimates edge directions by aggregating pathway samples. To study crosstalk between 
multiple pathways, sampled pathways are clustered into interconnected modules based on structural similarities.

Here we use IMPALA to identify and explore estrogen-receptor (ER) signaling associated with Tamoxifen 
resistance in breast cancer and to build an aberrant pathway network connecting ER to transcription factors 
involved in cell proliferation and apoptosis. The identified pathway network was significantly enriched in ErbB, 
MAPK and JAK-STAT signaling components. Pathway clustering by IMPALA identified key functionally associ-
ated ER signaling, cell cycle and apoptosis modules with crosstalk. We validated the expression of module genes 
using breast cancer cell line models. Hence, IMPALA provides a novel and effective approach to investigate 
alternative pathways and pathway crosstalk in cancer cells.

Results
Identifying aberrant signaling pathway transduction in Tamoxifen‑treated breast cancer 
patients.  IMPALA is a Bayesian approach to infer signaling pathway modules from gene expression data 
(Fig. 1). We applied IMPALA to a gene expression (microarray) dataset (termed Loi) including samples from 
Tamoxifen-treated ER positive breast cancer patients16 and identified aberrant signal pathway transduction 
associated with Tamoxifen resistance. We normalized the data using PLIER (http://www.affym​etrix​.com), and 
then corrected the batch effects using ComBat17. A 5-year cut-off on distant-metastasis-free-survival (DMFS) 
was used to divide Loi samples into ‘early recurrence’ (DMFS ≤ 5 years) and ‘late recurrence’ (DMFS > 5 years) 
groups, yielding 88 and 92 samples, respectively.

Figure 1.   IMPALA block diagram and GIST workflow. (a) Key transcription factors and the candidate pathway 
landscape are identified using GibbsOS and MrWOG to pre-process gene expression and protein–protein 
interaction data (HPRD database). Then, IMPALA integrates gene expression and candidate pathways to 
identify aberrant signal pathway transduction using GIST (Gibbs sampler to Infer Signal Transduction) and 
pathway modules using SOUL (Structural Organization to Uncover pathway Landscape). (b) GIST integrates 
gene (node), gene–gene interaction (edge) and network flow potentials to build a weighted and directed 
Bayesian network and infers signaling directions between genes using Gibbs Sampling.

http://www.affymetrix.com
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IMPALA utilizes two functional components: (1) Gibbs sampling to Infer Signal Transduction (GIST) and (2) 
Structural Organization to Uncover pathway Landscape (SOUL) (Fig. 1a). GIST reconstructs pathways (genes and 
directed interactions) related to ER signaling. Specifically, using MrWOG18 a gene network was extracted from 
protein–protein interaction data to predict genes and interactions likely associated with ER signaling. Candidate 
pathways were constructed starting from the estrogen receptor ESR1 gene and targeting breast cancer-associated 
transcription factors, such as JUN, FOS, STAT1, STAT3, STAT5A, ELK1, and ETS1 (Target transcription factors 
were pre-identified by GibbsOS19; see Supplementary Tables S1 and S2). GIST uses a Bayesian framework to 
integrate candidate pathways with gene expression data and uses Gibbs sampling to iteratively infer signaling 
pathways (Fig. 1b).

A directed pathway network assembled by collapsing the top 200 GIST pathway samples is shown in Fig. 2. 
This reveals complex wiring of alternative pathways that are interconnected through frequently sampled cyto-
plasmic genes, such as IRS1/2, JAK1, YWHAZ, CSNK2A1, MAPK1 and HSP90AA1. Functional enrichment 
analysis using DAVID20 returned, as significant, canonical insulin (p-value 2.4e−10), ErbB (p-value 4.0e−13), 
MAPK (p-value 5.1e−8), and JAK-STAT (p-value 2.0e−5) signaling pathways, each of which plays a key role 
in breast cancer21. We further examined the association of the pathway network with Tamoxifen recurrence by 
using the network to predict the survival of breast cancer patients based on a similar, but independently gener-
ated gene expression dataset (termed Symmans)22. Specifically, using the above ER signaling pathway network 
and the Loi gene expression data, we trained a NetSVM classifier23 to group samples as early or late. Threefold 
cross-validation using Loi data returned the area under ROC curve (AUC) as 0.8. Applying the classifier to the 
Symmans dataset, which includes 103 patient samples, we obtained a prediction AUC of 0.79. Kaplan Meier 
analysis of Symmans data returned a hazard ratio of 3.26 (p-value = 0.016; Supplementary Fig. S2).

Identifying pathway modules and crosstalk.  To study crosstalk between ER signaling and cancer 
cell proliferation, we further used GIST to identify cell cycle and apoptosis signaling modules (Supplementary 
Fig. S1). We used the SOUL component of IMPALA to analyze pooled samples from GIST and to investigate 
and assess the statistical significance of modules and crosstalk associated with ER, cell cycle, apoptosis signaling 
pathways, as shown in Fig. 3. SOUL hierarchically clustered sampled pathways based on gene overlap (Fig. 3a) 
and re-ordered the distribution of sampling frequency to be consistent with pathway clusters (Fig. 3b). Signaling 
modules were identified for each of four local peaks (modes) of the sample distribution, including two ER sign-
aling modules (M1 and M2), one cell cycle module (M3) and one apoptosis module (M4). The specific genes in 
each module are listed in Supplementary Table S3. A pathway network of the four modules is shown in Fig. 3c. 
M1 is enriched with genes in response to hormones and also enriched with canonical MAPK and insulin signal-
ing pathways. M2 corresponds to JAK-STAT signaling. The crosstalk between M3 and M4 is strong, as indicated 

Figure 2.   An ER signaling pathway network identified by IMPALA using Loi breast cancer gene expression 
data. The gene color represents the log2(x)-fold change of gene expression between early and late recurrence 
groups of patients in the Loi dataset (red: over-expressed in ‘early recurrence’ group; green: over-expressed in 
‘late recurrence’ group). Gene’s size is proportional to the probability (sampling frequency) estimated by GIST.
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by the pathway sample distribution. Although M4 contains genes functioning in apoptosis and cell death, it is 
also enriched with cell cycle genes, which suggests coupling of these cellular processes.

Genes upregulated in ‘early recurrence’ samples (survival ≤ 5 years) include signal transduction genes like 
YWHAQ, YWHAZ and PTPN11, the chaperone HSP90AA1, and STMN1, which functions in cytoskeletal rear-
rangements. HSP90AA1 is an intracellular gene that is actively expressed in breast cancer cells—high levels of 
which correlate with a low chance of survival24. Efficient progression through the cell cycle requires HSP90AA125; 
when up-regulated in osteosarcoma it increases drug resistance by inducing autophagy and inhibiting apoptosis26. 
BRCA1 is a client gene of HSP90AA1, inhibition of which by 17-AAG Tanespimycin leads to degradation of 
BRCA1 via the ubiquitin–proteasome pathway. Subsequent loss of BRCA1 disrupts G2/M cell cycle checkpoint 
activation, resulting in mitotic catastrophe—an apoptosis-independent form of cell death caused by mechanical 
damage27. Thus, HSP90AA1 inhibition may promote survival in Tamoxifen-resistant tumors. STMN1 promotes 
catastrophes that ultimately lead to deregulation of the cell cycle, thereby hampering cell survival28. High STMN1 
expression leads to shorter post-progression and overall survival in breast cancer patients29, consistent with 
our finding that STMN1 is up-regulated among tumor samples in the ‘early recurrence’ group (labelled ‘red’ in 
Fig. 3c). CDK1 is an essential modulator of the initiation of and progression through mitosis, acting primar-
ily through its interaction with CCNB1. CDK1 and CCNB1 help protect mitotic cells against extrinsic death 
stimuli30. Thus, increased expression of CDK1 in early recurrence breast cancer may explain Tamoxifen resistance 
by protecting tumor cells from antiestrogen-mediated cell death.

We found ESR1 and IGF1R to be overexpressed in the ‘late recurrence’ group (‘green’ hub genes in Fig. 3c). 
Crosstalk between the IGF and ER signaling pathways is well known31. TSC2 is a negative regulator of mTOR, 
which in turn inhibits autophagy. Although cellular stress from therapeutic drugs can induce cell death via 
autophagy, lysosomal degradation or prolonged stress32 can sustain long-term survival or dormancy by enabling 
autophagy of some tumor cells33.

Validating pathways and modules using Symmans breast cancer gene expression data.  To 
validate the robustness of IMPALA for characterizing networks associated with Tamoxifen resistance in breast 
cancer, we applied it to the Symmans dataset22 (Tamoxifen treated breast cancer gene expression (microarray) 
dataset; consisting of 47 ‘early recurrence’ and 56 ‘late recurrence’ samples based on a 5-year DMFS cutoff). 
Source receptor genes were the same as selected for the Loi data analysis, while target transcription factors were 
identified using GibbsOS for ER signaling, cell cycle, and apoptosis (Supplementary Table S4). Pathway networks 
of the top GIST-sampled pathways for ER signaling and for cell cycle and apoptosis are shown in Fig. 4 and in 

Figure 3.   Pathway modules and crosstalk identified by IMPALA for the Loi dataset. (a) Pathway clustering 
based on gene similarity and gene functions in different clusters reveal the functional diversity of IMPALA-
identified pathways. (b) Distribution of sampling frequency of pathways with peaks corresponding to major 
pathway clusters in (a). Four pathway modules were identified. (c) A combined pathway network consisting of 
the four modules with crosstalk.
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Supplementary Fig. S3, respectively. The similarity to genes in the Loi-based pathway networks for ER, cell cycle, 
and apoptosis signaling were 73%, 53% and 54%, respectively.

SOUL identified the four pathway modules (M1-M4) shown in Fig. 5. Specific genes in each module are listed 
in Supplementary Table S5. Again, we observed signal transductions from the membrane through cytoplasmic 
genes MAPK1, HSP90AA1, and CSNK2A1 to the nuclear transcription factors. In M1, signal pathways started 
from IGFR1 and INSR, passed through cytoplasmic signaling hubs SRC, CHUK, and HSP90AA1, and converged 
to the same targets within the nucleus. In M2 and M4, signal transduction took diverse pathways between mem-
brane receptors and JAK-STAT activation. Signaling could be initiated by ESR1 via canonical members of the 
JAK-STAT pathway (PIK3R1, SOS1, and PTPN6), by various membrane receptors (INSR, EGFR), or by death 
receptors (FAS, TNFRSF1A) through PTPN6, SHC1, or LYN. Although M3 genes are mostly shared with M2 
and M4, they form an alternative pathway for cell cycle progression genes (CDC2 and E2F1). Based on IMPALA 
pathway analyses of both the Loi and Symmans datasets, we conclude that HSP90AA1, CSNK2A1, and MAPK1 
play key topological roles in intracellular signal transduction initiated by plasma membrane genes or canonical 
death receptors to regulate the cell cycle and apoptosis.

Validating pathway gene expression in breast cancer cell line models.  We used in vitro breast 
cancer cell line models to validate the expression of genes in aberrant pathway modules identified by IMPALA. 
Four MCF7 derived cell models were included in the analysis: MCF7-STR, MCF7RR-STR, LCC1, and LCC234. 
MCF7RR-STR and LCC2 are Tamoxifen resistant, whereas MCF7-STR and LCC1 are sensitive. As shown in 
Fig. 6, 20 genes from IMPALA-identified pathway modules exhibited consistent expression patterns between 
patient data and cell line data. ER signaling genes, such as STMN1, PBK, CCNB1 and HSP90AA1, were over-
expressed in early recurrence/resistant groups, whereas IRS1, IRS2, IGF1R and TSC2 were overexpressed in 
the ‘late recurrence/drug-sensitive’ groups. The cell cycle/apoptosis genes BRCA1, BRCA2, CCNA2, E2F1, 
CDC25A, CDC25C, TOP2A, CDC2, and CHUK were up-regulated in the ‘early recurrence’ group and also in 
the Tamoxifen resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated. 
Gene expression for in vitro cell lines identified from Loi and Symmans datasets are shown in Supplementary 

Figure 4.   An ER signaling pathway network identified by IMPALA using Symmans data. Gene colors represent 
the log2 fold change of gene expression between ‘early recurrence’ and ‘late recurrence’ patients in the Symmans 
dataset (red: over-expressed in ‘early recurrence’ group; green: over-expressed in ‘late recurrence’ group). Gene 
size is proportional to the probability (sampling frequency) estimated by GIST.
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Figures S4 and S5, respectively. The concordance between patient and cell line data demonstrates the association 
of IMPALA identified pathways with Tamoxifen resistance and with increased breast cancer recurrence.

Discussion
IMPALA characterizes intracellular signal transduction pathways by integrating multi-platform data and by 
identifying crosstalk among pathways. Using this approach, we identified breast cancer-associated aberrant 
pathways by integrating breast cancer gene expression data with protein-DNA and protein–protein interaction 
data, and with published information regarding signaling pathways.

IMPALA has several notable advantages over existing methods. First, GIST allows users to incorporate the 
subcellular location of genes in order to focus on signal transduction components in the nucleus, the cytoplasm, 
or the plasma membrane. Second, most existing methods either fail to assign signaling directions between genes 
or else infer signaling direction in an ad hoc manner. GIST assigns a posterior probability for each signaling 
direction, thereby estimating a degree of confidence. Third, SOUL models network components as structurally 
related modules to better identify local modules within a large-scale pathway landscape. This identifies overlap 
between modules, which corresponds to crosstalk between pathways.

Unravelling signaling pathways from complex molecular networks in cancer cells is challenging35. Here, 
IMPALA revealed that breast cancer-associated pathway modules are structurally interconnected with cross-
talk between ER signaling, cell cycle and apoptosis pathways, thereby imparting tamoxifen resistance. And, by 
characterizing the pathway landscape, IMPALA systematically categorized complex pathway interactions into 
within-module and between-module interactions. This echoes the increasing emphasis among researchers on 
networks, rather than pathways, as a reflection of the complex and integrated nature of molecular signaling.

Figure 5.   Pathway modules and crosstalk identified by IMPALA using the Symmans data. (a) Pathway 
clustering based on gene similarity and gene functions in different clusters reveal the functional diversity of 
IMPALA-identified pathways. (b) Distribution of sampling frequency of pathways with peaks corresponding 
to major pathway clusters in (a). Four pathway modules were identified. (c) A combined pathway network 
consisting of the four modules with crosstalk.
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Methods
IMPALA applies GIST to identify signaling pathways by integrating gene expression data with protein–protein 
interactions (PPIs), and SOUL to explore the pathway landscape for pathway module and crosstalk identification.

Identifying source and target genes for pathway exploration.  To build the candidate pathway 
landscape, we pre-selected the source and target genes for each signaling pathway. Specifically, we selected ESR1 
for ER signaling, membrane receptors and the growth factors EGFR, TGFB1, IGF1R, INSR, FGFR1 for cell cycle, 
and canonical death receptors IL1R1, FAS, and TNFRSF1A for apoptosis. Based on literatures, we selected tran-
scription factors associating to breast cancer recurrence as pathway targets. Categorized transcription factors 
selected for ER signaling, cell cycle, and apoptosis are listed in Supplementary Table S1. To refine the candidate 
target genes, we applied GibbsOS36 to the Loi and Symmans datasets, respectively, and selected transcription fac-
tors significantly associated with the survival difference, as listed in Supplementary Tables S2 and S4.

Building the candidate pathway landscape using MRWOG.  To build a candidate pathway land-
scape, we used MRWOG18 to pre-screen human PPIs for an ER-related, Tamoxifen resistant sub-network. An 
ESR1-centered PPI subnetwork including 2326 genes (all genes within a two-step distance from ESR1) was 
selected.

The GIST algorithm.  To infer signal directions between genes, GIST constructs a flow network of a given 
pathway length between source and target genes. To weight the flow network, node (gene), edge (interaction) 
and flow (network) potentials are defined for individual pathways. GIST converts the three potentials into a joint 
probability distribution so that samples of candidate pathways can be drawn probabilistically. Signaling pathway 
directions were inferred by aggregating the pathways samples and then selecting the interconnected linear path-
ways with the largest potentials.

Figure 6.   Cell line validation for identified pathway genes from patient datasets. The left panel shows the 
average log2 expression of selected pathway genes. The right panel shows the log2 expression of two cell line 
studies: (MCF7-STRP vs. MCF7RR-STRP and LCC1 vs. LCC2). Seven genes (IRS1, IRS2, IGF1R, TSC2, JUN, 
FOS, STAT3) are consistently over-expressed in the ‘early recurrence’ patient samples and sensitive human 
breast cancer cell lines. The remaining genes, which mainly relate to cell cycle and apoptosis, are over-expressed 
in the resistant groups.
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We define a vector θ1×L = {θ1, θ2, . . . , θL} to represent a linear pathway with length L genes, where θi is a 
categorical variable representing the ith gene in the pathway. θ1 and θL are the source and target genes, respec-
tively. Let �i denote the domain of θi and we have �1

⋂

�2

⋂

· · ·
⋂

�L ⊆ � , where the full domain � denotes the 
whole set of genes in the PPI dataset. Given gene expression data Xn×m , which includes n genes and m samples 
with two conditions (to study aberrant signal pathway transduction between conditions), we derive gene potential 
V1(θi; X) , defined as the sum of pathway gene differential expression z-scores between the two types37; edge 
potential V2(θi , θi+1; X) , defined as the sum of z-scores calculated from the statistical significance of Pearson’s 
correlation between interacting genes38; and flow potential V3(θ) , defined as a proportionally score reflecting 
the concordance between a pathway and prior information regarding cellular location39. Derivations of the three 
potentials are provided in the Supplementary Methods.

GIST integrates the three potentials into a pathway energy function as follows:

Due to the large number of genes and their interactions, finding the optimal solution of Eq. (1) is a NP hard 
problem. Therefore, we convert the optimization task into a distribution learning problem as show in Eq. (2) 
and used Gibbs sampling to search for the optimal solution.

where Z =
∑

θ∈� e
1
T U(θ;X) is a partition function and T is the "temperature" that controls the shape 

of the distribution. GIST samples pathway genes iteratively from a conditional distribution as 
θ
(t+1)
i ∼ P( θi|θ

(t+1)
1 , . . . , θ

(t+1)
i−1 , θ

(t)
i+1, . . . θ

(t)
L ; X) . In each iteration, it probabilistically samples θi conditioned 

on the other, currently assigned genes θ−i in the pathway. After the sampler appears to have converged to a sta-
tionary distribution, GIST accumulates samples from this conditional distribution to approximate the posterior 
distribution. Details about GIST sampling are provided in Supplementary Methods, Figures S7 and S8.

After 10,000 iterations, GIST pools the pathway samples and then estimates edge directions. We introduce 
a binary variable ei,j to denote the signaling direction from gene ωi ∈ � to gene ωj ∈ � . The probability of ei,j is 
estimated as follows:

where P(ei,j = 1|θ ) = 1 if ei,j corresponds to a connected edge in pathway θ ; otherwise it equals 0. Using Eq. (3), 
GIST models each directed edge as a Bernoulli random variable with success rate pi,j . It performs both forward 
and reverse searching so that the probabilities of edge direction from gene i to gene j and its reverse direction 
are both estimated (Supplementary Methods, Fig. S6). If pi,j is close to 1, the signal flows from gene ωi to gene ωj 
with high confidence, while pi,j = 0.5 indicates a lack of confidence in the direction of signal flow.

The SOUL algorithm.  SOUL post-processes distributions of GIST pathway samples to reconstruct the 
overall landscape. Given thousands of genes, the pathway sample distribution can be multi-modal and some 
hub genes (i.e., those involved in multiple pathways more often than others) could bias the sample distribu-
tion. Instead of directly ranking pathways based on their GIST sampling frequency, SOUL first clusters pathway 
samples based on their structural similarities using hierarchical clustering, resulting in a re-organized pathway 
topological pattern visualized as a pathway structural heatmap (as in Fig. 3a). Next, SOUL re-orders the pathway 
sampling frequencies to be consistent with pathway clusters (as in Fig. 3b). Finally, it identifies high-confidence 
pathway modules from local peaks in the pathway sampling frequency distribution.

IMPALA performance evaluation on simulated data.  We evaluated the performance of GIST for 
pathway identification on simulated datasets generated by two different pathway structures: type I, correspond-
ing to alternative pathways between a single source gene and a single target gene; and type II, corresponding to 
multiple pathways with crosstalk among multiple sources and targets (Supplementary Fig. S9). PPI data from 
the HPRD database40,41 and canonical pathways from the KEGG database42 were used to simulate pathways that 
include 261 genes and 998 interactions for type I, and 266 genes and 1026 interactions for type II. We added 
noise to gene expression data (Gaussian distributed noise with zero-mean and variance varying from 0.2 to 0.8, 
compared to the gene expression data) and to simulated pathway networks (false gene interactions varying from 
10 to 50%, compared to the ‘true’ interactions).

Supplementary Figures S10–S13 and Tables S6 and S7 summarize the performance of IMPALA versus three 
competing algorithms: random color coding12, edge orientation15, and integer linear programming (ILP)10. Note 
that we only applied ILP to pathway gene identification because ILP does not infer signaling directions. IMPALA 
consistently obtained comparable or better performance in all cases. When the level of noise was set to 0.2 (20% 
false interactions in the network), IMPALA gained about a 16% increase in precision for type I pathway gene 

U(θ; X) =

L
∑

i=1

V1(θi; X)+

L−1
∑

i=1

V2(θi , θi+1; X)+ V3(θ).
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1

Z
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Z
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






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






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(3)p∗i,j = P(ei,j = 1) =
∑

θ∈�
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identification, and an even larger improvement of 24% for edge identification. Similarly, for type II GIST achieved 
about a 15% increase in average precision for gene identification, and a 17% increase for edge identification.

Received: 12 September 2020; Accepted: 18 November 2020
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