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Transformer neural network 
for protein‑specific de novo 
drug generation as a machine 
translation problem
Daria Grechishnikova

Drug discovery for a protein target is a very laborious, long and costly process. Machine learning 
approaches and, in particular, deep generative networks can substantially reduce development 
time and costs. However, the majority of methods imply prior knowledge of protein binders, their 
physicochemical characteristics or the three-dimensional structure of the protein. The method 
proposed in this work generates novel molecules with predicted ability to bind a target protein 
by relying on its amino acid sequence only. We consider target-specific de novo drug design as a 
translational problem between the amino acid “language” and simplified molecular input line entry 
system representation of the molecule. To tackle this problem, we apply Transformer neural network 
architecture, a state-of-the-art approach in sequence transduction tasks. Transformer is based on 
a self-attention technique, which allows the capture of long-range dependencies between items in 
sequence. The model generates realistic diverse compounds with structural novelty. The computed 
physicochemical properties and common metrics used in drug discovery fall within the plausible drug-
like range of values.

Drug development is a multistage process that requires many resources. Bringing a drug to market may take up 
to 20 years1. The total cost may vary from US$0.5 billion to US$2.6 billion2. The estimated amount of drug-like 
molecule space is 1060, while the number of synthesized compounds is on the order of 1083. Therefore, the search 
for a promising molecule that may bind to a target protein is a challenging task for chemists. A high-throughput 
screening technique allows testing of millions of molecules in vitro to determine compounds that may act on the 
protein of interest4. However, this method is expensive and time-consuming. Virtual screening is used to search 
libraries of billions of molecules in silico5. This method requires information about compounds that are active 
against the protein or knowledge of the protein three-dimensional structure and operates on already known 
molecules, which span only a small part of the synthetically accessible molecule space. In de novo drug design, 
one has to create a molecule that is active toward the desired biological target from scratch. Existing compu-
tational methods often generate molecules that are hard to synthesize or restrict accessible chemical space via 
coded rules6. Despite all efforts, targeted generation of molecules remains a challenging task. Recently, machine 
learning methods were proposed to tackle this problem7.

Most of the deep learning models for molecule generation are based on recurrent neural network (RNN). 
RNN is commonly used for modeling sequence data. The main feature of RNN allowing it to work with sequential 
data is the ability to make use of information from preceding steps. RNN can reveal links between distant ele-
ments of a sequence8. Unfortunately, RNNs suffer from the problem of vanishing gradients, which significantly 
limits their ability to work with long sequences. Long short-term memory and gated recurrent units partially 
solve this issue9. Recently, several works introduced recurrent neural networks based on the long short-term 
memory for de novo molecule generation10–12. They use Simplified Molecular-Input Line-Entry (SMILES) strings 
as input. Fine-tuning on a smaller dataset with compounds known to be active against biological targets force 
the models to generate focused molecule libraries with the desired activity toward the same target. Several 
research groups applied a reinforcement learning approach to bias the generator to produce molecules with 
desired properties13–20. In the reinforcement learning paradigm, the agent (generator in de novo drug generation 
problem) takes some action (choosing the next character during new SMILES string generation) to maximize 
reward (function computed after SMILES string completion). Olivecrona et al. fine-tuned the RNNs to generate 
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compounds binding Dopamine Receptor Type 2 (DRD2). To predict molecule activity, they built a Support Vec-
tor Machine (SVM) classifier with a Gaussian kernel and trained it on the DRD2 activity dataset13. The output of 
this model was used to formulate the reward function. Popova et al.14 suggested training separately two neural 
networks—enerative and predictive—and then using them jointly to generate novel libraries of compounds 
with the desired properties, e.g., targeted toward Janus kinase 2. Several research groups applied the generative 
adversarial network concept to design compounds with optimized properties, but they did not consider activity 
against any biological target17,18.

Another fundamental approach to de novo compound generation is based on autoencoder architecture21–28. 
Autoencoder consists of encoder and decoder networks8. The former one converts the input data into a latent 
representation (vector of fixed dimension), and the second one reconstructs the initial object from the latent 
code. The hidden layer forming the latent representation vector is an informational bottleneck, which induces 
the model to capture the most important features of the input object8. Variational and adversarial autoencod-
ers are two types of autoencoders that are widely used to generate molecules. In variational autoencoders, a 
prior distribution, usually normal, is imposed on latent space to make it smooth and suitable for sampling29. In 
adversarial autoencoders, the discriminator neural network is introduced into architecture to force the distribu-
tion of latent codes to follow arbitrary prior distribution30. Gómez-Bombarelli et al.21 suggested a variational 
autoencoder extended by attaching a multilayer perceptron to the latent layer for property prediction. Joint train-
ing of this enlarged model forces the latent space to organize by property values. On top of this model, authors 
trained the Gaussian process to predict target compound properties using the latent space representation as 
input. In a recent publication22, the authors compared several autoencoder architectures including variational 
and adversarial ones. The adversarial autoencoder provides the highest fraction of valid SMILES strings. The 
authors trained the SVM classifier to predict activity against DRD2. They used this probability as the objective 
function and maximized it during the latent space Bayesian optimization. Additionally, an autoencoder can be 
used for a conditional generation31–33. In these studies, properties were directly imposed on latent space during 
the training. Polykovskiy et al. introduced a conditional adversarial autoencoder to design compounds with 
specified properties33. After training on a set of Janus kinase 2 (JAK2) and Janus kinase 3 (JAK3) inhibitors and 
conditioning on the selective activity against JAK2, the model generated a compound that turned out to be active 
toward JAK2 during in vitro tests. Recently, Zhavoronkov et al. developed a discoidin domain receptor 1 (DDR1) 
inhibitor in 21 days using a variational autoencoder fine-tuned with the reinforcement learning approach25. One 
molecule successfully passed experiments in mice.

However, all these methods imply prior knowledge of protein binders and their physicochemical character-
istics. Structure-based drug design approaches require the three-dimensional structure of the protein. In this 
work, we introduce an approach to targeted drug generation that uses only the protein amino acid sequence as 
input. We consider the target-specific de novo drug generation problem as a translation from the amino acid 
“language” to SMILES representation of the molecule. Recently, Transformer-based models demonstrated state-
of-the-art results on neural machine translation tasks34,35. We adopt Transformer to generate molecules. The 
network takes amino acid sequence as input and generates molecules with predicted ability to bind the protein 
target. The model outputs valid structures with plausible values of computed physicochemical characteristics, a 
drug-likeness metric, and a synthetic accessibility score.

The main contributions of our work are as follows:

1.	 We formulate the targeted drug generation problem as a translational task and apply the Transformer archi-
tecture. This application allows molecules generation based on protein amino acid sequence only.

2.	 Our approach requires neither prior knowledge of protein binders nor preparation of libraries of ligands 
active against the target.

3.	 The proposed model is based on a self-attention technique that allows better capture of long-range depend-
encies than recurrent neural networks.

Methods
Data.  We retrieved data from BindingDB36. BindingDB contains a measured binding affinity of interactions 
between proteins and drug-like molecules. The full database version was downloaded. The raw dataset contained 
over 1.5 million data records. We selected records from the raw dataset using the following criteria:

1.	 The field “Target Source Organism According to Curator or DataSource” equals “Homo sapiens” or “Rattus 
norvegicus” or “Mus musculus” or “Bos taurus”.

2.	 The record has an IC50 value less than 100 nm; if the IC50 is missing, then Kd is less than 100 nm; if both 
are missing, then EC50 is less than 100 nm.

3.	 The record has a chemical identifier (PubChem CID).
4.	 The record has SMILES representation.
5.	 The molecular weight is less than 1000 Da.
6.	 The record has a protein identifier (Uniprot ID).
7.	 Protein amino acid sequence length is greater than 80 and lower than 2050.

This yielded a results dataset containing 238,147 records. There were 1613 unique amino acid sequences and 
154,924 unique ligand SMILES strings. All SMILES strings used in this work were canonicalized using RDKit. 
We created five different splits into test and training parts.
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In each split we required the similarity between proteins in the test and the ones in the training dataset to be 
less than 20%. This additional condition leaded to the removal of some proteins from the dataset, so final sizes 
of the training and test datasets can be found in Table 1.

In each split we used a proportion common for machine learning tasks—roughly 90% for train part and 10% 
for test part. To compute similarities, we used the Needleman-Wunsch global alignment algorithm from the 
EMBOSS package37. The distribution of pairwise sequence similarities for the first split is shown in Fig. 1. The 
distributions for other splits are analogous. Figure 1a shows that protein sequences from the test dataset share 
less than 20% similarity with those in the training dataset. At the same time, the protein sequences within the 
test and training sets are also diverse enough to train and test the model. The majority of sequences share less 
than 40% similarity (Figs. 1b and 1c).

Data representation.  We considered each symbol in an amino acid sequence or in a SMILES string as a 
token. The vocabulary was determined by the dataset and contained 71 symbols. Each token was converted into 
a vector using trainable embedding in the first layer of the encoder.

Model.  We adopted the Transformer model for targeted drug generation using the original implementation 
described in35. Transformer has an encoder-decoder structure. The encoder maps a protein amino acid sequence 
(a1,..,an) to a sequence of continuous representations z = (z1,…,zn). Then, the decoder takes z as input and gen-
erates a SMILES string in autoregressive manner. At every step of generation, the decoder may attend to any 
elements of z due to the attention mechanism. The latent code z may be considered as a “protein context” used 
by the decoder to generate a molecule structure. The model yields a probability distribution over each element 
in the vocabulary for each position in the output sequence. Transformer is based on an attentional mechanism 
only. It lacks any kind of convolutional or recurrent neural network components. Transformer uses self-attention 
to compute the representations of input and output sequences. Self-attention refers to different components of a 
single sequence in relation to other components to compute sequence representation. Each layer of the encoder 
is composed of a multihead self-attention sublayer and feed-forward sublayer. In addition to these, each layer of 
the decoder has a multihead attention layer attending the encoder output.

The self-attention mechanism successfully copes with long-range dependencies while being faster than recur-
rent layers. The attention layer at first calculates three vectors from each “word” of a “sentence” – key, query and 
value. To process all words in a sentence simultaneously, key vectors are packed together into matrix K, and 
queries and values produce matrices Q and V correspondingly. In our task definition, “words” are amino acid 
residuals or characters in SMILES strings. The attention is computed as follows:

 where dk is a scaling factor.
The multihead attention mechanism produces h different representations of Q, K, V values and computes an 

attention function for each representation:

Attention(Q,K ,V) = softmax

(

QKT

√
dk

)

V ,

Table 1.   The number of unique proteins in the training and test datasets for each split.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Number of the unique proteins in the training dataset 104 112 122 103 124

Number of the unique proteins in the test dataset 1042 1000 1004 1002 1036

Figure 1.   Distributions of sequence similarities between proteins used for model training and validation. (a) 
Sequence similarities between proteins in the test dataset and the ones in the training dataset, (b) sequence 
similarities of proteins within the test dataset, (c) sequence similarities of proteins within the training dataset.
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The outputs are concatenated and projected one more time, yielding final values:

 where WQ
i ,W

K
i ,W

V
i  are matrices of learned weights.

Since the model lacks any recurrent component, it has no information about the order of tokens in a sequence. 
To address this lack of information, the model adds position-dependent signals to the input embedding. There 
are many possible choices for signal functions. In Transformer, sine and cosine functions are used:

where pos is the position, i is the dimension and dmodel is the size of embedding.
We use beam search to decode SMILES strings. While constructing a sequence, the beam search evaluates 

all possible next steps and keeps the top n candidates with the highest probability, where n is the user-specified 
parameter referred to as beam size. If beam size is equal to one, the beam search becomes the greedy search. If 
beam size is greater than one, the output sequences differ only slightly from each other. It might be beneficial 
if a generated molecule is good enough, and small structure optimizations are needed. However, in the process 
of target-specific de novo drug generation, it would be better to have more diverse variants per certain protein. 
There are several ways to achieve potential improvement. We discuss them in the “Results and Discussion” sec-
tion. For each protein, we ran beam search with beam sizes of 4 and 10. In the first case, we left only one SMILES 
string with the highest probability (one per one mode). In the second case, we left all ten generated molecules 
for subsequent analysis (ten per one mode).

All work was performed in Google Colaboratory. We used the open-source tensor2tensor library for building, 
training and testing the model38. We experimented with different numbers of attentional heads, layers, and their 
sizes. The optimal proportion between the amount of valid and unique SMILES strings gives the model contain-
ing four layers of size 128 and four attention heads. We used the Adam optimizer and learning rate decay scheme 
proposed in35, and the batch size was set to 4096 tokens. We trained the model for 600 K epochs using one GPU.

To test the model, we performed Monte-Carlo cross validation. We split all proteins so that test dataset con-
tains only sequences sharing less than 20% similarity with those in the training dataset. Then, we trained the 
model and tested it on selected proteins. This procedure was repeated five times.

Model evaluation.  We used RDKit39 to check chemical validity, calculate properties, compute similarity 
scores and produce SMILES canonical representation of molecule structures. Molecules known to be active 
against given target proteins and the generated ones were docked in binding sites using SMINA with default 
settings40. Protein PDB structures were downloaded from the Protein Data Bank41. We followed the standard 
procedure to prepare protein for docking, heteroatoms were removed, and hydrogens were added via PyMol42. 
We utilized OpenBabel43 to generate three-dimensional conformers.

Results and discussion
Chemical feasibility.  This section demonstrates the effectiveness of the proposed approach for the genera-
tion of valid realistic molecules. We created five different divisions of the initial dataset to train and test parts. 
For each division, we performed training of the model followed by validation on the corresponding test set. At 
first, we ran the model in one per one mode (see “Methods”). For each protein in test datasets, the model gener-
ated a molecule. We checked the chemical validity of molecules with RDKit software, analyzed uniqueness and 
searched the ZINC15 database for generated compounds. All characteristics were averaged across five test sets. 
Approximately 90% of generated molecules were valid, and 92% were unique (Table 2). Approximately 30% of 
compounds were found in the ZINC15 database. The entire list of generated SMILES strings can be found as 
Supplementary Table S1 online. We also provide the figures with their graph representations (see Supplementary 
Figure S2 online).
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Table 2.   Percentages of valid, unique and ZINC15 database-matched SMILES strings generated by the model 
in one per one mode.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Average

Total number of generated SMILES strings (one per target 
protein) 104 112 122 103 124 113

Valid (%) 92.3 90.2 87.7 92.2 88.7 90.2

Unique (%) 93.3 90.2 90.9 94.2 92.7 92.3

Match with ZINC15 database (%) 33.6 22.3 27.0 31.0 39.5 30.6
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In the case of generating one ligand per protein, the outputted compound might be considered as a valid 
starting point for a subsequent modification during the drug discovery process. Nevertheless, it would be useful 
to obtain more drug candidates for the given target protein. To achieve this aim, we expanded beam size to ten, 
allowing the model to output the ten most likely variants of the compound for inputted protein (ten per one 
mode). In this mode, the model generated almost 83% valid SMILES strings and 82% unique SMILES strings on 
average across five datasets (Table 3). Over 17% of novel compounds matched the ZINC15 database.

The number of valid and unique SMILES strings is lower in ten per one mode. We assume that this is caused 
by the problem of performance degradation in the beam search. A recently proposed method may possibly 
increase the performance44. However, this improvement is outside the scope of our work.

Testing the binding affinity between generated compounds and target proteins.  In this sec-
tion, our goal is to assess whether generated molecules could bind the target protein. At first, we randomly shuf-
fled the test dataset (split 1), which contains 104 proteins. All proteins share less than 20% sequence similarity 
with those in the training dataset. Then, we consequently checked each protein and selected the ones satisfying 
the criteria:

•	 Protein is from human
•	 More than 100 known binders were selected from BindingDB using criteria from the Data section
•	 Protein contains one druggable cavity

The last criterion was related to technical limitations. Molecular docking is a very resource-consuming pro-
cedure. We were able to analyze several PDB structures only for a pair of proteins with one druggable cavity. 
Docking of many ligands into several structures with many binding pockets requires a lot more computational 
time than we possess. The vast majority of proteins in the test dataset have many binding pockets. To satisfy the 
last criterion, we had to choose proteins with one well-known binding pocket, which is mostly used as a target 
site for small molecule drugs. Therefore, we selected two proteins from the receptor tyrosine kinases family. 
They contain an extracellular ligand-binding region, transmembrane domain, and an intracellular region with 
a tyrosine kinase domain45. Binding of a specific ligand to an extracellular region induces phosphorylation 
process, leading to structural transformation within the kinase domain. This results in activation of a corre-
sponding signal pathway. The vast majority of reported kinase inhibitors binds to the catalytic domain essential 
for kinase activity45. The first selected protein is the Insulin-like growth factor 1 receptor (IGF-1R). IGF-1R is a 
transmembrane receptor with tyrosine kinase activity. It can bind three ligands: insulin and the two insulin-like 
growth factors (IGF-I, IGF-II)46. It is involved in the development of many tissues and plays a key role in the 
regulation of overall growth and metabolism. IGF-1R is known to contribute to the pathophysiology of cancer 
via involvement in cell transformation, proliferation and metastatic events47. This involvement makes IGF-1R 
a valuable target for drug development. One of the strategies aimed at blocking IGF-1R activity is to use small 
molecules as IGF-1R tyrosine kinase inhibitors46.

The second protein is Vascular endothelial growth factor receptor 2 (VEGFR2). VEGFR2 is a cell-surface 
receptor with tyrosine kinase activity48. Three growth factors bind to VEGFR2: VEGFA, VEGFC, and VEGFD. 
Ligand binding initiates a phosphorylation process leading to an enhancement of endothelial cell proliferation 
and migration. VEGFR2 is expressed on vascular endothelial cells and lymphatic endothelial cells. It plays a 
critical role in physiologic and pathologic angiogenesis, vascular development and permeability and embryonic 
hematopoiesis. It is involved in the development of many diseases including cancer, arthritis, and diabetes48.

For each protein, we composed four sets of ligands—known binders, compounds randomly chosen from 
BindingDB, molecules generated for a selected protein and molecules generated for other targets in the test 
dataset. We collected 1148 known binders from BindingDB for IGF-1R and 3782 compounds for VEGFR2 using 
the criteria mentioned in the Data section. We could not dock all of them to proteins due to technical limitations. 
Therefore, we randomly selected 100 ligands for docking experiments. The second set contains 100 compounds 
randomly selected from BindingDB. The third set includes 11 generated molecules (one in one per one mode 
and ten in ten per one mode) for each protein. To test whether generated compounds can bind to the “wrong” 
target (cross-docking), we also formed a set of 100 molecules generated for other proteins in the test dataset.

The binding scores between ligands and target protein active sites were computed using SMINA. For each 
protein, we downloaded protein structures bound to ligands from the PDB database. We obtained 11 PDB files 
(2OJ9, 3D94, 3I81, 3NW5, 3NW6, 3NW7, 3O23, 4D2R, 5FXQ, 5FXR, 5FXS) for IGF-1R and 20 (1Y6A, 1Y6B, 
2P2H, 2QU5, 2RL5, 2XIR, 3BE2, 3EWH, 3U6J, 3VHE, 3VHK, 3VID, 3VNT, 3VO3, 4AG8, 4AGC, 4AGD, 4ASD, 

Table 3.   Percentages of valid, unique and ZINC15 database-matched SMILES strings generated by the model 
in ten per one mode.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Average

Total number of generated SMILES strings (ten per target 
protein) 1040 1120 1030 1220 1240 1130

Valid 80.8 80.5 79.6 86.2 86.1 82.6

Unique 88.4 78.4 71.7 85.0 85.0 81.7

Match with ZINC15 database (%) 17.9 16.3 10.7 19.5 21.2 17.1
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4ASE, 6GQP) for VEGFR2. We examined all structures to ensure that they contain binding pockets. Then, we 
aligned them via PyMol. All ligands were extracted and combined into separate PDB files. We used them to 
define search space for SMINA. The docking requires many computational resources; therefore, we were not 
able to analyze all PDB structures for each protein. Thus, we selected structures that represent discrimination 
ability between known binders and randomly selected compounds. We utilized the ROC curve and correspond-
ing area under curve (AUC) of the scores calculated by SMINA to evaluate whether the docking tool could 
discriminate between them. We checked six structures for IGF-1R (2OJ9, 3O23, 3I81, 4D2R, 5FXQ, 5FXR) and 
four structures for VEGFR2 (2P2H, 3BE2, 4ASE, 6GQP). Structures with PDB codes 3I81, 5FXQ, 5FXR, and 
6GQP failed in the discrimination of active and randomly selected compounds (AUC < 0.6). We removed them 
from the subsequent analysis.

We further assessed whether the docking tool could discriminate between binders and molecules generated 
for other targets, between generated and randomly selected compounds and between generated and known 
binders.

The structures with PDB codes 3O23 and 3BE2 demonstrate the best discriminative ability between known 
binders and randomly selected compounds. Figure 2 shows ROC curves and corresponding AUC values for 
several combinations of molecule sets for both PDB structures. All AUC values are considerably higher than 
random baseline (0.5). These results indicate that the tool more likely classifies compounds generated for the 
IGF-1R and VEGFR2 as binders. At the same time, it less likely classifies compounds generated for other targets 
as binders. Interestingly, for the VEGFR2 the AUC value computed for the group of generated compounds versus 
group of randomly selected compounds is very close to the one computed for the set of known binders versus 
randomly selected molecules. Four other structures (4D2R, 2OJ9 for the IGF-1R target and 4ASE, 2P2H for 
the VEGFR2 target) present slightly lower discrimination ability; however, AUC values are very close to those 
computed for 3O23 and 3BE2 respectively. The ROC curves and their corresponding AUC values can be found 
as Supplementary Figure S3 online. We also build ROC curves to evaluate whether the tool could discriminate 
between compounds generated for analyzed structures and known binders (Fig. 3 and Supplementary Figure S4). 
The AUC values are close to 0.5 in all cases meaning that the tool is unable to distinguish between these groups 
of molecules.

It is well known that AUC values are directly connected to the U statistics of the Mann–Whitney test:

where n1 and n2 are sizes of the classes used. We assess significance of the difference between classes in each 
pair by p-value of the U statistics and present those values in the Table 4. It is clearly seen, that known binders 
are significantly different from the randomly selected compounds and compounds generated for other targets. 
Significance of the difference between randomly selected compounds and the ones generated for this target is 
smaller, but still valuable. In opposite, difference between known binders and compounds generated for this 
target is not significant, meaning that the model could not distinguish them.

These results suggest that generated molecules for IGF-1R and VEGFR2 can be considered binders, while the 
molecules generated for other targets are more likely to be nonbinders for both proteins.

We also visualized complexes of both proteins and generated ligands using PyMol software. Figure 4 shows 
the docking poses of generated molecules with the lowest scores in the binding pocket of the corresponding 
targets. We realize that accurate estimation of the binding ability of generated molecules requires the analysis 
of many diverse proteins using in silico docking and/or in vitro assays. However, these are separate and quite 

AUC =
U

n1 · n2

Figure 2.   ROC curves and corresponding AUC for the following structures: (a) structure of IGF-1R with PDB 
code 3O23, (b) structure of VEGFR2 with PDB code 3BE2.
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Figure 3.   ROC comparison of known binders versus molecules generated for IGF-1R and VEGFR2 and 
corresponding AUC for the following structures: (a) structure of IGF-1R with PDB code 3O23, (b) structure of 
VEGFR2 with PDB code 3BE2.

Table 4.   P values of the Mann–Whitney test for all molecule sets used in the analysis.

PDB code

P values

Known binders versus randomly 
selected compounds

Known binders versus compounds 
generated for other targets

Compounds generated for the 
analized protein versus randomly 
selected ones

Compounds generated for the analized 
protein versus known binders

3O23 3.4*10–10 2.2*10–8 3.0*10–2 0.40

4D2R 1.5*10–8 1.4*10–6 2.9*10–2 0.33

2OJ9 5.5*10–7 5.2*10–5 4.5*10–2 0.44

3BE2 2.5*10–19 8.4*10–8 1.1*10–4 0.26

4ASE 1.6*10–10 2.3*10–5 4.1*10–3 0.31

2P2H 2.2*10–12 3.6*10–4 3.1*10–3 0.17

Figure 4.   Positions of the generated molecules with the lowest scores in the binding sites of the following 
proteins: (a) Insulin-like growth factor 1 receptor, (b) Vascular endothelial growth factor receptor 2.
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complicated tasks, which we consider a direction for future work. We believe that the analysis described here is 
sufficient for the proof of concept.

Physicochemical properties and metrics.  It is not enough for the model to output chemically valid 
molecules active against a certain target. The model should also take care of parameters crucial for a molecule 
to be a potential drug. We computed several important metrics and physicochemical properties for generated 
compounds and compared them with corresponding characteristics of the molecules from the training dataset. 
The goal was to access the ability of the model to generate compounds satisfying typical drug-likeness metrics. 
According to the famous Lipinski’s rule of five, the water-octanol partition coefficient (logP) of a potential orally 
active drug should not exceed five. Molecules with molecular weight less than 500 show better permeability and 
solubility. The numbers of hydrogen donors, acceptors and rotatable bonds have to be no more than 5, 10 and 
10, respectively49,50. Although Lipinski’s rule was developed for oral medications, it gives a good reference point 
for evaluating the properties of the generated molecules.

The Topological Polar Surface Area (TPSA) is another important characteristic of a drug candidate. Chem-
ists assume that molecules having a topological polar surface area greater than 140Å2 are absorbed poorly50. To 
overcome the blood–brain barrier, a molecule should have a TPSA less than 90 Å251. Quantitative Estimate of 
Drug-likeness (QED) is based on the desirability functions for molecular properties and is widely used to select 
appropriate compounds during the early stages of drug discovery. In other words, QED is the measure of drug-
likeness52. It ranges from zero to one, where zero indicates a totally unsuitable molecule, while one corresponds 
to molecules with favorable characteristics. The Synthetic Accessibility Score (SAS) is of great importance, as 
many computational approaches often yield molecules that tend to be difficult to synthesize (SAS > 6)53. Table 5 
summarizes data about the compliance of the generated molecules with the rules mentioned above across five 
datasets used for Monte-Carlo cross-validation. For each constraint, the majority of generated compounds lie 
in acceptable drug-like molecule boundaries. Figure 5 shows the distributions of logP, the number of H-donors, 
H-acceptors, and rotatable bonds, QED, SAS, TPSA, molecular weight and length for the first test dataset. The 
distributions for the four remaining test datasets are almost identical. We analyzed computed characteristics of 
molecules from three datasets: structures generated in one per one mode, ten per one mode and the training set. 
For each parameter, the histograms display almost complete overlap between datasets. This overlap indicates that 
the model reproduces the property distribution of molecules in the training set very well.

The favorable values of these parameters do not necessarily indicate that the generated compound will become 
a drug. It can be checked only in an experiment. Nevertheless, we can conclude that generated molecules may be 
considered starting points for developing novel drugs with activity against given protein targets.

We assessed the structural diversity between generated molecules and molecules from the training dataset 
by calculating the Tanimoto similarity score implemented in RDKit. Figure 6 shows the distributions of the 
nearest neighbor Tanimoto coefficients over all pairs of these molecules. Only 8% of all generated structures 
have a Tanimoto score above the similarity threshold (Tanimoto score > 0.85) and can be considered similar to 
structures from the training dataset. The majority of generated molecules (51%) has a Tanimoto score lower 
than 0.5, which suggests that this part of the generated compounds differ significantly from those in the training 
dataset. A high Tanimoto score usually indicates small differences in the molecule structure. However, even small 
differences in structure may lead to significant changes in functionality. Figure 7 demonstrates the distributions 
of the nearest neighbor Tanimoto similarities over all pairs of ligands in the training dataset. Mean and standard 
deviation values are shown in Table 6.

The mean value of similarities between generated molecules and those in the training set is much lower than 
the mean value of similarities between compounds in the training dataset. Compared to the input dataset, the 
model achieves the generation of more diverse molecules, demonstrating the ability to create novel structures 
outside the training dataset.

Table 5.   Percentage of generated molecules falling within plausible drug-like molecule ranges of values. 
*There is no common threshold for QED. QED varies in a range [0,1]. The higher a QED value is, the better. 
The columns show mean values and standard deviations. **Averaged across five cross validational datasets.

Property name Constraints

Structures satisfying the constraints (%)

Generated molecules (one per one)** Generated molecules (ten per one)**

logP  < 5 84.4 85.6

Molecular weight (Da)  < 500 95.8 88.9

Number of hydrogen donors  < 5 95.8 91.9

Number of hydrogen acceptors  < 10 97.9 93.5

Number of rotational bonds  < 10 97.9 91.2

Topological polar surface area (Å2)  < 140 98.0 92.7

Quantitative Estimate of Drug-likeness 
(QED)* 0.66 ± 0.19 0.58 ± 0.21

Synthetic accessibility score  < 6 99.9 100.0
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Figure 5.   Distribution of properties for the generated molecules. Properties include: water-octanol partition 
coefficient (logP), the number of H-donors, the number of H-acceptors, the number of rotatable bonds, 
Quantitative Estimation of Drug-likeness (QED), the synthetic accessibility score (SAS), total polar surface area, 
molecular weight and length.

Figure 6.   Tanimoto similarity of generated molecules to the nearest neighbor in the training dataset.
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Transformer applicability to drug generation tasks.  Deep learning methods usually need a library of 
molecules with known activity against a certain protein to generate ligand binding with the target. The specific 
library is used to fine-tune the model or to train a predictive network that assigns a reward to generator output 
in a reinforcement learning approach (e.g.,10,14,22). In several research works, authors used a seed molecule to 
generate structures with the desired activity (e.g.,27,28). In other words, these approaches demand some prior 
information about compounds that are active against a given target. The method proposed in this work does 
not imply knowledge of active ligands or any kind of chemical descriptors of the molecule. At the same time, 
the method does not rely on information about the three-dimensional structure of the protein of interest. Usu-
ally, protein three-dimensional structure determination is not an easy task. Additionally, it may be quite costly. 
Therefore, the usage of an amino acid sequence as input may substantially simplify one of the initial stages of 
drug discovery—the search for a lead compound—and can be very fruitful in the case of targeting proteins with 
limited or no information about inhibitors and three-dimensional structure.

To the best of our knowledge, this paper is the first attempt to present the de novo drug generation problem 
as a translational task between protein sequence and SMILES representation of the molecule.

The method has benefited from the recent progress in the neural machine translation field, where the Trans-
former architecture demonstrated state-of-the-art results34. Recently, Transformer also exhibited very promis-
ing results in predicting the products of chemical reactions and retrosynthesis54,55. One of the key features of 
Transformer is self-attention layers. They reduce the length of the paths that the signal should travel during deep 
network learning. This reduction allows the model to maintain long-range dependencies in sequence much bet-
ter than in recurrent neural networks. The self-attention in Transformer architecture operates on both the input 
amino acid sequence and the already generated part of the SMILES string, giving access to any part of them at 
any time. Intuitively, self-attention is a good choice for translation between protein and molecule. First, a protein 
sequence may be quite long—dozens of times longer than a SMILES string. Second, three-dimensional struc-
tural features of the protein may be formed by amino acid residues located far from each other in the sequence 
representation. That is why it is so important for the algorithm to reference elements coming long before the 
current one. The multihead self-attention mechanism allows the model to jointly attend to different aspects of 
positions that are important in relation to proceeding elements. In language translation tasks, this ability means 
that Transformer may capture, for example, both the semantic and grammatical meaning of a particular word. 
Intuitively, it appears that this ability may be helpful in capturing 3D features of a protein binding pocket. For 
example, a model may consider a certain residue simultaneously in two aspects: forming the pocket and interact-
ing directly with the drug. This is just our assumption and requires additional checking.

Currently, the vast majority of deep learning approaches to the drug generation task use the similarity of 
organic chemistry structures and natural human language. Chemists understand molecule structure much like 
a human understands words. Segler et al. introduced encoder-decoder RNN architecture for the construction of 
a chemical language model, i.e., the probability distribution over a sequence of characters in SMILES notation10. 
Others implemented variational and adversarial autoencoders to create a continuous latent representation of 

Figure 7.   Tanimoto similarity of molecules which are nearest neighbors in the training dataset.

Table 6.   Mean and standard deviation values of Tanimoto similarity distributions.

Distribution Mean Standard deviation

Tanimoto similarity of the generated molecules to the nearest neighbor in the training dataset (1 per 1 
mode) 0.54 0.17

Tanimoto similarity of the generated molecules to the nearest neighbor in the training dataset (10 per 1 
mode) 0.57 0.18

Tanimoto similarity of the molecules which are nearest neighbors in the training dataset 0.74 0.14
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chemical spaces (e.g.,22). This creation allows easy sampling of latent codes and decoding them into SMILES 
strings corresponding to novel molecules. The reinforcement learning technique and fine-tuning of specific 
datasets were proposed to bias the probability distribution toward desired properties (e.g.,13). In all of these 
approaches, the source “language” and the target “language” should ideally have the same distribution, and deep 
learning methods are used to construct the best fitting between them. Unlike previous studies, in our approach, 
we attempt to tackle the problem where source language and target language have different distributions. This 
approach allows the creation of a molecule with intended binding affinity using minimum information about the 
target, i.e., amino acid sequence only. As a proof of concept, we investigated several types of end points: chemical 
feasibility, physical properties, and predicted biological activity, and achieved promising results for each of them. 
However, the method can be improved in several directions. One of them is the generation of more diverse valid 
variants per protein. The Diverse Beam Search may be beneficial in this respect as it optimizes the objective 
containing dissimilarity term56. However, a more fundamental approach is to couple Transformer with a vari-
ational or adversarial autoencoder. These networks can be trained on large datasets of molecule structures to 
produce a latent continuous representation of chemical space. Joint training Transformer with such an additional 
component will allow usage of benefits from both approaches: sampling from continuous representation and 
conditioning on the target protein. Another improvement is to increase the number of novel structures that are 
not present in databases. The model learns distribution in chemical space from the training dataset and then uses 
it to generate a SMILES string. Typically, in deep learning, more diverse input in the training phase causes more 
diverse output during the generation phase. During our experiments, we noticed that the number of structures 
found in the ZINC15 database is lower for models trained on four organisms than for models trained only on 
human. Along the same lines, the Tanimoto scores between generated compounds and those from the training 
dataset are lower on average (0.57 ± 0.18 for generated molecules and 0.74 ± 0.14 for ones in train dataset). We 
anticipate that model pretraining on a much larger set of molecules (~ 1.5 million items from ChEMBL, for 
example) may substantially reduce the fraction of molecules found in databases. It also may help to increase 
the diversity of generated molecules from those in the training dataset. However, such improvement requires 
technical resources that we do not yet possess. Therefore, this optimization was out of the scope of our work. 
Another important improvement is an increase in the model interpretability. A visualizable interpretation may 
provide valuable biological insights and substantially improve understanding of the protein–ligand interaction.

Conclusion
In this work, we introduced a deep neural network based on the Transformer architecture for protein-specific 
de novo molecule design. Computational experiments demonstrated the efficiency of the proposed method in 
terms of predicted binding affinity of generated ligands to the target protein, percentages of valid diverse struc-
ture, drug-likeness metrics and synthetic accessibility. Our model is based solely on protein sequence. This basis 
may be beneficial in the early stage of drug discovery, i.e., during identification of a lead compound for a protein 
target. The proposed method may be useful if information about the 3D protein structure is inaccessible due to 
difficulties in protein expression, purification and crystallization. However, our approach can be extended to 
yield a more interpretable model. We will address this improvement in our future studies.

Data availability
The code and data are available at https​://githu​b.com/daria​grech​ishni​kova/molec​ule_struc​ture_gener​ation​.
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