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Combinatorial analyses reveal 
cellular composition changes have 
different impacts on transcriptomic 
changes of cell type specific genes 
in Alzheimer’s Disease
Travis S. Johnson1,8, Shunian Xiang2,3,8, Tianhan Dong4, Zhi Huang5, Michael Cheng2, 
Tianfu Wang3, Kai Yang6, Dong Ni3*, Kun Huang7* & Jie Zhang2*

Alzheimer’s disease (AD) brains are characterized by progressive neuron loss and gliosis. Previous 
studies of gene expression using bulk tissue samples often fail to consider changes in cell-type 
composition when comparing AD versus control, which can lead to differences in expression levels 
that are not due to transcriptional regulation. We mined five large transcriptomic AD datasets 
for conserved gene co-expression module, then analyzed differential expression and differential 
co-expression within the modules between AD samples and controls. We performed cell-type 
deconvolution analysis to determine whether the observed differential expression was due to changes 
in cell-type proportions in the samples or to transcriptional regulation. Our findings were validated 
using four additional datasets. We discovered that the increased expression of microglia modules in 
the AD samples can be explained by increased microglia proportions in the AD samples. In contrast, 
decreased expression and perturbed co-expression within neuron modules in the AD samples was 
likely due in part to altered regulation of neuronal pathways. Several transcription factors that are 
differentially expressed in AD might account for such altered gene regulation. Similarly, changes in 
gene expression and co-expression within astrocyte modules could be attributed to combined effects 
of astrogliosis and astrocyte gene activation. Gene expression in the astrocyte modules was also 
strongly correlated with clinicopathological biomarkers. Through this work, we demonstrated that 
combinatorial analysis can delineate the origins of transcriptomic changes in bulk tissue data and shed 
light on key genes and pathways involved in AD.

Alzheimer’s disease (AD) is the most prevalent form of dementia, affecting 40 million people worldwide1. Despite 
decades of research, the etiology of AD remains unclear2. The pathological hallmarks of AD include extracel-
lular β-amyloid deposition, tau protein-mediated intracellular neurofibrillary tangles, dystrophic neurites and 
neurons, synapse death, and proliferation of microglia and astrocytes2–4. Microglia, the main immune cells in 
the central nervous system, typically conjugate and form clusters around amyloid plaques5,6. Microglia-mediated 
neuroinflammation and its potential link to AD etiology are currently a focus in AD research7–10. Previous studies 
of gene expression in bulk brain tissues identified microglia-associated genes and gene networks that were dif-
ferentially expressed between AD and healthy control tissues11–15. Those studies did not account for changes in 
cell-type composition between AD samples and healthy brain tissues, however. Therefore, it is not clear whether 
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observed changes in gene expression between AD samples and controls are due to transcriptional regulation or 
to changes in the relative proportions of different cell types in the samples16.

It has been proved that changes in overall mRNA levels reflect changes in the cell-type composition of 
bulk brain tissues affected by AD16; however, it is not known how changes in cell-type composition impact the 
expression of marker genes for specific cell types. Furthermore, it is not clear whether bona fide transcriptional 
regulation can be revealed on top of changes in cell-type composition in bulk tissue samples. To answer those 
questions, we re-examined differences in gene expression between bulk brain tissues affected by AD and control 
samples in five large transcriptomic datasets (Table 1), while accounting for changes in the cell-type composition 
of the samples. We aimed to separate the transcriptomic changes due to transcriptional regulation from that due 
to changes in cell-type composition. To accomplish that, we performed differential expression (DE) analysis and 
differential co-expression (DC) analysis on gene co-expression network modules and combined the results with 
estimates of the relative proportions of brain cell types in the samples.

Gene coexpresion analysis has been applied in AD research to identify clusters of genes (modules) with 
specific functions that are dysregulated in AD15,17,18. Co-expressed gene modules are often specific to certain cell 
types19. If a co-expressed gene network module specific to certain cell types displays high DE between AD and 
control samples with little or no DC (change in the correlations between the expression levels of genes with in the 
module), then the DE is probably due to changes in cell-type composition rather than to transcriptional regula-
tion. By contrast, if the DE is accompanied by DC, then the DE is probably due to transcriptional regulation.

We first performed frequent gene co-expression network (FGCN) mining on five large human AD tran-
scriptomic datasets to identify highly conserved GCN modules across multiple AD cohorts, avoiding potential 
technical platform or systematic bias in any single study. Then, we computed DE scores and DC scores for 
each identified gene module and partitioned the modules according to the scores. To adjust for the changes in 
cell-type composition, we estimated the abundances of neurons, microglia, astrocytes, oligodendrocytes, and 
endothelial cells in every sample. Our results suggest that DE observed in microglia modules was largely due 
to increased proportions of microglia in the AD samples rather than bona fide upregulation of gene expression 
within microglia cells. By contrast, DC and DE in neuron modules and astrocyte modules was likely due to the 
combined effects of altered cell-type proportions and dysregulation of transcription in AD. Furthermore, DE 
in the astrocyte pathways was highly correlated with clinicopathological biomarkers of AD. We identified six 
transcription factors that were frequently differentially expressed among nine AD datasets and are predicted to 
target multiple genes in the neuron modules.

Results
Gene co‑expression modules were largely specific to either AD or control samples.  Gene co-
expression network modules are subsets of genes with tightly correlated expression. Genes in a co-expression 
network are often co-regulated and participate in common biological processes or pathways in homogeneous 
tissues. Frequent gene co-expression network (FGCN) modules are sets of genes that are frequently co-expressed 
across multiple independent datasets and therefore unlikely to be artifacts due to systematic biases in cohort 
composition, experimental design, or technical platforms. We analyzed five large AD transcriptomic datasets 
and identified 15 FGCN modules in AD samples (Table 1) and 9 FGCN modules in control samples (Supplemen-
tary Table 1). We calculated the DE and DC scores between the AD and control samples using a formula modi-
fied from Lui et al. 2015 (Supplementary Table 2). We then separated the 24 modules into four categories based 
on the median DE and DC scores: high DE and high DC (HDC_HDE), high DE and low DC (HDE_LDC), low 
DE and high DC (LDE_HDC), and low DE and low DC (LDE_LDC; Fig. 1a). The majority of the modules were 
specific to either the AD or control samples (Fig. 1c; Supplementary Table 2), which is consistent with previous 
findings that gene co-expression is largely perturbed in AD15,20. Only three pairs of modules contained genes that 
largely overlapped between the AD and control samples (Jaccard index > 0.3; Fig. 1c; Supplementary Table 2).

The modules were enriched with genes associated with specific cell types and biological func-
tions.  We next examined the modules for functional enrichment and cell-type specificity (Supplementary 
Table 7). We also examined the enrichment of DE genes in each module (pie charts in Fig. 1a). Most of the mod-
ules were enriched with genes associated with specific cell types (Fig. 1d) or biological processes (Fig. 1b; Sup-
plementary Table 4). More than half the genes in modules AD1, N1, N2, and N8 were expressed at higher levels 
in the AD samples than in the control samples, whereas more than 80% of the genes in modules AD5, AD11, and 
N5 were expressed at lower levels in the AD samples than in the control samples (Supplementary Tables 5 and 6).

The HDE_HDC modules were enriched with neuron (AD1, N1, and N2) and astrocyte (AD2 and N5) markers 
and functions linked to AD pathology. Modules AD1, N1, N2 were enriched with genes involved in neuronal 
function21. Modules N5 and AD11 were enriched with genes involved in angiogenesis and vasculature devel-
opment, which is consistent with the finding that changes in vasculature leading to altered blood flow in the 
brain are a risk factor for AD22–24. Module AD2 was enriched with genes linked to gliogenesis and cell motility. 
Module N8 was enriched with genes involved in gap junction, which supports the hypothesis that disruption of 
gap junctions associated with the blood–brain barrier in AD allows viruses and bacteria to access the brain25–28.

The HDE_LDC modules were enriched with microglia (AD3, N6) and endothelial (AD14, AD8) markers. 
The majority of genes in those modules were expressed at higher levels in the AD samples than in the control 
samples and had functions related to immune response (modules AD3 and N6), neurogenesis (module AD14), 
or cell adhesion (module AD8).

The LDE_LDC and LDE_HDC modules were enriched with oligodendrocyte markers. The LDE_HDC 
modules were enriched with genes involved in gliogenesis (AD7), ribosomal function (AD9), and myelina-
tion (AD12), whereas the LDE_LDC modules mainly contained genes with housekeeping functions such as 
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translation (AD10, AD15, N7), interferon signaling (AD13), protein metabolism (AD4), lipid metabolism (N3), 
and gliogenesis (N4, AD6). None of the LDE_LDC modules except for AD6, AD12, N3, and N4 contained genes 
that were differentially expressed between the AD and control samples. Those result suggest that modules with 
low DE are not strongly associated with AD pathology.

The proportions of neurons and glia were reduced and increased, respectively, in the AD sam-
ples compared with those in the controls.  There is mounting evidence of increased gliosis and reduced 
proportions of neurons in brain tissues affected by AD in comparison with healthy brain tissues29–31. We esti-
mated the relative numbers of five major brain cell types in AD and control brain samples using BRETIGEA32. 
The results showed that compared with the control samples, the AD samples across all five datasets had reduced 
numbers of neurons and increased numbers of microglia, astrocytes, and endothelia (Fig. 2), which is consistent 
with previous reports4,30,33. The relative numbers of oligodendrocytes differed between the AD samples and the 
controls in only two of the datasets.

Differential expression in microglia modules was largely due to changes in cell‑type composi-
tion.  Our combined DE-DC analysis revealed that the overall gene expression changes in the HDE_LDC 
modules were likely the result of changes in cell-type composition between the AD and the control samples. The 
HDE_LDC modules included N6, AD3, and AD14 (Fig. 1a); however, because of the relatively high DC value of 
AD14, we focused our further analysis only on AD3 and N6. Seventeen of the 21 genes in module N6 were also 
in module AD3. The two modules’ summarized expression (eigengene) correlated very highly and consistently 
in both AD and control cohorts through all five datasets (Supplementary Table 18), so we combined the two 
modules into one, which we refer to as the microglia module.

The microglia module was enriched with innate immune-system functions and several infectious-disease 
pathways, but it did not contain cytokine genes (Supplementary Fig. 1, Supplementary Table 2). Nearly 90% of 
the genes in the microglia module were upregulated in the AD samples in at least two of the five datasets (Fig. 1a). 
Notably, genes in this microglia module are also among the core microglia genes noted in a previous study10, 
and one third of this module (14 out of 42) are also identified from a microglia subpopulation from a single cell 
transcriptomic study that is highly correlated to AD pathology34. As shown in Fig. 3a, the co-expression network 
density of the microglia module was high in both the AD samples and the control samples.

To verify the co-expression among genes within the microglia module, we used the centered concordance 
index (CCI)35 to evaluate the gene inter-correlation of the microglia module in each of the five datasets separately. 
The CCI values indicated that the genes were highly correlated with each other in both the AD samples and the 
control samples in all five datasets (Fig. 3b). Furthermore, the microglia module expression, as measured by the 
module’s eigengenes, was strongly correlated with the estimated microglia proportions in the samples [Pearson 
Correlation Coefficient (PCC) = 0.948; Fig. 3c for GSE48350; Supplementary Fig. 2 for the other four datasets]. 
In comparison, there was much less correlation between the eigengene values of the microglia module and 
the neuron proportions in the samples (Fig. 3d for GSE48350; Supplementary Fig. 2 for other four datasets). 
There was a strong positive correlation between the DE scores and the microglia proportions in the samples 
(PCC = 0.885, p value < 0.05; Fig. 3e). Those results confirmed that the co-expression of the microglia core genes 
was not perturbed in the AD samples, and that the relatively high expression of the genes in the microglia module 
in the AD samples was mostly due to the high numbers of microglia cells in those samples.

We also examined the two microglia modules AD3 and N6 separately for their module expression with respect 
to microglia proportion among AD and control cohorts in all five datasets. The high correlation of module 

Table 1.   Summary of AD and non-dementia control brain transcriptomic datasets used in this study.

Platform AD subject Non-dementia control subject Brain regions

Dataset

GSE5281 (Liang et al., 2007) Microarray, Affymetrix HU133 87 74
Middle Temporal Gyrus (MTG), Posterior 
Cingulate Cortex (PCC), Entorhinal Cortex 
(EC), Hippocampus (HC), Superior Frontal 
Cortex (SFG), Primary Visual Cortex (VCX)

GSE48350 (Berchtold et al., 2008) Microarray, Affymetrix HU133 80 173 EC, Post-central Gyrus (PCG2), SFG, HC

ROSMAP (De Jager et al., 2018) RNA-seq 224 201 Dorsolateral prefrontal cortex (DLPFC)

MSBB (Wang et al., 2018) RNA-seq 409 273
Frontal pole (BM10), Superior temporal gyrus 
(BM22), Parahippocampal gyrus (BM36), 
Inferior frontal gyrus (BM44)

Mayo53 RNA-seq 82 78 Temporal cortex (TCX)

Validation datasets

GSE33000
(Narayanan et al., 2014) Rosetta/Merck Human 44 k 1.1 microarray 310 157 DLPFC

GSE15222
(Webster et al., 2009) Sentrix HumanRef-8 Expression BeadChip 176 187 Whole brain with majority of cortex

GSE84422
(Wang et al., 2016)

Microarray, Affymetrix HU133 & HU133_
Plus_2 60 65 19 regions

Allen Brain Dementia data
(Allen Brain Atlas) RNA-seq 43 60 HC, temporal cortex (TCX), parietal cortex, 

forebrain, white matter
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eigengene to microglia proportion (PCC) is very close for the two modules regardless in AD or control cohorts 
(Supplementary Table 18), which further confirmed that the two microglia modules expressions mostly reflect 
the corresponding microglia proportion in the same way among AD and control samples.

Differential expression in neuron modules was likely due to both decreased numbers of neu-
rons and regulatory changes related to neuron hyperactivity.  The HDE_HDC modules had highly 
altered gene expression and co-expression between the AD and control samples, indicating regulatory changes 
are involved. We conducted further analysis of AD1 and N1, which were the largest modules in the AD and 
control samples, respectively, and contained many of the same genes (Fig. 1c; Supplementary Fig. 3). Both mod-
ules were highly enriched with markers of neuronal functions, energy metabolism, and mitochondrial func-
tions (Fig. 4a). We categorized the genes in those modules into three groups based on their presence in either 
or both modules (Supplementary Fig. 3). The results of gene ontology (GO)/pathway enrichment analysis for 
the three groups of genes are shown in Supplementary Tables  8, 9, and 10. The genes shared by both mod-
ules were enriched in pathways related to AD pathology, synapse, the citric acid cycle, and respiratory electron 
transport. AD1 was more enriched than N1 with genes involved in protein–protein interactions at synapses, 
glutamate binding, activation of AMPA receptors and synaptic plasticity, and voltage-gated channel activity. 
Genes involved in ubiquitin-mediated proteolysis were present only in N1. The functions of the genes unique 
to AD1 are in accordance with the recent discovery of neuron hyperactivity in brains affected by AD36,37. The 
unique presence of genes involved in ubiquitin-mediated proteolysis in N1 suggests that control of the ubiquitin-
mediated proteolysis pathway is disrupted in AD. Such disruption has been observed in other neurodegenerative 
disorders and has been attributed to filamentous protein aggregation in the brain38.

Almost half the genes in each neuron module had lower expression in AD samples than in control sam-
ples in at least two datasets (Fig. 1a; Supplementary Table 1). To investigate how the expression of the neuron 
modules was affected by changes in the proportion of neurons, we checked the correlation between the AD1/
N1 eigengenes and the proportions of neurons across all samples. The expression of AD1 and N1 was highly 
correlated with the proportions of neurons in all five datasets (median PCC value of 0.937 for AD1 and 0.928 for 
N1; Fig. 4c,e for the GSE48350 dataset; Supplementary Figs. 4 and 5 for the other four datasets). In comparison, 
correlations were much weaker between the neuron module expression and the proportions of microglia cells 
(Fig. 4d,f for GSE48350; Supplementary Figs. 4 and 5 for the other four datasets).

The high DC scores of the neuron modules suggested large changes in gene co-expression in AD. The CCI 
values were consistently higher in the AD samples in all five datasets (Fig. 4b), indicating that the genes in the 
neuron modules were more tightly co-expressed in the AD samples than in the control samples. Because three 
of the five datasets contained multiple brain regions, we first checked if the proportions of neurons across the 
different brain regions varied more in the AD samples than in the control samples, which could potentially result 
in high correlations of gene expression profiles among multiple regions. AD is first observed in the hippocam-
pus region and gradually spreads to the entire cortex39. The extent of neuron loss might reflect the successive 
spread of the disease across the different regions, but the difference in neuron loss might not exist in healthy 
aging brains. We used the Mount Sinai Brain Bank (MSBB) dataset, which contained data from the frontal pole, 
the superior temporal gyrus, the parahippocampal gyrus, and the inferior frontal gyrus, the inter-correlation of 
neuron proportions across the four brain regions (CCI = 0.820) was actually lower in the AD samples than in the 
controls (CCI = 0.944). For comparison, the inter-correlation of microglia relative proportions across the four 
brain regions was comparable between the AD samples and the controls (CCI = 0.856 for AD, 0.868 for control). 
We therefore concluded that the variation of neuron relative proportions across brain regions in the AD samples 
did not contribute significantly to the high DC values in the AD1 and N1 modules.

Structural changes in the GCN of the neuron modules suggest that differential expression in 
those modules was due to regulatory changes.  We further examined structural changes in the gene 
co-expression networks by checking for the loss of hub genes (defined as genes in the top fifth percentile in 
terms of network connections). We obtained 547 hub genes each separately in the AD samples and the controls. 
Then, we determined which hub genes were lost or gained in the AD samples. We identified 136 genes for each 
case (Supplementary Fig. 6; Supplementary Table 14). Most of those genes were present in the neuron mod-
ules, which suggested extensive changes in the gene co-expression network connections of those modules. The 
network connectivity among the altered hub genes was negatively correlated with the proportions of neurons 
in both the AD samples and the control samples (Supplementary Fig. 12; sign test p value = 3.24×10–83 for AD 
hub genes, 1.78×10–27 for control hub genes). Those results were in agreement with the high CCI values for the 
neuron modules in the AD samples (despite lower neuron proportion) (Fig. 4b) and indicated that the inverse 
relationship between network connectivity and the proportion of neurons was probably not a reflection of AD-
specific pathological changes, but rather a brain connectome property related to normal neuron depletion due 
to aging.

In the AD1 module, the gained and lost hub genes included multiple transcription factors. PEG3, ZNF365, 
HERC1, FBXW7, TERF2IP, STAT4, NLK, RBFOX2, CDK5, POLR2K, PSMD12 were gained in the AD sam-
ples, whereas BZW2, RNF6, ZBTB11, SORBS3, TRIM56, MORF4L1, CNOT7, RBCK1, SMYD3, RAN, KLHL12, 
ZC3H15, and EID1 were lost in the AD samples. The network structural changes and transcription factor changes 
not only indicated that the DC was a bona fide correlational change among module genes, but also suggested 
that the DE observed in the two neuron modules reflected regulatory changes.

Multiple transcription factors were differentially expressed for the neuron module genes.  To 
further confirm the expression regulation changes among the neuron modules, we performed regulatory tran-
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Figure 1.   FGCN modules from AD and control samples classified according to differential expression and 
co-expression levels. (a) Differential expression average scores (DE) vs. differential co-expression average 
scores (DC) of 24 frequent gene co-expression network modules (module names in parenthesis), the majority 
of which are enriched with specific biological functions as shown in panel b. Most of the modules are also 
enriched for specific cell-type markers: Neu, neurons; Ast, astrocytes; Mic, microglia; Endo, endothelia; Oligo, 
oligodendrocytes; Unk, modules not enriched with cell type-specific markers. The pie charts indicate the 
proportions of differentially expressed genes (up or down in AD vs. control) in the modules. (b) The top two 
enriched biological functions/processes/pathways in each module identified using ToppGene. The colors of 
the bars are indictive of different biofunctional terms. (a). (c) A heatmap of the degree of overlap between 
the genes in each pair of modules mined from the AD and control samples. The modules were rearranged by 
their similarities and then plotted according to the Jaccard Index values. (d) Cell-type enrichment for each 
module was assessed by cross-referencing the module genes against cell-type signatures of neurons, microglia, 
astrocytes, oligodendrocytes, and endothelial cells. The x-axis shows the different modules. The 24 FGCN 
modules are numbered as: 1–15 correspond to modules AD1 to AD15; 16–24 correspond to modules N1 to N9. 
The significance of the cell-type enrichment in the modules was measured by Fisher’s exact test and corrected 
for multiple comparisons by the Benjamini and Hochberg procedure. Horizonal blue lines indicate the threshold 
of false discovery rate 0.05. There is no color match between panels (a,d).
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Figure 1.   (continued)
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scription factor-enrichment analysis to identify regulatory cascades within each module using the “TRANSFAC 
and JASPAR PWMs” database40. Many genes from the neuron modules were targeted by transcription factors 
that were frequently differentially expressed in the five datasets, as well as in four additional validation datasets 
(Table 2). Specifically, five transcription factors were predicted to regulate 116 to 204 genes in AD1, and six 
transcription factors were predicted to regulate 94 to 273 genes in N1 (Supplementary Table 11). To verify that 
the transcription factors regulate the predicted genes, we acquired the ChIP-seq peak data of the top differen-
tially expressed transcription factors, Bcl6 and Stat341,42. We then crosschecked AD/N1 gene promoter regions 
for binding peaks for those two transcription factors. We found Bcl6 binding sites in the promoter regions of 18 
genes in AD1 and 56 genes in N1. Similarly, we found Stat3 binding sites in the promoter regions of 238 genes in 
AD1 and 685 genes in N1 (Supplementary Table 12). Bcl6 is a transcription repressor that interacts with the Stat 
protein to modulate gene expression in B cells43. It also plays a role in neurogenesis and neuron differentiation44. 
Evidence from animal models indicated that constitutive expression of BCL6 in transgenic mice upregulated the 
expression of ANXA6, MAPK6, HDAC9, PFKM, GABARAPL145, all of which were present in the AD1 module. 
Constitutive BCL6 expression in a BCL6-activating mouse strain46 was also shown to downregulate the expres-
sion of CCND2 and CDKN1B, both of which were present in the N1 module. The Stat3 protein upregulates ATR​ 
expression to control DNA damage and apoptosis. It also binds to the promoter region of OPA1 and upregulates 
OPA1 expression47. OPA1 is essential for mitochondrial fusion, and its mutation has been associated with neu-
rodegenerative diseases48. OPA1 and ATR​ were both present in the AD1 and N1 modules.

The enrichment of differentially expressed transcription factors and their confirmed regulatory roles in the 
AD1 and N1 genes suggests that DE in those modules was due not only to neuron loss but also to upstream 
regulatory changes.

In the astrocyte, oligodendrocyte, and epithelial modules, changes in cell‑type proportions 
contributed partially to the observed differential expression.  For other HDE_HDC modules, the 
two astrocyte modules (AD2 and N5) showed high DC and the highest degree of DE of all the modules (Fig. 1a). 
There was no correlation between the change in astrocyte proportions in the samples and the DE scores of the 
astrocyte modules across the five datasets [PCC = -0.06 (AD2), -0.13 (N5)]; Supplementary Figs. 10 and 11). We 
also found that the astrocyte proportions were highly correlated with the AD2 and N5 eigengenes within each 
dataset [PCC = 0.846 ± 0.060 (AD2), 0.896 ± 0.052 (N5)]. Therefore, the poor correlation between the DE scores 
in the astrocyte modules and astrocyte proportions in the samples was likely due to both heterogeneity of the 
astrocyte proportions across the cohorts and a regulatory effect on the module genes. The CCI plots (Supple-
mentary Fig. 9A and 9D) confirmed that the astrocyte modules exhibited high correlational changes between the 
AD and control samples in all five datasets, suggesting that regulatory changes were involved.

For the oligodendrocyte module AD7 and the endothelial module AD14, changes in cell-type composition 
had little effect on expression levels, probably because the changes in the proportions of those cell types were 
either minimal (for oligodendrocytes) or heterogeneous (for endothelia). The DE scores for those modules were 
poorly correlated with the cell-type proportions (PCC -0.37 for AD7, 0.74 for AD14; Supplementary Fig. 11). Fur-
thermore, the correlations between the cell-type proportions and the AD7 and AD14 eigengenes were relatively 
weak [PCC 0.726 ± 0.036 (AD7), 0.418 ± 0.254 (AD14); Supplementary Fig. 10]. The CCI values were different 
between the AD samples and controls in all five cohorts (Supplementary Fig. 9B and 9C), which implies that 

Figure 1.   (continued)



8

Vol:.(1234567890)

Scientific Reports |          (2021) 11:353  | https://doi.org/10.1038/s41598-020-79740-x

www.nature.com/scientificreports/

module-level correlational changes were more evident in the oligodendrocyte and endothelial modules than in 
the microglia module.

Taken together, the results indicated that in contrast to the situation in the microglia module, a substantial 
regulatory effect was responsible for DE and DC in the astrocyte, oligodendrocyte, and epithelial modules.

The modules with high differential expression were associated with AD neuropathological 
features and cognitive deterioration.  Because the modules with high differential expression were 
enriched with neuronal and microglia functions, pathways, and genes previously linked to AD pathology, we 
examined their associations with clinicopathological features. We computed the correlation between the module 
eigengenes and the Clinical Dementia Rating scale (CDR), the Braak & Braak stage score (BB score; measures 
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Figure 2.   Cell type deconvolution analysis indicated decreased neuron proportions and increased glia 
proportions in the AD samples. The significance of cell-type proportion changes between AD samples and 
controls was measured by Wilcoxon rank sum test (*p < 0.05, **p < 0.01). (a) The estimated neuron relative 
proportions in AD samples and controls. (b) Estimated microglia relative proportions in AD samples and 
controls. (c) Estimated astrocyte relative proportions in AD samples and controls. (d) Estimated endothelial 
cell relative proportions in AD samples and controls. (e) Estimated oligodendrocyte relative proportions in AD 
samples and controls.
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neurofibrillary tangle), and the beta-amyloid deposition plaque scale (Plaque_Mean) in the MSBB dataset. We 
then ranked the modules according to the average strength of correlation with the three attributes (Fig. 5a).

The modules with high DE showed stronger correlations with the clinicopathological markers than the 
modules with low DE (Fig. 5a). The expression of the astrocyte modules was most strongly correlated with the 
three AD clinical biomarkers, which is consistent with previous findings that astrocytes are involved in the sus-
tained immune response and mitochondria-related function in brains affected by AD4,13. The expression of the 
neuron modules, AD1 and N1, was negatively correlated with all three clinical attributes, which is consistent 
with a gradual loss of neurons and neuronal functions in AD progression. The expression of the two microglia 
modules was positively correlated with all three clinical attributes, which is consistent with the activated immune 
response observed in brains affected by AD. The expression of the endothelial modules (AD8, AD13, and AD14) 
was weakly and positively associated with the clinical attributes. The expression of the oligodendrocyte modules 
(AD4, AD5, AD6, AD7, N3, and N4) was even more weakly associated with the clinical attributes. Of all the 
modules whose expression was more than moderately correlated (correlation coefficient absolute values > 0.3) 
with the clinical attributes, only N8 and AD11 were not specific for certain cell types (Fig. 5a; Supplementary 
Table 15). Module N8 was enriched with gap junction functions and was negatively correlated with all three 
clinical attributes, which is consistent with the gap junction dysfunction observed in AD49. Module AD11 was 
enriched with angiogenesis functions and was positively correlated with CDR and BB stage, which is consistent 
with the role of neurovascular dysfunction in AD22.

We also analyzed the correlations between the cell-type proportions in the MSBB dataset and the three clinical 
attributes to determine whether changes in specific cell-type proportions were correlated with disease progres-
sion. We found that the proportions of each cell type, except for oligodendrocytes, were highly correlated with 
all three clinical attributes (p < 10–9 for each correlation; Fig. 5b; Supplementary Table 15). The proportions of 
neurons were negatively correlated with the three clinical attributes, which is consistent with gradual neuron 
loss in AD progression21. The proportions of microglia and astrocytes were positively correlated with the clinical 
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Figure 3.   The high differential expression in microglia modules with low differential co-expression was largely 
due to changes in cell-type proportions. (a) Network visualization of the microglia module in the AD samples 
and controls (for legibility, only gene links that appeared in at least in four of the five datasets are shown). The 
genes with blue color in control networks and red color in AD networks were had higher expression in the 
AD samples than in the control samples in at least two of the five datasets. (b) Centered concordance index 
(CCI) values of the microglia module in AD samples vs. controls in each of the five datasets. (c) The Pearson 
correlation between microglia module eigengenes and the estimated microglia relative proportions in the 
GSE48350 dataset. (d) The Pearson correlation between microglia module eigengenes and the estimated neuron 
relative proportions. This is shown as a poor correlation to compare with panel c. (e) The differential expression 
scores of the microglia module with the mean microglia relative proportion changes between the AD samples 
and controls across the five datasets. The gray area indicates the region defined by 95% confidence intervals.
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attributes, which is consistent with microgliosis and astrogliosis around amyloid plaques4. We also observed a 
positive correlation between the proportion of endothelial cells and AD progression, which is consistent with 
endothelial activation in AD23,24,50.

Discussion
Next-generation sequencing has generated many large transcriptomic datasets from tissues of mixed cell types for 
AD research51–53. Single-cell sequencing techniques have started to emerge; however, issues such as the technical 
difficulty of cell dissociation and sample preparation, high dropout rate for signal reading, and scarcity of brain 
samples make it unlikely that large cohorts of single-cell AD data will be available in the near future34. Compara-
tive studies of AD and control samples in bulk tissue transcriptomic datasets have been conducted to take full 
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Figure 4.   Neuron modules high differential expression and high differential co-expression that may be due 
to both cell population change and regulatory changes. (a) Functional enrichment in the AD1/N1 modules. 
(b) Centered concordance index values of the AD1/N1 modules in AD samples vs. controls in each of the five 
datasets. (c) In the GSE48350 dataset, the Pearson correlation between module AD1 expression (eigengene 
values) with the estimated relative proportions of neurons. (d) The Pearson correlation between AD1 eigengene 
values and the estimated microglia relative proportions in the GSE48350 dataset. (e) The Pearson correlation 
between N1 eigengene values and the estimated neuron relative proportions in the GSE48350 dataset. (f) The 
Pearson correlation between the N1 eigengene values and the estimated microglia relative proportions in the 
GSE48350 dataset. This is shown as a poor correlation to compare with panel (e).

Table 2.   Neuron modules AD1/N1 are predicted to be targeted by differentially expressed TFs.

Module name Enriched TF
Differential expression in AD 
versus control

Number of predicted target 
genes in the module

Fisher’s exact test adjusted 
p value

AD1

BCL6 Up in 7/9 datasets 119/1247 0.0095

JUND Up in 4/9 datasets 116/1247 0.0148

ZBTB16 Up in 5/9 datasets 128/1247 0.0200

STAT3 Up in 7/9 datasets 204/1247 0.0449

MYB Down in 4/9 datasets 135/1247 8.87E-05

N1

ZBTB16 Up in 5/9 datasets 112/1003 0.0058

BCL6 Up in 7/9 datasets 97/1003 0.022

LEF1 Up in 6/9 datasets 273/1003 0.0337

STAT3 Up in 7/9 datasets 160/1003 0.0432

JUND Up in 4/9 datasets 94/1003 0.0359

MYB Down in 4/9 datasets 113/1003 6.271e-05
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advantage of those datasets15,18. Some studies also applied a gene co-expression network mining approach to 
single datasets. For example, Zhang et al. applied weighted gene co-expression network analysis (WGCNA) and 
identified an AD-associated module enriched in microglial function15. In another study, Miller et al. adopted 
WGCNA to uncover disease-relevant expression patterns for major cell types54. However, these studies all focused 
on just a single dataset. In this study, we analyzed FGCNs in five independent transcriptomic datasets encompass-
ing a total of 1,681 tissue samples to avoid potential bias from using a single dataset. We identified co-expressed 
gene modules that were consistently present in multiple brain regions. The member genes in each module were 
consistently correlated with each other across all five datasets.

Many transcriptomic analyses have shown significant upregulation of immune response genes and downregulation 
of neuronal genes in AD15,18. It is widely accepted that microglia cluster near amyloid plaques and that microglia-
mediated inflammation is activated in AD5,55,56. Most previous studies of bulk brain samples containing mixed cell 
types did not account for differences in the relative abundances of microglia cells in the samples. To fully and accurately 
infer AD-associated transcriptomic changes, we re-examined five AD transcriptome datasets to determine whether 
transcriptomic changes observed in those datasets are due to changes in gene regulation, cell composition, or both.

FCGN modules enriched with microglial markers showed high DE and minimal DC between AD samples 
and controls. The proportion of microglia cells was higher in the AD samples than in the controls. Together, those 
results indicate that the DE in those modules was largely due to an increase in the proportion of microglia in the 
AD samples rather than to a change in transcriptional regulation, which is consistent with previous findings16. 
That does not rule out the possibility of a small subpopulation of disease-associated microglia (DAM) in brains 
affected by AD34,57,58. Pro-inflammatory and anti-inflammatory genes and DAM signature genes were previously 
identified in an APP transgenic AD mouse model58, which may be more similar in terms of disease mechanism 
to early-onset AD than to the late-onset AD analyzed in our work. In addition, the previously identified DAM-
related genes do not include the mic1 gene cluster identified in a recent single-cell RNA-seq study of late-onset 
human AD34 (Supplementary Table 13). Of the 77 DAM-related mic1 genes identified in the single-cell RNA-seq 
study, 14 were co-expressed in the core microglia gene module identified in our study (AD3/N6; enrichment 
p = 4.38 × 10–24; Supplementary Table 13). The CCI of that subset did not change when we analyzed those 14 
genes separately (Supplementary Fig. 7). Moreover, nine ribosomal genes among the 77 DAM-related genes 
were identified in ribosomal modules (AD9, AD15, and N7), and four more were scattered in modules AD1, 
N1, and AD13. We did not find the rest of the previously identified DAM-related genes in any FGCN module. 

a b

Figure 5.   Modules with high differential expression are associated with Alzheimer’s neuropathology and 
cognitive status. (a) Spearman correlation coefficients (SCCs) between module eigengene values and three major 
clinicopathological attributes: clinical dementia rating (CDR), neurofibrillary tangle burden (Braak & Braak 
score), and beta-amyloid burden (PlaqueMean). The modules are ranked by the mean SCC values and marked 
by corresponding cell types: ast, astrocytes; mic, microglia; neu, neuron. (b) Correlation between brain cell-type 
relative abundance and clinicopathological attributes. The brain cell types are ranked by the mean scc value. 
ast, astrocytes; mic, microglia; neu, neuron; end, endothelia; oli, oligodendrocytes. The asterisks indicate the 
significance associated with each SCC. *p < 5.7 × 10–4 (significance cutoff after Bonferroni correction), **p value 
between 10–5 and 10–8, ***p < 10–8.
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This could be due to the following reasons: (1) because all five datasets included multiple brain regions, each 
gene expression level was averaged across all regions prior to our co-expression analysis. The proportion of DAM 
cells in brains affected by AD is low (0.6%)34, so any elevated expression of DAM-related genes might have been 
averaged out, or the expression variances might not have been high enough to be detected. (2) It is also possible 
that because of the cutoff of 10 genes for the minimal size of an FGCN module, DAM-related genes that were 
not tightly co-expressed with more than nine other genes were not identified.

To further investigate whether the DAM module34 could be captured in transcriptomic data from bulk tissue sam-
ples, we reconstructed a synthetic module with the mic1 genes (Supplementary Table 13) and analyzed its expression 
(eigengene) with respect to cell-type proportion changes and DE scores (Supplementary Fig. 13). The low correlation 
between the synthetic module expression and the change in microglia proportion (PCC = 0.28) suggests that the DAM 
subtype is not well presented in bulk tissue transcriptomic data (Supplementary Fig. 13A). Consistent with that find-
ing, the DE scores of the synthetic module across the five datasets showed weaker correlation (PCC = 0.7) with the 
microglia proportions than the DE scores of the AD3/N6 microglia module (PCC = 0.95; Supplementary Fig. 13B).

The microglia core gene module did not include any cytokine genes, which are known to be upregulated in 
AD brains59. We cannot not rule out the possibility that individual microglia genes, such as TREM2 or TYROBP, 
are upregulated in some AD samples, as observed previously11,60,61. However, in the five datasets we analyzed, the 
DE in the tightly co-expressed core microglia module as a whole was largely due to microglia proliferation in AD.

Although the neuron modules AD1 and N1 shared many common genes, many of the hub genes changed in 
AD, and the connectivity of the hub genes was negatively correlated with the neuron proportions (Supplementary 
Fig. 12). Several transcription factors that are known to be differentially expressed in AD might account for such 
changes (Table 2). The DE of those transcription factors in AD was further confirmed in four additional transcrip-
tomic datasets (Tables 1 and 3). To verify that the transcription factors regulate the genes in the neuron modules, we 
analyzed Bcl6 and Stat3, the most frequently differentially expressed transcription factors in our AD datasets. We 
found that Bcl6 and Stat3 bind to a large number of genes in the neuron modules, as indicated by ChIP-seq experi-
ments, which provides strong evidence that they serve as upstream regulators of gene expression in those modules.

In addition to experimental evidence from transgenic mice that Bcl6 and Stat3 regulate M1 genes, we found 
that 21 of the genes in module AD1 are Stat3 upstream regulators, eight of which were recently shown in 
transgenic mouse studies to be involved in AD pathology (MAPK162, RHEB63, SUMO164, VPS3512, GSK3B65, 
DYRK1A66, EPHA467) or in Parkinson’s disease (PAK4)68. Recently, Stat3 inhibition was shown to inhibit human 
astrocyte differentiation and promote neural progenitor-cell differentiation69 and also to ameliorate astrogliosis 
in AD model mice70. Combined with the fact that Bcl6 regulates the expression of STAT371, those results further 
support a central role of Stat3 in the regulation of the neuron modules.

Although the overall expression of the neuron modules was lower in the AD samples than in the control samples, 
the overall co-expression level of the neuron modules was higher in the AD samples than in the controls in all five 
datasets. The stronger co-expression in the neuron modules might be linked to neuronal hyperactivity in AD, as 
previously observed in human and mouse models36. Evidence from imaging and molecular studies revealed that 
neuronal hyperactivity, especially glutamate signaling, occurs in the cortex and hippocampus during or even before 
mild cognitive impairment, which modulates A β levels and triggers synaptic dysfunction in AD36,37,72. Experiments 
in mouse models of AD showed clustering of hyperactive neurons near amyloid plaques and, furthermore, that 
reduction of neuronal hyperactivity can prevent build-up of amyloid plaques and synapse loss73–76. Because many 
genes that uniquely presented in the neuron modules in the AD samples are involved in glutamate signaling and 
synaptic activity (see Supplementary Table 9), we speculate that the strong co-expression among those genes, as 
well as the upregulated transcription factors, means that some form of neuron hyperactivity still remains in brains 
affected by AD. Previous studies indicated that such hyperactivity was only present in the asymptomatic phase of 
AD77,78. We hypothesize that such signals might previously have been overlooked because of the overall decrease in 
the proportion of neurons during late-stage AD. In the future, we plan to further quantify the impact of the neuron 
population change on expression signals and to mitigate its effect in order to discover true regulatory changes.

Compared with the controls, the AD samples showed low expression for neuron modules and high expression 
for microglia, astrocyte, and endothelial modules. That is consistent with a recent single-cell transcriptomic study 
that showed that changes in gene expression in AD are highly cell-type specific, with most altered expression 
occurring in neurons or a specific glia types34. Our results show that changes in cell-type abundances play a 
major role in determining the DE of microglia and neuron genes between AD samples and healthy brain samples.

Astrocytosis in the AD samples might partially account for the DE in astrocyte modules within each dataset, 
which is in agreement with the previous findings that astrocytosis is a characteristic of AD4. Unlike the micro-
glia modules, the astrocyte modules exhibited DC, which suggests that a regulatory mechanism underlies DE 
in astrocytes during AD. It is worth noting that the astrocyte modules exhibited the strongest correlation with 
clinical disease attributes (Fig. 5a).

Oligodendrocyte proportions were not ubiquitously changed between the AD samples and controls across 
the five datasets (Fig. 2). Their proportions also had the weakest correlation with DE scores, module expression, 
and clinicopathological markers. In contrast, the proportions of endothelia differed between the AD samples and 
controls, but, like the oligodendrocyte proportions, they did not correlate with DE in the modules, which sug-
gests either that the proportional changes were inconsistent among AD samples or that transcriptional regulation 
contributed more than the cell-type proportions to DE in those modules (Supplementary Figs. 9, 10, and 11).

Our study had certain limitations. First, the transcriptomic data we analyzed did not contain microRNA 
information. Therefore, the FGCN module mining and DE/DC analysis did not include those types of molecules 
and their potential regulatory relationships. Second, the transcriptomic datasets were generated from tissue mix-
tures from multiple brain regions, and the expression levels of each gene were averaged across the tissues from all 
regions. That might be the reason that the previously identified DAM species were not captures in our analyses. 
In addition, the minimum module size for an FGCN was 10, which might have caused some core microglia 
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genes and DAM genes to be left out of the FGCN modules. Third, it is possible that the total amount of RNA per 
cell changes when the cells undergo a phenotype change. However, based on the available transcriptomic data, 
and the fact that no universal nucleic RNA quantification method is currently available (some studies may be 
conducted for neurons, but we are not aware of such research for other cell type and subtypes), we could take 
into account changes in the amount of nucleic RNA between cell subtypes in the deconvolution analysis. Such 
a task requires single-cell RNA-seq data from a variety of cell types/subtypes.

Conclusion
Through FGCN module mining, we identified cell-type specific modules that were differentially expressed and/
or differentially co-expressed between brains affected by AD and healthy brains in five large cohort studies. 
Increased expression of a core microglia module in the AD samples can be well explained by an increase in the 
proportion of microglia cells rather than by upregulation of microglia gene expression. For other cell type specific 
modules (neuron, astrocyte, endothelia and oligodendrocytes), changes in cell-type composition and regulatory 
changes each impact module expression levels differently. Investigation of network hub gene changes in AD 
identified several differentially expressed transcription factors (BCL6 and STAT3) as potential key regulators 
of transcriptional changes in neuron modules. The expression of astrocyte modules was highly correlated with 
three AD clinical markers, indicating that the core astrocyte genes in those modules can serve as biomarkers 
for disease progression. The combination of DE, DC, and cell-type deconvolution analyses provides a powerful 
approach to delineate the origin of transcriptomic changes in bulk sample data, leading to a deeper understand-
ing of the roles of specific genes in disease progress.

Methods
Datasets and sample processing.  Five transcriptomic datasets from one or multiple regions of brain 
tissue from patients with AD and healthy controls were used (Table  1), including two microarray datasets 
GSE528179, GSE4835080 from NCBI Gene Expression Omnibus and three RNA-seq datasets from the Accelerat-
ing Medicines Partnership-Alzheimer’s Disease (AMP-AD) Knowledge Portal. The three AMP-AD RNA-seq 
datasets were designated as MSBB53, ROS/MAP52, and Mayo51 and contained transcriptome-wide FPKM values 
or raw read counts for AD and control samples. Four additional transcriptomic datasets containing AD and 
control human brain samples were used for validation of differential gene expression. The sample sizes and other 
details for all datasets are summarized in Table 1.

The raw microarray datasets were subjected to RMA normalization using the R/Bioconductor package “affy” 
with default parameters81. All datasets were pre-filtered to remove probes without gene annotation. For genes 
with multiple probes, we selected the probe with the highest expression value82,83. For the RNA-seq datasets, 
we removed genes with more than 50% zero expression levels across samples from each condition (AD or 
control). Next, for the microarray data and the RNA-seq data, we removed genes with variance in the bottom 
20th percentile of the entire dataset. Genes with mean expression value in the bottom 10th percentile were also 
removed. At the end of the processing, 10,931 genes that were present in all five pre-filtered datasets were used 
for FGCN mining.

Frequent gene co‑expression network construction and module detection.  FGCN modules were 
mined separately in the AD and control samples. For the microarray datasets, PCC was used as the correlation meas-
ure of every gene pair. For the RNA-seq datasets, because of the large range of expression values and non-Gaussian 
distribution, Spearman correlation coefficient (SCC), which is much less sensitive than PCC to outliers, was used84.

Because the range of correlation values varied substantially among the different datasets, instead of applying 
a uniform threshold on the correlation coefficients across datasets, the gene pairs within the top fifth percentile 
of |PCC| or |SCC| values with p values < 0.05 within each dataset were selected for FGCN mining, as in previous 
similar studies82. For each selected gene pair, the frequency was computed across the five datasets and used as 
the edge weight for FGCN mining, which is the number of times a specific pair of genes appears in the top fifth 
percentile of correlation lists across all five datasets divided by the total number of lists (5).

The local maximized Quasi-Clique Merger (lmQCM) algorithm85 implemented by the online tool package 
TSUNAMI86 was used to mine the FGCN modules in the AD and control samples. lmQCM allows overlaps 
between modules and is capable of identifying smaller co-expressed local modules than WGCNA. The lmQCM 
algorithm takes five parameters (t, λ, γ, β, and minimum module size), which were set as follows: t = 1.0, λ = 1.0, 
γ = 0.81 (the initial co-expressed gene pair of an FGCN module should be a gene pair showing up in at least four 
of the five datasets), β = 0.3, and minimum module size = 10. The prefixes “AD” and “N” were used to designate 
modules mined from AD samples and control samples, respectively.

Measurement of differential expression in GCN modules between AD and control samples.  To 
determine if a gene module was differentially expressed between AD and control samples within a dataset, we 
adopted the DE score measure for individual genes, similarly to Lui et al.87, and extended it to measure a group 
of genes in a FGCN module. For a module with m genes from AD and control samples, D denotes the AD group, 
and N denotes the normal control group. We adopted the widely used absolute t-value from t statistics to quan-
tify the degree of DE. The t-value for a given gene i is defined as:

|ti| =
|xD − xN |
√

s2D
nD

+
s2N
nN
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where xD and xN are the mean expression levels in the disease and normal states, nD and nN are samples sizes 
for the disease and normal states, and sD and sN are the standard deviations of expression levels in the disease 
and normal states87.

To adjust for the different module sizes, we normalized the module DE scores by dividing the sum of the 
t-values of all genes in a specific module by the module size. The normalized DE score is considered the measure 
of the overall DE level for the module. A higher DE score indicates a larger overall difference in expression of 
a module. For each frequent module, we calculated its DE scores in all five datasets and then used the median 
score as the median DE score for that module.

Measurement of differential co‑expression in GCN modules between AD and control sam-
ples.  To determine the DC level of a module between two different conditions (AD vs. control) within a 
dataset, we first computed the DC measure of each pair of genes in the module87. For a pair of genes, we used 
the DC measure Z to quantify the correlation difference between two genes in the AD and normal samples. Zij 
between Xi and Xj is defined as:

where nD and nN are samples sizes in the normal and AD disease conditions, respectively, and zNij  and zDij  are the 
Fisher-transforms of the Pearson/Spearman correlation coefficients rNij  and rDij  , which were defined as:

We calculated Z values for every pair of genes in a given module and then normalized the scores by divid-
ing by the L2 norm of Z values within the module. The resulting L2 norm of Z values is considered the overall 
DC measure of the module, termed as the DC score. A higher DC score indicates a greater overall DC level in a 
module between AD and control samples. For each frequent module, we calculated DC scores in all five datasets 
and then used the median score as the median DE score of that module.

The original z-score as well as the modified DC score only take the absolute value of a correlation coefficient 
into account. In order to determine if the correlation was stronger or weaker in the AD samples compared with 
that in the control samples within a module, we measured the correlation change using the CCI35. CCI values 
range from 0 to 1, with larger values indicating stronger correlation between gene expression levels. We plotted 
the CCI values of a given module across the five datasets to determine if the correlations within the module were 
stronger or weaker in the AD samples compared with those in the controls. We determined the significance of 
the differences between the CCI values of the AD samples and controls by t-test.

Categorizing the modules into high and low DE and DC groups.  After defining the DE and DC 
measures for the modules, we classified the modules into high and low DE/DC categories based on the median 
DC/DE scores (solid line in Fig. 1a). Then, we partitioned the modules into four categories for further analysis: 
HDC_HDE, HDC_LDE, LDC_HDE, and LDC_LDE.

FGCN module functional enrichment analysis.  ToppGene88 was used to perform GO and pathway 
enrichment analysis of the FGCN modules. We used all the genes from each module in the analysis. To com-
pare the results of the GO analysis using only 10,931 genes as background, we also conducted GO analysis with 
DAVID (Database for Annotation, Visualization and Integrated Discovery https​://david​.ncifc​rf.gov/) to check 
the same categories of GO enrichments (Biological Function, Pathways, and Cellular Component). The results 
are presented in Supplementary Table 16. Because the GO analysis results from DAVID largely overlapped with 
the results from ToppGene, we only showed the results from ToppGene. The functional enrichment terms were 
considered significantly enriched if they had an FDR adjusted p value < 0.05. Enriched transcription factors tar-
geting the module genes were obtained from Enrichr with database “TRANSFAC_and_JASPAR_PWMs” with a 
cutoff for adjusted p value of 0.05 (Kuleshov et al., 2016). To check if the module gene members were transcrip-
tion factors, we compared the gene list against the online database TFcheckpoint89.

Differential gene expression analysis between AD and control samples for individual data-
sets.  We performed DE analysis for each of the two microarray datasets with the R package “limma” and 
for each of the three RNA-seq datasets with the R package “limma-voom” (built for RNA-seq analysis) 90. Fold-
change of 1.2 and FDR adjusted p value < 0.05 were used as the threshold for differentially expressed gene selec-
tion. We only considered genes differentially expressed if they reached the threshold for differential expres-
sion in at least two datasets. To confirm the differentially expressed genes, we repeated the DE analysis using 
three human brain transcriptomic datasets containing AD and control samples from the NCBI GEO database 
(GSE15222, GSE33000, GSE84422) and one dataset from the Allen Brain Atlas Aging, Dementia, and Traumatic 
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Brain Injury Study (https​://aging​.brain​-map.org/). The results are shown in Table 2. We conducted Fisher’s exact 
test for the enrichment of DE genes for each FGCN module with p < 0.05 as the threshold for significance.

Brain cell‑type deconvolution in each individual dataset.  We obtained brain cell type-specific 
marker genes from McKenzie et al.32, who compared and contrasted five human and mouse cell type-specific 
transcriptome-wide RNA expression datasets to identify consensus brain cell-type marker genes. We esti-
mated the relative proportions of brain cell types in our datasets using the R package “BRETIGEA”32 with the 
marker gene lists from the same package to deconvolute the five major cell types: neurons, microglia, astrocytes, 
endothelia, and oligodendrocytes. We obtained cell proportion indices from BRETIGEA using the default set-
tings. We analyzed the changes in the proportions of each cell type between AD and control samples by Wil-
coxon rank sum test, using false discovery rate-adjusted p values < 0.05 or 0.01 as the threshold for significance 
(*for p value < 0.05, **for p value < 0.01 in the boxplots).

FGCN module enrichment of cell type‑specific marker genes.  We used the marker gene lists for 
neurons, astrocytes, oligodendrocytes, microglia, and endothelia for cell type-enrichment analysis of the mod-
ules in the AD samples and controls (Supplementary Table 1). Enrichment of cell-type markers within modules 
was assessed by hypergeometric test, with a significant enrichment defined by a false discovery rate-adjusted p 
value < 0.05.

Analysis of gain or loss of hub genes between AD samples and controls.  In a weighted network, 
the degree of a node, which labels the node strength, is defined as the sum of weights. We examined the gene 
node-degree distributions of the co-expression networks generated from the highly correlated gene pairs in the 
five datasets (see the FGCN mining section) and defined the nodes with degrees in the top fifth percentile as 
hub genes in the network91. We compared the hub genes in AD and control networks and defined the hub genes 
present in the control network but not in the AD network as “lost hub genes” and the hub genes present in the 
AD network but not in the control network as “gained hub genes.”

Comparison of GCN connectivity with respect to neuronal cell proportions for the hub 
genes.  Because the identified hub genes mostly had neuronal functions, we focused our analysis of connec-
tivity vs. cell-type proportion on the neuron cell proportions. We divided the samples in the MSBB dataset into 
two group with high and low neuron proportions, respectively, based on the median values across samples. We 
compared the GCN connectivity between the high and low groups in the AD samples and in the control samples. 
The results are shown in Supplementary Fig. 12.

Computation of module eigengenes and correlation with cell abundance and clinicopatho-
logical attributes.  We performed principle component analysis on the expression matrices of the identified 
FGCN modules in the AD and control samples. The first principle component (PC1) of the expression matrix of 
a specific module or a gene set (in the case of mic1) was computed as the eigengene value of that module using 
R function prcomp, which represents the weighted average expression profile for the module82,85. We tested the 
association between the expression of each FGCN module in MSBB dataset and clinicopathological attributes 
by calculating the Spearman correlation between each module’s eigengene profile and three clinicopathological 
traits, namely, CDR, BB score, and Plaque_Mean. To check the extent to which the change in cell-type propor-
tion affected the module expression level, we also examined the correlation between module eigengene values in 
all five datasets and the corresponding estimated cell-type relative proportions by Pearson correlation.

Examination of the neuron proportion changes across different brain regions.  We observed 
that some gene modules specifically enriched with neuron markers showed stronger correlation relationships in 
the AD samples than in the controls, which is intriguing given the perturbed neuron activities in AD. Because we 
performed the FGCN module mining with combined data for datasets with multiple brain regions, we suspected 
that for neuron-associated genes, the detected co-expression relationship might be due to changes in neuron 
populations either across brain regions or across the cohort. Therefore, we checked for concordant cell popula-
tion changes in different brain regions separately in the AD samples and in the controls. Specifically, we exam-
ined whether the estimated neuron or microglia population changes correlated differently across brain regions 
in the AD and control samples. For that, we used the MSBB dataset, because it contains matched samples of four 
brain regions from 56 patients with AD patients and 40 healthy controls. For each condition (AD and control), 
we computed the CCI value that indicates the overall correlation of relative cell-type proportions across the four 
brain regions. We compared the CCIs of the neuron/microglia relative proportions across the AD samples with 
that across the control samples. A higher CCI for the AD samples in comparison with the controls would suggest 
that changes in cell-type proportions in specific brain regions were the cause of the strong co-expression within 
the neuron modules in the AD samples, whereas a lower CCI for the AD samples would suggest that regulatory 
changes could be the cause of the strong co-expression within the neuron modules.

Identification of genes regulated by enriched transcription factors in the neuron modules.  To 
identify genes regulated by the transcription factors in Table 2, we obtained ChIP-seq data for BCL6 and STAT3 
from previous studies41,42. We then overlapped the peak regions in those data with our AD1 and N1 module gene 
list. The full list of genes with BCL6/STAT3 peaks in their promoter regions is given in Supplementary Table 12.

https://aging.brain-map.org/
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