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Glycosylated hemoglobin (HbA1c) has been the sole surrogate marker for assessing diabetic complications. However, consistent-
ly reported limitations of HbA1c are that it lacks detailed information on short-term glycemic control and can be easily interfered 
with by various clinical conditions such as anemia, pregnancy, or liver disease. Thus, HbA1c alone may not represent the real gly-
cemic status of a patient. The advancement of continuous glucose monitoring (CGM) has enabled both patients and healthcare 
providers to monitor glucose trends for a whole single day, which is not possible with HbA1c. This has allowed for the develop-
ment of core metrics such as time spent in time in range (TIR), hyperglycemia, or hypoglycemia, and glycemic variability. Among 
the 10 core metrics, TIR is reported to represent overall glycemic control better than HbA1c alone. Moreover, various evidence 
supports TIR as a predictive marker of diabetes complications as well as HbA1c, as the inverse relationship between HbA1c and 
TIR reveals. However, there are more complex relationships between HbA1c, TIR, and other CGM metrics. This article provides 
information about 10 core metrics with particular focus on TIR and the relationships between the CGM metrics for comprehen-
sive understanding of glycemic status using CGM. 
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INTRODUCTION 

Glycosylated hemoglobin (HbA1c) has been the sole surrogate 
marker for optimal glycemic control and predicting diabetic 
complications [1,2]. However, its accuracy for reflecting an in-
dividual’s glycemic control is limited because it does not pro-
vide detailed information such as glycemic variability, acute 
excursion of glucose change, or severity of hypo- or hypergly-
cemia. Hemoglobinopathies, pregnancy, chronic kidney dis-
ease, and liver disease also interfere with HbA1c measurement. 
Thus, a patient’s glycemic status can vary between excellent, 
fair, and poor, even among individuals with similar HbA1c 
(Fig. 1A) [3,4]. While fingerstick glucose monitoring can make 
up for some HbA1c limitations, such as short-term glycemic 
variability, it cannot fully capture actual glycemic fluctuation. 

In short, treatment decisions cannot be made by HbA1c alone 
or complemented by self-monitoring blood glucose (SMBG) 
(Fig. 1B).

As is well known, in the Diabetes Control and Complica-
tions Trial (DCCT), intensive therapy effectively delayed the 
progression of long-term microvascular complications [1]. On 
the contrary, in the Action to Control Cardiovascular Risk in 
Diabetes (ACCORD) trial, increased mortality was observed 
in the intensive treatment group, which had high glycemic 
variability and incidence of hypoglycemia [5,6]. Thus, these re-
sults also support that HbA1c alone is not a reliable indicator 
for development of diabetic complications, and the paradigm 
has shifted beyond HbA1c.

Continuous glucose monitoring (CGM) overcomes the 
problems inherent in HbA1c and SMBG by informing conse-
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quent glucose level with various CGM metrics to better under-
stand an individual’s unique glycemic profiles, eventually lead-
ing to improved glycemic control. Moreover, since the sensor 
accuracy [7], convenience of use [8], and reimbursement has 
improved and numerous studies have shown improvement in 
glycemic control regardless of diabetes type and insulin deliv-
ery method [9], CGM use is rapidly expanding. 

In February 2019, consensus statements on 10 CGM core 
metrics, including time spent in the time in range (TIR, 70 to 
180 mg/dL), which has emerged as an important metric to 
complement HbA1c, were published [10]. In this review, as 
CGM use continues to increase as a new standard of care in di-
abetes, we provide detailed information about the core CGM 
metrics, especially focusing on TIR, to effectively use and in-
terpret them in clinical practice. Furthermore, we provide cru-
cial information about the importance of CGM-specific struc-
tured education and differences between personal CGM and 
professional CGM to use CGM more effectively in clinical 
practice.

TEN CORE CGM METRICS AND 
AMBULATORY GLUCOSE PROFILE

CGM allows users to obtain a complete glucose profile by mea-
suring interstitial glucose level every 5 to 15 minutes (96 to 288 
measurements/day). It also allowed for development of core 
metrics for comprehensive understanding of glycemic status, 
such as time spent in TIR, hyperglycemia, or hypoglycemia, 
and glycemic variability (See Table 2 of reference 10 for more 
information about core metrics and therapeutic targets) [10]. 
Before interpreting the CGM data, adequate information on 
glucose data are needed for the sake of accuracy. At least 14 
days with 70% more action times are necessary to provide 
good estimates for a 3-month period of TIR and hyperglyce-
mic metrics [11,12]. However, more than 14 days of data might 
be needed to obtain accurate hypoglycemic metrics and coeffi-
cient of variance (CV) [12]. 

When sufficient data have been collected to interpret it, an 
Ambulatory Glucose Profile (AGP) report (Fig. 2) [13], which 

Fig. 1. (A) Even in patients with the same glycosylated hemoglobin (HbA1c) or mean glucose, exact glycemic control may vary. 
For example, some patients can have excellent glycemic control, spending the whole day with glucose levels between 70 and 180 
mg/dL; on the other hand, some patients’ glucose levels may range from 50 to 250 mg/dL. (B) Self-monitoring blood glucose 
(SMBG) cannot fully capture actual glycemic fluctuation like continuous glucose monitoring (CGM) measuring interstitial glucose 
level every 5 to 15 minutes (96 to 288 measurements/day). TAR, time above range; TBR, time below range; TIR, time in range.
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FIG. 1. Ambulatory glucose profile. The AGP provides graphical and statistical representations of a patient’s daily
glucose patterns and key characteristics of glycemic control (e.g., time in range and glycemic variability). AGP, ambulatory
glucose profile.

S2-21

Fig. 2. The ambulatory glucose profiles. Adapted from Ambulatory Glucose Profile [13]. CGM, continuous glucose monitoring.
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visualizes the CGM metrics and targets for a multiple days into 
a single 24-hour period in a paper, can be used for a therapeu-
tic decisions [14]. The 10 core metrics are further described 
below. 

Mean glucose and glucose management indicator
CGM-derived mean glucose and glucose management indica-
tor (GMI) are included in the core metrics. GMI is the estimat-
ed HbA1c from CGM-measured mean glucose. By GMI, we 
can even estimate HbA1c during short periods, as the labora-
tory HbA1c reflects long-term glycemic status over 2 to 3 
months. This makes GMI a much more personalized metric in 
diabetes management than laboratory HbA1c when used 
along with the other core metrics. Recently, Bergenstal et al. 
[15] suggested that GMI should be widely used alongside 
CGM. The formula was derived using regression analysis of 
laboratory-measured HbA1c and CGM-measured mean glu-
cose based on population from three clinical trials using spe-
cific sensor types (Dexcom G4 and G5; Dexcom, San Diego, 
CA, USA) in non-Hispanic whites [15-19]. The study reported 
that each 25 mg/dL increase in mean glucose corresponds to a 
GMI increase of 0.6%. In addition, mean glucose of 100, 150, 
and 200 mg/dL corresponded to a GMI of 5.7%, 6.9%, and 
8.1%, respectively.

However, the published GMI is limited with the populations 
being restricted to the pooled data of clinical trials. Popula-
tions with HbA1c higher than 9.9% and those with hypoglyce-
mia unawareness were excluded. In addition, data sets were re-
stricted to specific races (non-Hispanic whites) and sensor 
types (real time CGM [rt-CGM], e.g., Dexcom G4 and G5). 
Thus, the published GMI may be inaccurate for those with 
high or low mean glucose concentrations. When using the 
published GMI for treatment decisions, race and sensor type 
must be considered. Several studies have reported that the lab-
oratory HbA1c is much higher than GMI derived from flash 
glucose monitoring (FGM, e.g., Freestyle Libre; Abbott, Abbott 
Park, IL, USA), especially in those with a mean glucose level 
below 200 mg/dL and in Asians [20,21]. 

Time in range, time above range, time below range
A recent international consensus on the use of CGM empha-
sized the importance of how much time the patients spent in 
target range, or in hyper- and hypoglycemia, as well as HbA1c 
[10]. They provide information on not only mean glucose but 
also glycemic variability when in conjunction with HbA1c. 

These metrics are classified to TIR (70 to 180 mg/dL), time 
above range (TAR, hyperglycemic metrics), and time below 
range (TBR, hypoglycemic metrics). TBR was differentiated to 
level 1 (TBR, 54 to 69 mg/dL), and level 2 (TBR <54 mg/dL). 
TAR was also differentiated to level 1 (TAR, 180 to 250 mg/dL) 
and level 2 (TAR >250 mg/dL). 

A TIR of >70% (16 hours, 48 minutes), level 1 TAR of <25% 
(6 hours), level 2 TAR of <5% (1 hour, 12 minutes), level 1 
TBR of <4% (1 hour), and level 2 TBR of <1% (15 minutes) is 
recommended in both type 1 and 2 diabetes mellitus (T1DM 
and T2DM), respectively. Every 1% change in time equals 14 
min/day (1 day=1,440 minutes). The 70% and 80% of each 
TIR approximately corresponds to HbA1c 7.0% and 6.5% [22-
24]. Thus, a TIR target of 70% or more was chosen to achieve 
an HbA1c target of 7.0% or 6.5%. Beck et al. [22] also reported 
that an HbA1c of 7.0% equals 25% of TAR (>180 mg/dL). A 
TBR (<70 mg/dL) <4% has been evaluated in various trials in 
T1DM which provides the basis for consensus [17,25,26]. The 
targets are different for older and high-risk groups to empha-
size reducing hypoglycemia [10].

The relationship between TIR and HbA1c
TIR has been shown to have inversely linear relationship with 
HbA1c and hyperglycemic metrics (Table 1). Beck et al. [22] 
evaluated the relationship between HbA1c and TIR at baseline 
and at month 6, and further analyzed the relationship between 
the change in HbA1c and change in TIR in 545 T1DM. Ten 
percentages of TIR (2 hours, 24 minutes) represented an ap-
proximately 0.5% decrease in HbA1c, and every 10% change 
in TIR was associated with a change in HbA1c of 0.4%. By ex-
tension, Fabris et al. [24] estimated the HbA1c from a full 3 
months of data of CGM-derived TIR for accuracy in T1DM. 
Their results were similar to the previous study. 

However, while TIR has high correlation (more than 0.9 by 
Spearman correlation) with other CGM metrics for hypergly-
cemia, only moderate correlation (about 0.6 to 0.7 by Spear-
man correlation) was found with HbA1c [22]. Indeed, a wide 
range of TIR exists for a given HbA1c level, and this suggests 
TIR is not a metric that can simply transform to predicting 
HbA1c. Beck et al. [22] found the change in HbA1c for TIR in-
creased by baseline HbA1c (Fig. 3A). This means that a 10% 
increase in TIR only decreases –0.4% of HbA1c in those with 
baseline HbA1c <7.0% but decreases –1.0% in HbA1c in those 
with baseline HbA1c ≥8.0%. We can also see in Table 1 that 
the slope for estimated HbA1c for TIR is lower at month 6 
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(slope, 0.041) than at baseline (slope, 0.048), because of the re-
duction in HbA1c during using CGM over 6 months [22]. 
Vigersky and McMahon [23] reported that a 10% increase in 
TIR equals an approximately 0.8% reduction in HbA1c in 
1,137 T1DM and T2DM in 18 studies, which was slightly high-
er than the previous studies [22,24]. This result might be relat-
ed to high baseline HbA1c. Among the 18 studies, eight studies 
included participants with baseline HbA1c more than 8.0%. 

Recently, Rodbard [27] revealed the inverse linear relation-
ship between TIR and mean glucose is preserved only in glu-
cose values between 120 and 200 mg/dL, and reversely falls 
when the glucose level decreases below 120 mg/dL (Fig. 3B). 
Moreover, the linear relationship remained when %CV for 
glucose ranges from 20% to 50%, and the relationship with 
TIR and HbA1c were different by %CV. TIR was much lower 
in those with high %CV, even in those with the same HbA1c 
(Fig. 3C).

Another notable finding is that TIR has a weak correlation 
to hypoglycemic and glycemic variability metrics. Reducing 
the mean glucose level while minimizing hypoglycemia has al-
ways been challenging in diabetes treatment. Thus, TIR always 
needs to be complemented with HbA1c and hypoglycemic 
metrics such as TBR or CV to guide therapeutic decisions. 

Association between TIR and diabetic complications
HbA1c has been the only prospectively evaluated tool for as-
sessing the risk for diabetes complications. However, as TIR 
emerges as a new metric for assessing glycemic control in addi-
tion to HbA1c, numerous studies have reported TIR as a metric 
for correlation with diabetes complications (Table 2) [28-33]. 
At first, a TIR of target glucose and TAR computed from 
7-point SMBG but not CGM were retrospectively investigated 
for retinopathy and microalbuminuria outcomes using DCCT 
data and the associations have been reported [34]. Since then, 
Lu et al. [28-30] published a cross-sectional study correlating 
three-day TIR with diabetic retinopathy and intima-media 
thickness in patients with T2DM. Yoo et al. [33] have shown a 
relationship between TIR and albuminuria, a predictor of car-
diovascular disease, in T2DM. Ranjan et al. [31] proved the re-
lationship between the two in the longitudinal study in T1DM. 
Also, TIR was reported to be associated with painful diabetic 
polyneuropathy [32]. However, the TIR cuff-offs for reducing 
diabetes complications are lacking. Until now, whether long-
term cardiovascular outcomes and TIR are related has not 
been established. However, we predict TIR to be the preferred 
metric for determining the outcome of clinical studies, the 
long-term risk of diabetes complications, and assessment of 
individual patient glycemic control, though further prospec-

Table 1. Estimation of HbA1c for given CGM-derived TIR

TIR (70–180 mg/dL)
Vigersky et al.a [23] 

(n=1,137 participants with 
T1DM or T2DM)

Beck et al.b [22] at baseline 
(n=455 participants with 

T1DM)

Beck et al.b [22] in month 6 
(n=545 participants with 

T1DM)

Fabris et al.c [24] 
(n=168 participants with 

T1DM)

20% 10.6 9.4 8.8 9.3

30%    9.8 8.9 8.4 8.9

40%    9.0 8.4 8.0 8.5

50%    8.3 7.9 7.6 8.1

60%    7.5 7.4 7.2 7.7

70%    6.7 7.0 6.8 7.3

80%    5.9 6.5 6.4 6.9

90%    5.1 6.0 6.0 6.5

Baseline HbA1c, % NA 7.5±1.0 7.2±0.8 NA

Equation HbA1c=12.32–0.081×TIR HbA1c=10.31–0.048×TIR HbA1c=9.65–0.041×TIR HbA1c=10.12–0.04×TIR

Every 10% increase in TIR ~0.8% HbA1c reduction ~0.5% HbA1c reduction ~0.4% HbA1c reduction ~0.4% HbA1c reduction

HbA1c, glycosylated hemoglobin; CGM, continuous glucose monitoring; TIR, time in range; T1DM, type 1 diabetes mellitus; T2DM, type 2 di-
abetes mellitus; NA, not applicable. 
aData sets were from 18 clinical trials using CGM for a minimum of 3 days, bData used in analyses were from four randomized trials using CGM 
for a minimum of 10 days for baseline and 14 days in month 6, cLinear regression analysis was used to analyze 3-month full CGM data for this 
equation.
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Fig. 3. (A) The inverse linear relationship between change in time in range (TIR) and change in glycosylated hemoglobin 
(HbA1c) differs by baseline HbA1c. A 10% increase in TIR only matches with a decrease of –0.4% of HbA1c in those with base-
line HbA1c <7.0% but with a decrease of –1.0% in HbA1c in those with baseline HbA1c ≥8.0%. (B) The inverse linear relation-
ship between TIR and mean glucose is preserved only in glucose values 120 to 200 mg/dL, and reversely falls when the glucose 
level decreases below 120 mg/dL. (C) The relationship between TIR and HbA1c differs by %CV. TIR was much lower in those 
with high %CV, even in those with the same HbA1c. Adapted from Beck et al. [22] and Rodbard [27], with permission from Mary 
Ann Liebert, Inc. CV, coefficient of variance.
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tive studies are needed.

CV as a surrogate metric for glycemic variability 
The only preferred metric for glycemic variability presented in 
a recently published consensus report is CV. Percentage CV can 
be easily calculated from the following formula: [%CV= 
100× (SD of glucose)/mean glucose]. It reflects amplitude of 
glycemic variability relative to mean blood glucose, thus, the 
linear relationship with mean glucose disappears and more pre-
cisely reflects the hypoglycemic excursion than SD [35,36]. For 
example, even if the SD is same with 40 mg/dL, if the mean glu-
cose is 150 mg/dL, the CV is 26.7% and, if the mean glucose is 
80 mg/dL, the CV will be 50%. Other metrics such as the mean 
amplitude of glycemic excursion (MAGE), low or high glucose 
index (LBGI, HBGI), area under curve (AUC), and others are 
excluded due to the complexity of calculation [35,37]. 

There is tangible evidence from a number of studies that 
have shown correlation of CV with hypoglycemic metrics, in-
cluding TBR [38-40]. Fear of hypoglycemia is a major barrier 
to intensifying treatment in diabetics. As we intensify treat-
ment to approach the target HbA1c level, the CV and frequen-
cy of hypoglycemic events increase [39,41,42]. CV is also con-
sidered a risk factor for chronic complications in diabetes [43-
46]. Thus, experts recently suggested that CV should be as-
sessed in diabetes care to reduce hypoglycemia and associated 
complications.

The recent consensus recommended a threshold of 36% or 
less as stable glucose homeostasis. Monnier found that diabe-

tes without insulinotropic agents had no CV higher than 36%, 
and hypoglycemia episodes were significantly higher in people 
who had a value of %CV >36 than those who were below the 
threshold [41]. Similar results were found in various studies, 
suggesting a cutoff value of 36% [35,47]. But there are still de-
bates on the target of %CV. Some propose that those with insu-
lin or sulfonylurea regimen should lower the target to 33% to 
protect against hypoglycemia [36,47]. In another study, %CV 
below 34% was suggested for people who desire strict glycemic 
control [38].

DIFFERENCES BETWEEN PROFESSIONAL 
AND PERSONAL CGM 

Two types of CGM are now available: professional (blind) and 
personal (real time). The characteristics according to the type 
of CGM are outlined in Table 3. Professional CGM are owned 
by healthcare providers and provide data for retrospective 
analysis; thus, the glucose data is blinded (or masked) during 
CGM. Personal CGM obtains data for real time or intermittent 
scanning in which the patient can observe the changes and is 
thus used by those who are on regimens with insulin requiring 
long-term monitoring. Both types of CGM show increasing 
evidence of benefits eventually leading to optimal therapy in 
T1DM and T2DM in clinical practice [48]. However, the role 
and indications for the two forms of CGM are different. 

Professional CGM have huge advantages over personal 
CGM when using CGM blindly in clinical trials to obtain indi-

Table 2. Results of studies that evaluated the effect of TIR on diabetes complications

Study Populations Outcome Results

Beck et al. (2019) [34] 1,440 Patients with 
T1DM in DCCT

Retinopathy,  
albuminuria

HRs for retinopathy and microalbuminuria by TIR; 7-point SMBG  
(each 10% decrease in TIR): 1.64 (1.51–1.78) and 1.40 (1.25–1.56)

Lu et al. (2018) [30] 3,262 Patients with 
T2DM

Retinopathy OR for any retinopathy by TIR; CGM (each 10% increase in TIR):  
0.92 (0.88–0.96)

Lu et al. (2020) [29] 2,215 Patients with 
T2DM

CIMT OR for CIMT by TIR; CGM (each 10% increase in TIR):  
0.936 (0.878–0.998)

Yoo et al. (2020) [33] 866 Patients with T2DM Albuminuria OR for albuminuria by TIR; CGM (each 10% increase in TIR):  
0.94 (0.88–0.99)

Ranjan et al. (2020) [31] 26 Patients with T1DM 
with SAP

Albuminuria HR for albuminuria by TIR; CGM (each 10% increase in TIR):  
0.81 (0.72–0.90)

Yang et al. (2020) [32] 364 Patients with diabetic 
polyneuropathy

Painful diabetic  
polyneuropathy

OR for painful diabetic polyneuropathy by TIR; CGM (quartile):  
2.66 (1.16–6.10)

TIR, time in range; T1DM, type 1 diabetes mellitus; DCCT, Diabetes Control and Complications Trial; HR, hazard ratio; SMBG, self-monitor-
ing blood glucose; T2DM, type 2 diabetes mellitus; OR, odds ratio; CGM, continuous glucose monitoring; CIMT, carotid intima-media thick-
ness; SAP, sensor-augmented insulin pump.
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vidual short-term glycemic status for determining the efficacy 
and safety of new drugs and devices, comparing drugs in im-
proving glycemic status, or evaluating the correlation with 
chronic diabetic complications [30,33,49-51]. When using re-
al-time CGM, the patient can modify behavior such as diet, 
exercise, medication, or insulin dose in response to real-time 
changing data, which can affect the outcome of the study 
[52,53]. However, by using a professional CGM, because of an 
unawareness of CGM data in real-time, we can avoid the bias 
caused by a personal CGM. 

Professional CGM can accurately diagnose glycemic status 
and can be used as an education tool because it does not alter 
patients’ temporary behavior as can occur with personal CGM 
use. It also gives actional information by uncovering the pres-
ence of hypo- and hyperglycemia [54]. However, it has no 
alarms for hypo- and hyperglycemia and has limitations in 
long-term monitoring whereas personal CGM are both avail-
able. With personal CGM, the patient can directly adjust diet 
and exercise behavior or insulin dose with adequate patient 
education and training. 

BARRIERS TO THE USE OF CGM SYSTEMS 

The use of CGM is gradually increasing but is still not wide-

spread. Multiple challenges remain to be overcome in patients, 
providers, and even in technology aspects [55,56]. 

The main barriers include alarm fatigue, issues remaining in 
insurance, cost, device discomfort or unfamiliarity of device, 
pain, and possibility of infection. Sometimes the device leads 
to depressive mood [56]. However, alarm fatigue is limited to 
rt-CGM and not FGM [57]. A solution can be changing rt-
CGM to FGM for those who are suffering from alarm fatigue 
but without history of hypoglycemia unawareness. 

Barriers exist in the patient’s point of view, but also to the 
healthcare providers in CGM use expansion. There is a time 
constraint to review and interpret CGM in outpatient clinics. 
Problems for accuracy still remain in the hypoglycemic and/or 
hyperglycemic range, though CGM systems typically have a 
higher accuracy in the euglycemic range [55]. This suggests 
that both providers and patients should be cautious in inter-
preting the glycemic data in hypo- or hyperglycemic ranges.

IMPACT OF STRUCTURED EDUCATION 
WHILE USING CGM

CGM is reported to improve glycemic control of patients with 
T1DM or T2DM [9]. In the meta-analysis identified with 15 
randomized controlled trials, lasting 12 to 36 weeks and in-

Table 3. Comparison between professional and personal CGM

Professional CGM Personal CGM

Methods for obtaining  
glucose metrics 

Blind, retrospective Real-time (RT) observation or flash glucose monitoring 
(FGM) 

Duration Intermittent use by healthcare providers Continuous use by patients 

Device available in Korea Medtronic ipro2 Medtronic Guardian Connect
Dexcom G5, G6 (possible sooner)
Freestyle Libre

Advantages The results cannot bias patient and investigator use 
of trial products because they are unaware of the 
glucose values.

Patient can directly adjust their diet and exercise behavior or 
insulin dose with adequate patient education and training.

Healthcare providers can make appropriate therapy 
changes with T1DM and even T2DM patients 
with unrecognized hypo- and hyperglycemia.

Useful for long-term monitoring in patients who are on  
regimens with basal and prandial insulin.

Both provide optimal therapy adjustment

Limitations No alarms for hypo- and hyperglycemia Clinical trial results may be affected by response to real-time 
data (e.g., temporary behavior change, insulin dose  
adjustment, medication inherence, unethical behavior).

Not allowed for long-term monitoring Alarm or calibration fatiguea, cost

Time consuming for reviewing CGM data

CGM, continuous glucose monitoring; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus,
aLimited to Dexcom G5, Guardian connect.
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volving 2,461 patients with T1DM and T2DM, CGM led to an 
overall 0.17% reduction in HbA1c, with a 70-minute (4.9%) 
increase in TIR, 30-minute (2.1%) decrease in TAR (>180 mg/
dL), and 30-minute (2.1%) decrease in TBR (<70 mg/dL). 

Among three of the studies using FGM without structured 
education, TIR increased by 53.9 minutes (3.7%), and TBR de-
creased by 56.3 minutes (3.7%), but without any significant 
change in HbA1c [9]. One study was evaluated for the efficacy 
of FGM on reducing HbA1c in poorly controlled (HbA1c 
range, 7.5% to 12.0%) T2DM [58], and two others for reducing 
hypoglycemia in well-controlled (HbA1c ≤7.5) T1DM 
[59,60]. These studies were investigated without any training 
provided. A crucial point to note from these studies is that 
while FGM without education has a greater effect on reducing 
hypoglycemia, even in poorly controlled patients, it does not 
lead to a decrease in HbA1c. 

However, compared to previous studies, Hermanns et al. 
[61] showed significant differences with a HbA1c reduction of 
–0.17% in an FGM with education group compared to an 
FGM without education group. This study was designed to 
have structured education with four educational sessions last-
ing 90 minutes each in intervention group. These conflicting 
results suggest that the lack of education for CGM use might 
underwhelm the efficacy of CGM. In addition, it might be cru-
cial to know how to interpret the data and adjust behavior or 
insulin-dose in response to real-time data received from the 
system.

Structured diabetes education has been recognized as an es-
sential part of diabetes therapy for a long time. There is also a 
study emphasizing the importance and effectiveness of CGM-
specific education [62]. HbA1c reduction was compared be-
tween a group that used FGM with complement diabetes man-
agement instruction and a control group with instruction for 
routine SMBG in T2DM on multiple daily insulin injections 
for at least one year. The changes in HbA1c (–0.82%) were 
much higher in the FGM group with structured education 
than in the control group (–0.33%) with SMBG instruction at 
the same time given for education. From this perspective, ef-
fective CGM-specific education programs that can lead to im-
provement in CGM efficacy are in great need.

CONCLUSIONS

CGM technology has rapidly expanded. By measuring glucose 
level continuously, the 10 core CGM metrics emerged, making 

the understanding of an individual’s glycemic status more 
comprehensive. This has helped both health providers and pa-
tients make better treatment decisions than when using 
HbA1c alone. TIR in particular is similar to HbA1c but pro-
vides more information and can also reflect short-term peri-
ods of glycemic status. Evidence for TIR predicting diabetic 
complications is regularly being published, although prospec-
tive studies are currently lacking. Consistent efforts are needed 
to overcome barriers in using CGM. In the near future, we ex-
pect CGM metrics, including TIR, to be widely used in clinical 
practice and eventually replace HbA1c. 
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