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Abstract

Background: Pre-administration of probiotic Lactobacilli attenuates ethanol-induced gastric mucosal injury (GMI).
The underpinning mechanisms remain to be elucidated. We speculated that lactate, the main metabolite of
Lactobacillus that can be safely used as a common food additive, mediated the gastroprotective effect. This study
aimed to gain experimental evidence to support our hypothesis and to shed lights on its underlying mechanisms.

Methods: Lactate was orally administrated to mice at different doses 30 min prior to the induction of GMI. Gastric
tissue samples were collected and underwent histopathological and immunohistochemical assessments, enzyme-
linked immunosorbent assay, quantitative polymerase chain reaction (qPCR) and western blot analyses.

Results: Pretreatment with lactate at 1–3 g/kg significantly curtailed the severity of ethanol-induced GMI, as shown
by morphological and histopathological examinations of gastric tissue samples. Significantly lower level of cytokines
indicative of local inflammation were found in mice receiving lactate treatment prior to ethanol administration.
Western-blot, immunohistochemical analysis and qPCR suggested that gastroprotective properties of lactate were
mediated by its modulatory effects on the expression of the apoptosis regulator gene Bax, the apoptotic executive
protein gene Casp3, and genes critical for gastric mucosal integrity, including those encoding tight junction
proteins Occludin, Claudin-1, Claudin-5, and that for lactate receptor GPR81.

Conclusion: Lactate mitigates ethanol-induced GMI by curtailing local gastric inflammatory response, down-
regulating the expression of the apoptosis regulator and executor genes Bax and Casp3, and up-regulating the
expression of genes encoding tight junction proteins Occludin, Claudin-1, and Claudin-5 and the lactate receptor
GPR81.
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Background
Gastric mucosal injury (GMI) is a common precancer-
ous condition related to the high incidence of gastric
cancer in many Asian countries, including China [1–4].
Current treatment strategy for this troublesome medical
condition focuses on preventing gastric mucosa from
acid erosion, rather than actively repairing the damaged
mucosa [2, 5].
It is known that gastric mucosal injury is associated with

elevated local inflammation in the gastric mucosa, with in-
flammatory cytokines such as IL-1β, TNF-α and IL-6 all be-
ing overexpressed [6, 7]. Apoptosis is a key mechanism
driving the pathogenesis of gastric mucosal injury [8]. Bcl-2-
associated X (Bax) is a cytosolic protein that permeabilizes
mitochondrial outer membrane and has been considered as
one of the core regulators of the intrinsic apoptosis pathway
[7, 9]. Caspase 3 is the key executor protein for the caspases
cascade reaction of apoptosis, interacting with caspase-8 and
caspase-9 [9, 10]. Numerous in vivo studies have reported
that many genera of probiotic Lactobacilli had protective ef-
fects on the gastric mucosa; the underlying mechanisms,
however, remain to be fully elucidated [11–16]. Lactate is a
major metabolite of Lactobacilli that has been widely used as
a food additive for human [17, 18]. Using different disease
models, Hoque et al. (2014) and Ranganathan et al. (2018)
both found that lactate was able to attenuate intestinal in-
flammation via endothelial lactate-receptor GPR81 signaling
pathway [19, 20].
Long-term or excessive drinking alcohol is an import-

ant cause of GMI [21, 22]. Orally administration of abso-
lute ethanol into small animals such as mice has been
proven to be able to cause gastric symptoms closely
mimicking that of humans [23, 24]. The mouse model of
ethanol-induced GMI has been extensively used for anti-
gastric ulcer drug screening and other mechanistic stud-
ies [24, 25]. By adopting this well-established mouse
model, the aims of this study were to assess the gastro-
protective effect of lactate and to investigate its under-
lying mechanisms.

Methods
Reagents, chemicals and kits
L-lactate sodium was purchased from Sigma-Aldrich Co.
(St. Louis, USA). Commercial kits for bicinchoninic acid
(BCA) protein assay and Trizol were from Beyotime In-
stitute of Biotechnology (Nantong, China). Enzyme-
linked immunosorbent assay (ELISA) kits for IL-1β,
TNF-α and IL-6 were from Westang Bio-tech Co., Ltd.
(Shanghai, China). PrimeScript RT reagent Kit for re-
verse transcription and SYBR Green were both from
TaKaRa Co., Ltd. (Kusatsu, Japan). The primary antibody
against Bax was purchased from Biosynthesis Biotech-
nology Co. Ltd. (Nanijing, China) and the primary anti-
body for Caspase 3 was from Proteintech Group, Inc.

(Wuhan, China), and the primary antibody for GPR81
was form Affinity Bioaciences (Beijing, China).

Animal groups and lactate pretreatment
Male Institute of Cancer Research (ICR) mice (10 weeks,
25–30 g) were purchased from Experimental Animal
Center of Wenzhou Medical University (Wenzhou,
China). This study was approved by the Animal Care
and Ethics Committee of Wenzhou Medical University,
China (Ethics approval number: wydy2012–0109). All
experiments were performed in accordance with the
guidelines and regulations of the Committee for the use
and care of animals.
Fifty mice were randomly divided into 5 groups (10

mice per group), including a baseline control group
without any treatment, a GMI–induced disease control
group and three treatment groups pre-treated with low
(1 g/kg), intermediate (2 g/kg) and high (3 g/kg) dosages
of lactate via an orogastric tube 30 min prior to GMI
modeling. Equal volume of NaHCO3 solution pre-
adjusted to the same pH as lactate solutions were orally
given to animals in the disease group.

Ethanol-induced GMI model
Mice were fasted for 24 h with only water given ad libi-
tum before GMI establishment. Absolute ethanol at 0.1
mL/g was orally given to mice in the disease group and
treatment groups [5]. Animals were humanely eutha-
nized using sodium pentobarbital (150 mg/kg, intraperi-
toneal) 1 h after ethanol administration and gastric
tissue samples were collected.

Visual examination of GMI
GMI of the gastric inner surface was visually examined
and imaged with a digital camera (D7000, Nikon, Tokyo,
Japan). Percentages of hemorrhagic lesion area to the
total area of the studied gastric mucosa were calculated
using acquired images and the Image-Pro Plus (IPP) 6.0
software.

Histopathological analysis of GMI
For histopathological examination, gastric tissues were
fixed in 4% paraformaldehyde overnight. Selected tissue
blocks were processed using a routine overnight cycle in
a tissue processor. The tissue blocks were then embed-
ded in wax, serially-sliced into 5 μm sections. The trans-
verse sections were stained with Hematoxylin–Eosin
(HE) for tissue damage, visualized and imaged under a
light microscope (Nikon ECLPSE 80i, Tokyo, Japan).

Detection of cytokines in gastric tissues
Concentrations of three representative inflammatory ef-
fectors in the gastric tissue homogenate, including innate
cytokines IL-1β, TNF-α and IL-6, were examined using
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commercially available enzyme-linked immunosorbent
assay (ELISA) kits per instructions from the manufac-
turer [5]. Enzyme immunoassay (EIA) plates were in-
cubated with dilutions of gastric tissue homogenate
and serially diluted protein standards for 2 h. After
washing, the plates were treated with biotinylated

polyclonal goat anti-mouse IL-1β, TNF-α and IL-6 re-
spectively for 2 h, followed by incubation with strepta-
vidin horseradish peroxidase (HRP) for 20 min. A
tetramethylbenzidine-H2O2 substrate solution was
added to the plates, and the reactions were measured
with a microplate reader at 450 nm.

Table 1 Specific primers used for amplification of targeted genes

Gene name Forward primer Reverse primer

IL-1β 5′- GGAGAACCAAGCAACGACAA AATA −3’ 5′- TGGGGAACTCTGCAGACTCAAAC − 3′

TNF-α 5′- TGGCCCAGACCCTCACACTCAG − 3′ 5′- ACCCATCGGCTGGCACCACT − 3′

IL-6 5′- TGCCTTCTTGGGACTGAT − 3′ 5′- TTGCCATTGCACAACTCTTT − 3’

Occludin 5′- TGAAAGTCCACCTCCTTACAGA − 3’ 5′- CCGGATAAAAAGAGTACGCTGG − 3’

Clauldin-1 5′- TGTTCTTTTTAACCCCATGTGTCTT − 3’ 5′- CACAGCTCAGAAACAGGAGGACT − 3’

Clauldin-5 5′- GAACAGACTACAGGCACTT − 3’ 5′- TGGACATTAAGGCAGCAT − 3’

Clauldin-18 5′- TGTCTTACCATGCCTCTG − 3’ 5′- ACTGTTCATCGTCTTCTGT − 3’

ZO-1 5′- GAGCGGGCTACCTTACTGAAC-3’ 5′-GTCATCTCTTTCCGAGGCATTAG-3’

TJP-2 5′- CCGTGAGGATCGGGAATGAG − 3’ 5′-GCTCTTGCGGAGGTTCTTCT-3’

GAPDH 5′- AGGTCGGTGTGAACGGATTTG − 3’ 5′- GGGGTCGTTGATGGCAACA − 3’

Bax 5′-ACCAAGAAGCTGAGCGAGTG-3’ 5′-CCCAGTTGAAGTTGCCATCA-3’

Caspase 3 5′-ATGGGAGCAAGTCAGTGGAC-3’ 5′-GTCCACATCCGTACCAGAGC-3’

GPR81 5′-ATCCTGGTCTTCGTGCTTGG-3’ 5′-CTGTCCGAAGGGGTAAGCAG-3’

Fig. 1 Effects of lactate on gross morphology and relative ulcer size of gastric mucosa in ethanol-challenged mice. a Gross morphological
changes of gastric mucosa of different groups of mice (scale bar = 5 mm). b Relative ulcer sizes in gastric mucosa of different groups of mice.
Relative ulcer sizes were expressed as ratios of the area of hemorrhagic lesion to the total area of the studied gastric mucosa. C: Control group; D:
Disease group; L1-L3 represent the groups treated with lactate by the dose of 3 g/kg, 2 g/kg and 1 g/kg, respectively. The data are expressed as
the means ± SD (n = 10). *: p < 0.05, **: p < 0.01
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Immunohistochemistry
Gastric tissue blocks from different groups were fixed in
10% formalin and embedded in paraffin. Sections of
5 μm in thickness were prepared for immunohistochemi-
cal (IHC) analysis. Rabbit polyclonal antibodies against
Bax and GPR81 were used. Antigen retrieval was
achieved by high pressure in a citrate buffer (pH 6.0).
The bound antibody was developed with diaminobenzi-
dine (DAB) using a Dako REAL Envision staining kit
(K5007) according to the manufacturer’s instruction.
Stained sections were examined under a light micro-
scope by two independent observers.

BCA assay, SDS-PAGE and Western blot analysis
Concentrations of the total proteins extracted from gas-
tric cancer samples were determined by BCA assay per
instructions from the manufacturer. Protein samples
(20 μg/lane) were separated using SDS-PAGE electro-
phoresis and then electrophoretically transferred to

polyvinylidene fluoride (PVDF) membranes (Millipore,
Billerica, USA). After blocking with 5% skim milk for 2 h
at the room temperature, membranes were incubated
with primary antibodies at 4 °C overnight. Antibodies
against Bax, β-Actin, Caspase-3 and GAPDH were di-
luted with Primary Antibody Dilution Buffer (Beyotime
Institute of Biotechnology) (1:1000 dilution). The mem-
branes were then washed with PBST buffer five times (5
min each) and incubated with secondary antibodies for
2 h at the room temperature. The bands were detected
using enhanced chemiluminescence and visualized with
a ChemiDoc MP Imaging System (BioRad, Hercules,
USA).

RNA extraction and quantitative PCR
Total RNA was extracted from gastric tissues using TRI-
zol Reagent following the manufacturer’s instructions
(Roche, Basel, Switzerland). For qPCR, reverse transcrip-
tion was carried out with the PrimeScript RT reagent

Fig. 2 Effects of lactate on the histopathological changes of gastric mucosa in ethanol-challenged mice. Gastric tissue sections (n = 4 per group)
were stained with hematoxylin and eosin (HE) followed by examination with a microscope (× 20, scale bar = 100 μm; × 40, scale bar = 50 μm).
Black arrows showed the denudation of surface epithelium by ethanol challenge alone. C: Control group; D: Disease group; L: Group treated with
lactate at a dose of 3 g/ kg
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Kit. qPCR reactions were prepared using SYBR Green
(TaKaRa) on a Prism 7500 Sequence Detector. The ex-
pression levels of mRNAs of IL-1β, TNF-α, IL-6, Occlu-
din (OCLN), Claudin (CLDN)-1, CLDN-5, CLDN-18,
ZO-1, tight junction protein 2 (TJP2), and GPR81 were
all normalized to the level of glyceraldehyde 3-
phosphate dehydrogenase GAPDH encoding gene
TDH3. Sequences for qPCR primers for all targeted
genes used in this study were listed in Table 1.

Statistical analysis
All experimental data were expressed as mean ± stand-
ard deviation (SD). Bonferroni test was used to compare
differences between individual groups, with a P-value
less than 0.05 considered statistically significant.

Results
Lactate reduced the severity of ethanol-induced GMI in
mice
Extensive hemorrhagic injuries of the gastric mucosa
were observed in mice that have been orally given abso-
lute ethanol at 0.1 mL/ g (Fig. 1a). No evident lesion was
found in the gastric mucosa from the control group (Fig.

1a). Pretreating mice with lactate prior to GMI induction
with ethanol significantly reduced the severity of GMI in
a dose-dependent manner, supported by both qualitative
(Fig. 1a) and quantitative (Fig. 1b) image analysis.
Given that high-dose of lactate showed the highest

gastroprotective effect, it was decided to use gastric tis-
sues from animals that received lactate at 3 g/ kg for de-
tailed histopathological examination. In agreement with
gross morphological changes, histopathological analysis
of gastric tissue samples from animals pretreated with
lactate showed less necrotic damage of the mucosa, less
local mucosal detachment and less leukocyte infiltration,
suggesting attenuated gastric mucosal damage (Fig. 2).

Lactate mitigated excessive inflammation encountered in
GMI
Anti-inflammatory effect of lactate was determined by
examining the level of pro-inflammatory cytokines IL-
1β, TNF-α and IL-6 in homogenized gastric tissues. Ex-
posure to ethanol triggered overproduction of all three
pro-inflammatory cytokines in gastric tissues relative to
untreated controls (Fig. 3a). Pretreating animals with lac-
tate prior to ethanol exposure significantly mitigated the

Fig. 3 Effect of lactate on the inflammation of gastric tissues in ethanol-challenged mice. a ELISA for IL-1β, TNF-α and IL-6 in the gastric tissues.
Gastric tissue homogenate was prepared for cytokines determination by ELISA. b qPCR for the expression of genes encoding IL-1β, TNF-α and IL-
6 in the gastric tissues. C: Control group; D: Disease group; L: Group treated with lactate at 3 g/kg. The data were expressed as the means ± SD
(n = 6). ** p < 0.01
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over-production of all three pro-inflammatory effectors
(vs. disease group, p < 0.01, Fig. 3a). This was further
supported by qPCR results, which showed over-
expression of genes encoding IL-1β, TNF-α and IL-6 in
the gastric tissues induced by ethanol exposure and
down-regulation of the overexpression of these genes by
lactate pretreatment (Fig. 3b).

Lactate treatment led to less production of Bax and
Caspase 3 in the gastric mucosa of ethanol-challenged
mice
Immunohistochemical (IHC) analysis suggested an in-
creased level of the apoptosis regulator Bax in the gastric
mucosa of mice pre-administered with ethanol, compared
with that of ethanol-free control animals. Pretreating ani-
mals with lactate counteracted such changes (Fig. 4a). In
line with IHC results, western blot indicated that pretreat-
ment of mice with lactate before the induction of GMI
was associated with less production of Bax and Caspase 3,
an apoptotic executive protein (Fig. 4b&c). qPCR con-
firmed above findings, showing down-regulation of the

expression of Bax and Casp3 that were induced by ethanol
exposure (Fig. 4b &c).

Lactate stimulated the expression of Occludin, Claudin-1,
and Claudin-5 in the gastric mucosa of ethanol-
challenged mice
The tight junction proteins, including Occludin, Clau-
dins, and Zonula occludens, are crucial for the
maintenance of gastric epithelial barrier integrity.
qPCR was carried out to determine whether lactate
modulated tight junction integrity. Lactate stimu-
lated the expression of genes encoding tight junc-
tion proteins in the gastric tissues, including
Occludin, Claudin-1, Claudin-5, but not Claudin-18,
ZO-1 or TJP2 (Fig. 5).

Lactate up-regulated GPR81 expression
Given that lactate receptors GPR81 is important for the
biological function of lactate, we tested its expression
upon exposure to lactate. qPCR results showed that the
expression of GPR81 was significantly up-regulated by

Fig. 4 Effects of lactate on the apoptosis of gastric mucosa in ethanol-challenged mice. a IHC staining for Bax (× 20, scale bar = 100 μm). Gastric
samples were fixed and sectioned for staining by the primary antibody of Bax. Brown granules in cells were considered positive results. b and c
qPCR and western blot detection for Bax and Caspase 3, respectively. C: Control group; D: Disease group; L: animal group treated with lactate at
3 g/ kg. The data were expressed as the means ± SD (n = 6). ** p < 0.01

Huang et al. BMC Complementary Medicine and Therapies           (2021) 21:26 Page 6 of 10



lactate treatment (P < 0.01; Fig. 6a). Consistently, IHC
analysis showed more strongly expressed GPR81 in the
lactate group as compared to the non-lactate control
group (Fig. 6b).

Discussion
Gastric mucosal lesions is a severe precancerous condition
of gastric cancer which is one of the leading adenocarcin-
omas in many East Asian countries [3, 5, 26]. Probiotics
have been recommended as an effective supplement to
the current therapy of GMI using antisecretory drugs and
antacid [2]. How probiotics exert their protective effects
on GMI remains to be further uncovered. This study used
an established mouse model to assess the effects of lactate,
the major metabolite of lactobacilli, on gastric mucosa
against ethanol-induced GMI. Key findings of this study
include 1) lactate pre-administration significantly reduced
the severity of ethanol-induced GMI in vivo; 2) lactate
curtailed uncontrolled local inflammation encountered in
GMI; 3) lactate interfered with the apoptosis in the gastric
mucosa by down-regulating the expression of genes

encoding apoptosis regulators Bax and Caspase 3; 4) lac-
tate also up-regulated the expression of genes encoding
defensive tight junction proteins in the gastric tissues, in-
cluding Occludin, Claudin-1, and Claudin-5; 5) lactate up-
regulated the expression of receptor GPR81.
Rodent models of ethanol-induced GMI are preferred

in vivo assays for evaluating gastroprotective efficacy of
potential compounds and to further study their under-
lying mechanisms [5, 27]. This model replicates the typ-
ical clinical manifestations of human GMI, such as
bleeding and erosion of gastric mucosa [23, 24]. Numer-
ous studies have reported that probiotic Lactobacilli
were able to protect the gastric mucosa from ethanol-
induced damage [12, 13, 28, 29]. Lactate is the major
metabolite of probiotic Lactobacilli. Kahlert et al. (2016)
used intestinal epithelial cell lines and reported in vitro
gastrointestinal protective effect of lactate [30]. with the
current study provided solid experimental evidence to
support the in vivo gastroprotection of lactate against
GMI. It should be noted that apart from lactobacilli,
many other microbial species such as Carnobacterium,

Fig. 5 Effect of lactate on tight junction proteins of gastric tissues in ethanol-challenged mice. Total RNA in gastric tissues was extracted and
qPCR was carried out to examine the expression of genes encoding ZO-1, Occludin, TJP2 and Claudin-1, − 5, − 18. C: Control group; D: disease
group; L: Group treated with lactate at a dose of 3 g/ kg. The data were expressed as the means ± SD (n = 6). ** p < 0.01
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Enterococcus, Tetragenococcus may also produce lactate.
Future studies should be carried out to examine any po-
tential protective effect of these microorganisms on gas-
tric mucosal injury. The gastroprotective effect of lactate
against ethanol-induced GMI is possibly multifaceted,
including its anti-inflammatory activity, anti-apoptosis
potential, and its contribution to the integrity of gastric
mucosal barrier. Our study found lactate was able to at-
tenuate local inflammation in GMI, supported by the
significantly lower level of IL-1β, TNF-α and IL-6 in gas-
tric tissue samples. These pro-inflammatory factors have
been widely used by others for evaluation of severity of
GMI [5, 31]. Anti-inflammatory properties of lactate
have been reported by Iraporda et al. (2016) and Ratter
et al. (2018), using an in vivo trinitrobenzene sulfonic
acid (TNBS)-induced colitis model and in vitro human
primary peripheral blood mononuclear cells and mono-
cyte cell cultures respectively [32, 33]. The underlying
mechanisms, however, remain to be fully elucidated. It
has been reported that lactate was able to activate its re-
ceptor GRP81 to inhibit inflammation in mice with col-
itis [20] or activate hydroxycarboxylic acid 2 (HCA2) to

increase the survival of septic mice [34]. Our data
showed that the expression of GPR81 in the stomach
was significantly up-regulated by lactate treatment, suggest-
ing an important role of GPR81 in the gastric protective ef-
fect of lactate. Apoptosis is another key player in the
pathogenesis of ethanol-induced GMI [7]. Our study sug-
gested that the anti-apoptotic effect of lactate might be re-
lated to the down-regulation of Bax expression and
reduction in the activity of Caspase 3. Suppression of apop-
tosis by lactate may also attribute to its anti-inflammatory ef-
fects as apoptosis is known to be mediated by excessive
inflammation [7, 8]. Gastric mucosal barrier is the first-line
host defense against gastric mucosal damages [31, 34]. Stud-
ies by others have found a positive regulatory role of pro-
biotic Lactobacillus casei or lactate on intestinal mucosal
integrity, possibly by accelerating intestinal-stem-cell-medi-
ated epithelial development [35, 36]. Tight junction proteins
are key factors contributing to the integrity of epithelial
layers of the gastric mucus [31, 37, 38]. Using tight junction
proteins as a proxy for gastric mucosal integrity, we found
lactate could promote the expression of OCLN and CLDN-
1, CLDN-5, but not that of TJP2, ZO-1 or CLDN-18.

Fig. 6 Expression of lactate receptor GPR81 in the various groups (n = 4 per group). a Total RNA in gastric tissues was extracted and qPCR was
carried out to examine the expression of genes encoding GPR81. C: Control group; D: disease group; L: Group treated with lactate at a dose of 3
g/ kg. The data were expressed as the means ± SD (n = 6). ** p < 0.01. b IHC staining for GPR81. Gastric samples were fixed and sectioned for
staining by the primary antibody of GPR81. Brown granules in cells were considered as positive results

Fig. 7 Schematic diagram of the protective mechanism. Lactate pretreatment attenuated the ethanol-induced GMI by inhibiting inflammation
and apoptosis, and up-regulating tight junction proteins and the lactate receptor GPR81
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Probiotics have been trialed as a prophylactic or therapeutic
supplement for human GMI, based on many in vivo studies that
support their roles in tuning the complex gastric microbiota in
the human stomach [29, 31, 34]. The current study, along with
our previous work [5, 7] that examined the protective effects of
short-chain fatty acids butyric acid and acetic acid, two metabo-
lites of probiotics, on gastric mucosa, further rationalize the appli-
cation of probiotics in combatting GMI.

Conclusion
In summary, lactate, the main metabolite of Lactobacilli
and some other microorganisms, has a protective effect on
gastric mucosa against ethanol-induced injury, through
anti-inflammation, anti-apoptosis, promoting the expres-
sion of tight junction proteins OCLN, CLDN-1, and
CLDN-5 and up-regulating the expression of a lactate re-
ceptor GPR81. Our theoretical hypothesis regarding the
protective mechanism of lactate is presented in Fig. 7. The
findings of this study underpin the application of probio-
tics as a preventative or treatment strategy for GMI.
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