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ABSTRACT

The past decade has witnessed major breakthroughs

in cancer immunotherapy. This development has been
largely motivated by cancer cell evasion of immunological
control and consequent tumor resistance to conventional
therapies. Immunogenic cell death (ICD) is considered
one of the most promising ways to achieve total tumor
cell elimination. It activates the T-cell adaptive immune
response and results in the formation of long-term
immunological memory. ICD can be triggered by many
anticancer treatment modalities, including photodynamic
therapy (PDT). In this review, we first discuss the role

of PDT based on several classes of photosensitizers,
including porphyrins and non-porphyrins, and critically
evaluate their potential role in ICD induction. We
emphasize the emerging trend of ICD induction by PDT

in combination with nanotechnology, which represents
third-generation photosensitizers and involves targeted
induction of ICD by PDT. However, PDT also has some
limitations, including the reduced efficiency of ICD
induction in the hypoxic tumor microenvironment.
Therefore, we critically evaluate strategies for overcoming
this limitation, which is essential for increasing PDT
efficiency. In the final part, we suggest several areas for
future research for personalized cancer immunotherapy,
including strategies based on oxygen-boosted PDT and
nanoparticles. In conclusion, the insights from the last
several years increasingly support the idea that PDT is a
powerful strategy for inducing ICD in experimental cancer
therapy. However, most studies have focused on mouse
models, but it is necessary to validate this strategy in
clinical settings, which will be a challenging research area
in the future.

INTRODUCTION

The proper functioning of the immune
system has a pivotal role in prevention of
cancer initiation, progression and therapy.
The role of the immune system in cancer
therapy has been widely studied, and the
modern paradigm of anticancer therapy
has accepted the notion that interaction of
dying/dead cancer cells with immune cells is
a crucial factor determining cancer treatment
efficiency. The Nobel Prize in Physiology or
Medicine in 2018 reflects the significance of
immunotherapy. The prize was awarded to

1,2,3

James P. Allison and T. Honjo for revealing
the specific molecular players in immune
surveillance and formulating a strategy for
using checkpoint inhibitors as a potential
cancer therapy.'?

Over the past decade emerged the concept
of immunogenic cell death (ICD), a cell
death modality that stimulates innate and
adaptive immune responses resulting in
the generation of long-term immunological
memory.”” The immunogenicity of cancer
cell death is dictated by the antigenicity and
adjuvanticity of dying cancer cells.” ® The
antigenicity of tumor cells is determined
by the presence of tumor-associated anti-
gens (TAA) and tumor neoantigens (TNA).
However, they usually fail to drive efficient
immunity in the absence of additional adju-
vants required for the recruitment and acti-
vation of antigen-presenting cells (APC).
ICD has an adjuvantlike effect mediated
by the release of damage-associated molec-
ular patterns (DAMPs). These molecules
are normally retained within cells and inte-
grated in their normal functioning, but once
released outside the cells, they act as danger
signals.” ® DAMPs can be actively secreted,
passively released extracellularly or exposed
on the dying cell surface. It is believed that
emitted DAMPs promote the recruitment
and maturation of APCs (eg, dendritic cells)
and thereby mediate presentation of TAA
and TNA to effector CD8 T cells. The list
of DAMPs is still expanding and includes
calreticulin (CRT), heat shock proteins
(HSPs) 70 and 90, high-mobility group box
1 (HMGBI), ATP, annexin Al, type I inter-
ferons (IFNs) and mitochondrial DNA.*? 1
These molecules differ in origin, function,
cell localization, release mechanism and
stage of death at which they are released.'"™"?
The ability of cancer therapy to induce ICD
is clinically important because ICD stimu-
lates anticancer immune responses that are
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critical for the efficacy of the therapy and long-term anti-
cancer irnmunity.M_17

Recently, much attention has been given to ICD,
which can be induced by different stimuli and anti-
cancer treatment modalities, including chemotherapy
with anthracyclines and oxaliplatin, radiotherapy, UVC
irradiation, oncolytic viruses and photodynamic therapy
(PDT).* 1011819 The 1CD induced by various stimuli can
differ in the DAMPs’ profile and has also been linked to
different cell death modalities such as apoptosis, necro-
ptosis™?* and ferroptosis.”> ** In this review, we first
discuss the role of PDT in the induction of ICD and then
assess the advantages and disadvantages of PDT in the
induction of ICD. Finally, we discuss possible strategies
for enhancing the ICD-inducing potential of PDT-based
anticancer therapies.

MAIN PRINCIPLES OF PDT

PDT of cancer involves the systemic, local or topical
administration of a non-toxic, light-sensitive dye known
as a photosensitizer (PS). After the PS accumulates selec-
tively in the tumor, it is excited by illumination with visible
light of appropriate wavelength. In the presence of molec-
ular oxygen in cells and tissues, this leads to the gener-
ation of cytotoxic species and stimulation of signaling
pathways, which consequently leads to cell death and
tumor tissue destruction.” PDT was first applied in the
clinic in 1903 (box 1) and then it became widely used
to treat several types of cancer.”” ™ It is noteworthy that
PDT is currently also used to treat some autoimmune™
and infectious diseases.” ** Very recently, cetuximab sara-
tolacan was approved by the Japanese government for the
treatment of locally advanced or recurrent head and neck
cancer.” This is the first PS conjugated to an antibody; it
consists of the water-soluble silicon-phthalocyanine deriv-
ative, IRDye700DX (IR700), conjugated to cetuximab.
Cetuximab, which is approved by the FDA, targets the
epidermal growth factor receptor, which is overexpressed
in many types of cancer. In this treatment, after cetux-
imab saratolacan is injected intravenously, it attaches
to head and neck cancer cells expressing high levels of
EGFR. Subsequent illumination with red light (690 nm)
as part of the PDT leads to induction of ICD in tumors
and a potent anticancer immune response.

The photodynamic reaction during PDT is based on
photophysical and photochemical processes (figure 1).
After absorption of light (photons), the PS in its ground
state is activated to the shortlived (nanoseconds) excited
singlet state 'PS°, after which it loses its energy by emit-
ting light (fluorescence) or by internal conversion into
heat. The excited singlet state 'PS” may also undergo the
process known as intersystem crossing to form the rela-
tively long-lived (microseconds) excited triplet state “PS’.
The excited triplet state *PS” can then undergo two kinds
of reactions with surrounding molecules.

In the type I photochemical reaction, *PS’ reacts
directly with a substrate, such as polyunsaturated fatty

Box 1 Historical background of photodynamic therapy (PDT):

from fundamental studies to clinical practice

Discovery and development of PDT

A mechanism discovered in 1900 in Munich, Germany by Oscar Raab,
who worked under the supervision of Professor Herman von Tappeiner,
laid the basis of PDT. Studies on the effect of different dyes on protozo-
an viability helped him to notice that light irradiation of infusoria in the
presence of acridine red dye leads to infusoria’s death. Interestingly,
the observed effect was more pronounced in comparison with light ir-
radiation alone and with the dye action in the dark. Oscar Raab and
Hermann von Tappeiner initially linked this phenomenon to light energy
transfer to the dye, similar to photosynthesis.'™® Dr H. Tappeiner pub-
lished research,”" in which he first suggested the possibility of using
the photodynamic effect for medical purposes (the historical name of
the mechanism is associated with light action on the dynamics—mno-
bility—of cells; the term was introduced in 1907).

In 1907, Dr Jodlbauer and Dr Tappeiner proved that the development
of photodynamic reactions requires the presence of oxygen in their
environment.""2

PDT in clinical practice

The use of the photodynamic effect in practice started only a few de-
cades later. In 1948, Figge summarized a series of studies showing that
exogenously injected porphyrins can selectively accumulate in murine
tumors.'™ In these years, suggestions emerged for the possibility of
using porphyrins to detect malignancies in the body. In 1955, Schwartz
obtained a purified mixture of hematoporphyrins known as hematopor-
phyrin derivative (HpD), the first generation of photosensitizers. In 1978,
Thomas Dougherty’s team (Roswell Park Cancer Institute, Buffalo, New
York, USA) used HpD to treat tumors of various localizations." Later, in
1980, Dougherty synthesized from HpD the drug Photofrin, a mixture
of hematoporphyrin oligomers connected to each other by ester and
complex ester linkages. At the same time, Photofrin analogs were ob-
tained in different countries, including Photosan (Germany), Photogem
(Russia), Hiporfin and Deuteporfin.'"*""" Since the 1980s, there has
been a rapid development of PDT, including the development of new
drugs and capabilities for their application. Photosensitizers of different
chemical nature are being developed,'' and areas of PDT application
are expanding: anticancer therapy, acne,'’® antimicrobial therapy,
psoriasis,'® atherosclerosis,'®' herpes'?? and age-related macular
degeneration.'?

acids in cell membrane lipids, and transfers an electron
or a proton, leading to the formation of organic radicals
(figure 1). These radicals may further react with cellular
oxygen to produce reactive oxygen species (ROS) such as
superoxide anion (O,”), hydroperoxide radical (HOO"),
peroxides (H,O,, ROOH) and hydroxyl radical (HO"),
and initiating free radical chain reactions. The hydroxyl
radical, HO®, forms predominantly in the reaction of
peroxides with Fe*" (Fenton reaction). HO" is the most
active oxygen radical, lives no more than hundreds of
nanoseconds, and can oxidize almost any organic mole-
cule. Alternatively, in the type II photochemical reaction,
the triplet PS’ can undergo triplet-triplet energy transfer
to molecular oxygen (triplet in the ground state) to form
excited-state singlet oxygen (102), an extremely strong
oxidizing agent with a lifetime in biologic media from a
few to hundreds of nanoseconds (figure 1). Type I and
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Figure 1
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Mechanisms of photodynamic reaction during photodynamic therapy (PDT). (1) Following the absorption of

photons (hv), one of the electrons of the photosensitizer (PS) is boosted into a high-energy orbital (S, or S,) and activated to
the short-lived (nanoseconds) excited singlet state ('PS"). 'PS® can lose its energy by internal conversion into heat (2) or by
emitting light (fluorescence) (3). Alternatively, 'PS" transforms into a relatively long-lived (microseconds) excited triplet state
(PS") via an intersystem crossing process (4). 3PS’ moves directly from a triplet to a singlet state ('PS) by emission of light
(phosphorescence) (5) or undergoes two kinds of reactions with surrounding molecules. In the type | photochemical reaction
(6), °PS’ reacts directly with a substrate (eg, polyunsaturated fatty acids in cell membrane lipids) and transfers an electron or
a proton, forming organic radicals. These radicals may further react with cellular oxygen to produce reactive oxygen species
(ROS), such as superoxide anion (02"), hydroperoxide radical (HOO®), peroxides (H,0,, ROOH) and hydroxyl radical (HO"),
as well initiate free radical chain reactions. In the type Il photochemical reaction (7), the triplet SPS* can undergo triplet—
triplet energy transfer to molecular oxygen (triplet in the ground state) to form excited-state singlet oxygen (102). Type | and
type Il photochemical reactions can be simultaneous, and the ratio between them depends mainly on the type of PS used,
the concentrations of substrate and the availability of oxygen. As a result of the photodynamic reaction, various molecular
mechanisms are activated, leading to different cell death modalities, recruitment and activation of immune cells and vascular

damage.

type II photochemical reactions can occur simultane-
ously, and the ratio between them depends mainly on the
PS type, substrate concentrations and oxygen availability.
However, for example, when using tetrapyrrolic PS in a
cellular environment, type II photochemical reactions
prevail, and 1O2 is regarded as the most important ROS in
PDT-mediated cytotoxicity. The primary products of the
interaction of 1O2 with biological molecules (including
lipids, proteins and nucleic acids) are hydroperoxides
and cyclic endoperoxides, the decomposition of which,
as in type I photodynamic reactions, initiates chain reac-
tions of free radical peroxidation.

PSs can be divided according to chemical structure
into non-porphyrin and porphyrin (or tetrapyrrole)
compounds. The most common non-porphyrin PSs are
based on phenothiazine dyes (analogs of methylene blue
and toluidine blue), cyanines such as merocyanine 540
and polycyclic aromatic compounds, including hyper-
icin and hypocrellin. PSs with a tetrapyrrole structure
are more common. The first clinically approved PSs are
hematoporphyrins (HpD, eg, Photofrin) (box 1), which
are still being used in the clinic, for example, for treat-
ment of cancer of the cervix,”* esophagus,” colorectal

cancer” and oral squamous cell carcinomas (SCC).?’7
Efforts to reduce the skin toxicity of PSs optimize their
optical and physico-chemical properties and improve
their selective accumulation in tumors led to the produc-
tion of numerous second-generation photoactive dyes.
Active substances that have been clinically approved
or are being preclinically tested as second-generation
PSs are from the groups of texafirins (Lutrin), phenyl-
porphyrins (m-THPP), chlorins (NPe6, Foscan, Verte-
porfin, Radachlorin, Photodithazine), bacteriochlorins
(Tookad) and porphyrazines (Photosens, Photocyanine,
Pc4). Besides this, 5-aminolevulinic acid and its deriv-
atives, which are low-molecular-weight prodrugs, are
precursors of endogenous protoporphyrin XI in the
heme biosynthetic pathway. To further improve the phar-
macokinetics of PSs and thereby reduce their systemic
side effects, so-called third-generation PSs are being
proposed by various research groups. The main idea of
third-generation PSs is based on combining a photoac-
tive chromophore with a targeting moiety or vehicle for
directed delivery to cancer cells. In recent years, nano-
technology has been used for this purpose, including
polymeric nanoparticles, micelles, nanostructured lipid
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Box 2 Role of the photodynamic therapy (PDT) in the

modulation of anticancer immunity

Several studies revealed that PDT effectively modulates both innate and
adaptive immunity. Local injuries and oxidative stress in the tumor tis-
sue induced by PDT activate an acute inflammatory process necessary
to remove tissue residues and restore homeostasis (direct pathway).
On the other hand, immunogenic cell death (ICD) induced by PDT leads
to activation of antitumor immunity through danger signaling mecha-
nisms caused by activation of damage-associated molecular patterns
(DAMPs), which stimulate innate immunity, resulting in activation of
adaptive immune responses (indirect pathway).'**

The participation of the immune system in the development of the or-
ganism’s response to photodynamic effects (direct pathway) was first
mentioned in a paper by Yamamoto et al in 1991, who described the
activation of macrophages (mediated by Fc-receptors) due to lipid per-
oxidation of lymphocyte membranes under the action of reactive oxygen
species generated by photodynamic reactions.'? In 1993, Agarwal et a/
showed that PDT causes rapid and massive release of proinflammatory
mediators from the membranes of tumor cells, damaged endothelial
cells and tumor stroma cells.'?®'#" In 1996, Korbelik revealed the induc-
tion of inflammatory mediators during PDT, such as arachidonic acid,
cytokines, histamine and the complement system.?

In the same period, the works of Gollnick et aland Nseyo et al were the
first to mention that PDT-treated cells secrete a number of cytokines,
including tumor necrosis factor, interleukin (IL)-1p and IL-6, which par-
ticipate in the recruitment of neutrophils and other myeloid cells.® ™%
A few years later, Gollnick et al demonstrated that tumor cell lysates
obtained after PDT can activate dendritic cells and induce an antitumor
immune response (indirect pathway)."®' A decade later, in 2012, the
team led by P Agostinis used a ‘gold standard’ model of immunocom-
petent mice vaccinated with PDT-treated cancer cells to demonstrate
for the first time the immunogenic nature of PDT-induced tumor cell
death.*

carriers, liposomes and metal nanoparticles. In addition,
targeted PS delivery is also being developed by using
the technology for dendrimer preparation and conjuga-
tion of PSs with biomolecules, including sugars actively
captured by tumor cells or proteins effectively binding
to receptors that are hyperexpressed on the tumor cell
surface.”® *

The radical lOz, the photochemical production of
which underlies the photodynamic effect of almost all
PSs, has a short lifetime. Therefore, it is important that PS
localization in tumor tissue occurs between PS administra-
tion and irradiation (drug-to-light interval). The produc-
tion of ROS induced by PDT leads to tumor destruction
by various mechanisms, depending on the localization of
the particular PS. PDT influences the tumor vasculature,
causing shutdown of vessels and consequently depriving
the tumor of oxygen and nutrients."” Equally important
is the rapid recruitment and activation of immune cells,
which leads to tumor elimination and long-term tumor
control ** (box 2). Importantly, PDT can also directly
induce ICD of tumor cells by irreversible light-driven
damage, which will be discussed further in this review
(figure 2).

PS FEATURES: SUBCELLULAR LOCALIZATION AND DOSE
Depending on their chemical properties, PSs can accu-
mulate and initiate their damage in different cellular
compartments. The main sites of PS localization are mito-
chondria, lysosomes, the endoplasmic reticulum (ER),
Golgi apparatus, plasma membrane or their combina-
tions. As localization plays an important role in deter-
mining whether the cell death will be immunogenic,
characterization of new PSs should include analysis of
their subcellular localization sites. It has been shown
that one of the prerequisites of ICD is ROS produc-
tion induced by ER stress, with subsequent exposure of
one of the key DAMPs, CRT and activation of the host
immune system against cancer.' * Therefore, from the
point of view of PDT-induced ICD, it is logical to assume
that direct targeting of PSs into the ER will be an effec-
tive strategy for cancer eradication. For instance, some
studies have demonstrated that hypericin directly accu-
mulates in the ER, and on PDT, it leads to the production
of high levels of ROS and subsequent formation of strong
immune responses.”’ * However, not all PSs accumulate
in the ER. For a PS to accumulate in the ER, it must have
hydrophobic or amphiphilic properties, and in the latter
case, it also depends on the charge of the PS molecule.
Hydrophilic PSs localize primarily in endosomes/lyso-
somes and are then redistributed in the cytoplasm. If the
PS is delivered directly into the ER, both PDT efficiency
and immunogenic effects increase.”” Several studies
implemented this strategy by double-targeting the ER to
trigger robust ER stress. For instance, a nanosystem for
synchronous ER-targeting PDT immunotherapy has been
developed. The first part of the system ensures delivery of
the PS indocyanine green by conjugating it with hollow
gold nanospheres and FAL peptides acting as targets
for the ER. The second part consists of FAL-modified
liposomes linked to hemoglobin as an adjuvant oxygen
supply. Although indocyanine green localizes mainly in
the cytoplasm, its targeted delivery into the ER in combi-
nation with enhancement of oxygen availability induces
robust ROS-based ER stress followed by CRT exposure,
DC maturation (CD11c'CD80'CDS86%), stimulation of
CD4" and CD8" T cell proliferation and production of
cytotoxic cytokines (tumor necrosis factor (TNF)-o,
IFN-y) in CT26 and B16 tumor models.”” The ER involve-
ment in the development of an immunogenic response
was shown for photodithazine-based PDT against murine
glioma GL261 and murine fibrosarcoma MCA205 cells.*’
These findings indicate that redirecting the PS to localize
in the ER promotes effective PDT-induced cancer cell
death, followed by development of an adaptive antitumor
immune response.

On the other hand, localization of the PS in other
cellular compartments may also have immunogenic prop-
erties when used in PDT. In this regard, it has been shown
that while photosens is localize mainly in lysosomes, its
immunogenicity in PDT has been demonstrated. This
immunogenicity is characterized by DAMPs emission
(CRT, HMGBI1 and ATP), DC maturation and effective
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Figure 2 Photodynamic therapy (PDT)-induced immunogenic dell death at a glance. Photosensitizers (PSs) used in PDT
have various chemical structures and can be divided into non-porphyrin and porphyrin (or tetrapyrrole) compounds. It has been
experimentally proven that after accumulation in tumor cells and excitation by light of appropriate wavelength (hv), some PSs
in each group of PSs can induce immunogenic cell death (ICD) (1). ICD refers to an immunological feature of cell death and is
observed in immunogenic apoptosis and immunogenic necroptosis, as well as in mixed cell death types (2). The role of PDT in
the induction of ferroptosis 2 ' in cancer cells needs to be further clarified '** . Importantly, only a fraction of cancer cells can
be reached by light during PDT because light can penetrate only to a limited depth. ICD stimulates innate and adaptive immune
responses, resulting in long-term immunological memory. Of note, the immunogenicity of ICD is mediated by the antigenicity
(3) and adjuvanticity (4) of dying/dead cancer cells. The antigenicity of tumor cells is determined by the presence of tumor-
associated antigens and tumor neoantigens (3). However, tumor-associated antigens usually fail to drive efficient immunity
in the absence of additional adjuvants required to recruit and activate antigen-presenting cells. It is currently not known how
PDT in combination with the above-mentioned PSs can modulate the antigenicity of dying cancer cells. The adjuvanticity of
ICD resides in the release of damage-associated molecular patterns (DAMPs) such ATP, HMGB1 and HSP and CRT exposure
on the outer cell surface (4). The emitted DAMPs promote the recruitment and maturation of antigen-presenting cells (eg,
DCs) (5, 6), which leads to optimal antigen presentation to CD8* T cells (7) and induction of antitumor immunity (8), resulting in
significant suppression of tumor growth and/or regression of cancer and decreased risk of metastasis. The activated anticancer
immunity aims to eradicate cells deep within the primary tumor and, therefore, significantly enhance PDT efficiency. The ‘gold
standard’ for determining the true immunogenicity of cell death requires the conduction of experimental studies in vivo (mouse
prophylactic tumor vaccination model) (9). For this, immunocompetent mice are first vaccinated with PDT-treated cancer cells in
one flank and 1 week later rechallenged with living cells of the same type in the other flank (10). Protection against tumor growth
at the challenge site is interpreted as a sign of successful priming of the adaptive immune system (11). *Examples of PSs with
presumed but not fully proven immunogenic properties (lack of DAMPs expression and/or lack of immunogenicity either in vitro
or in vivo). CD, cluster of differentiation; CRT, calreticulin; DC, dendritic cell; HMGB1, high-mobility group protein box 1; HSP,
heat shock protein; hv, photons, IFN, interferon; IL, interleukin;.

decrease of tumor growth in the fibrosarcoma MCAZ205
murine prophylactic tumor vaccination model.*

simultaneous application of two PSs. In PDT, this
approach has been realized by using the following

Moreover, it is conceivable that PSs can simultane-
ously affect several cellular compartments. For instance,
redaporfin specifically accumulates in the ER and Golgi
apparatus and induces apoptosis.” Dispersion of the
Golgi apparatus or inhibition of its function significantly
reduces the efficiency of redaporfin-based PDT. In the
PDT reaction in a prophylactic tumor vaccination model
using PDT-treated TCl lung cancer cells, redaporfin
acts as an ICD inducer that triggers elF2a phosphoryla-
tion, DAMPs release (ATP, CRT, HMGB1) and decreased
tumor growth.*’

Of interest is that an approach that damages both
lysosomes and mitochondria can be achieved by the

pairs of PSs: Photofrin or N-aspartyl chlorin E6 (NPe6),
which target lysosomes, and a benzoporphyrin derivative
(BPD, Verteporfin), which targetets mitochondria.**™’
In contrast to the use of a single PS, this PDT protocol
sequentially evoked lysosomal and then mitochondrial
photodamage, which provided better tumor eradication.
However, the question of whether this approach can acti-
vate ICD has not been raised. Sequential application of
two PSs with different subcellular localization is a prom-
ising ICD-inducing strategy, and as greater understanding
is gained, many more interesting and challenging find-
ings are expected.
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In addition to the localization characteristics of PSs, it
is important to mention that high doses of PSs increases
the risk of side effects (eg, pain, erythema, non-scarring
skin lesions and death of non-tumor cells in the vicinity
of the light-exposed area).”’ Therefore, it is important
to select an optimal PS dose at which PDT induces ICD
with minimal damage to normal cells. The efficacy of ICD
induction during PDT may be non-linearly dependent on
the PS dose.

Ithas been shown that alow dose of the non-porphyrinic
PS OR141 in PDT induces a slower death of mouse SCC7
and human A431 SCC cells, but it provides a more rapid
emission of DAMPs (HMGBI1, ATP, annexin Al, Hsp90)
and expression of major histocompatibility complex
(MHC) I molecules (H2Kk). The subsequent inhibitory
effects of the low dose on tumor growth in immunocom-
petent C3H/HeNRj mice was more pronounced than
when a 10-fold higher dose was used.” PSs might also be
able to penetrate into normal cells, so the use of high PS
doses can cause significant dark toxicity to normal non-
cancerous cells. This can be detrimental for several cell
types, and particularly brain cells, as morphofunctional
disorders in neuron-glial networks may lead to significant
disruption of central nervous functions and aggravate the
patient’s condition.””**

The use of high doses of PS can be avoided by using
nanostructures to deliver the PS directly to specific tumor
cell compartments to trigger ICD while minimizing
contact with normal cells. Therefore, to improve the effi-
ciency of the PDT reaction, there is a need to develop
nanosystems with an optimal combination of PSs and
ICD inducers that will maintain the oxygen supply at the
target location.

CLASSES OF PHOTOSENSITIZERS IN PDT-INDUCED ICD

ICD refers to an immunological characteristic of cell
death that does not correlate with other features,
including mechanism and manifestations, and can involve
several cell death modalities (apoptosis, necroptosis,
ferroptosis, pyroptosis) that stimulate a host immune
response against antigens derived from dying/dead
cancer cells.'? #* #* 2 %550 The ability of anticancer treat-
ment to efficiently trigger ICD is one of the key prereq-
uisites for successful anticancer therapy. Although many
cellular stressors can induce ICD, the specific pattern
of the molecular players and particular death mecha-
nisms depend on the treatment modality and probably
on the cancer cell type as well.”” For cancer cells to be
considered immunogenic, the following criteria must
be fulfilled.* ' *® First, the cancer cells undergoing ICD
in vitro must stimulate immune responses that protect
mice against challenges with live tumor cells, that is, that
they function as a vaccine. In this way, in vivo ICD must
trigger a response of the innate and subsequently adap-
tive immune system that lead to suppression of tumor
growth at the site rechallenged with cancer cells. Of note,
APCs preloaded with dying/dead cancer cells can also

be employed for vaccination.” Thus, the concept of ICD
implies activation of the innate and adaptive immune
system components by actively or passively emitted
DAMPs. Although the emission of DAMPs from PDT-
treated cancer cells has been widely reported, the pattern
of DAMPs varies depending on the treatment regimen
and the type of cancer cells. The most universal feature of
dying PDT-treated cancer cells is exposure of the calcium-
binding protein CRT on the outer surface of the plasma
membrane.*” °* % ' CRT is normally localized in the ER
lumen, but when it is exposed on the surface, it is recog-
nized by low-density lipoprotein receptor-related protein
1 (LPR1, CD91) and serves as the ‘eat me’ signal for APCs.
CRT exposure is attributed to ER stress caused by accumu-
lation of misfolded proteins and the resultant unfolded
protein response (UPR).* ®*** It should be noted that
the detailed molecular mechanisms of the PDT-induced
CRT exposure can differ depending on the type of PS.
For example, CRT exposure on Rose Bengal acetate
(RBA) treatment is accompanied by co-translocation of
ER protein 57, whereas during hypericin-based PDT this
co-translocation is not detected.*” ®® Also, the phosphory-
lation of eukaryotic initiation factor 20 plays a crucial role
in UPR induction and is commonly regarded as obliga-
tory for CRT exposure.’” However, this phospohorylation
can be absent on hypericin-based PDT.” * Interestingly,
CRT can also be released by activated macrophages, on
which it can bind to the surface of viable cells and thereby
mediate their clearance.”

Other ER chaperones can also be exposed on the
plasma membrane surface of dying cancer cells. PDT-
induced externalization has been reported for HSPs,
including HSP70, HSP90, HSP27, HSP34, HSP60 and
HSP72/73.4% 65 66 7074 1¢ is known that these DAMPs are
required for presentation of TAA to APC, thus promoting
the anticancer immune responses.

Other reported PDT-associated DAMPs include
HMGBI1 and ATP, which are emitted from PDT-treated
dying/dead cells.” ™ ™ Recently, it has been shown
that photodithazine and photosens are also capable of
inducing ICD associated with ATP and HMGBI emis-
sion.* HMGBI can induce activation of innate immune
responses by interaction with toll-like receptors 2 and 4
and possibly with other pattern recognition receptors on
APC. However, ATP promotes the recruitment of APC
by binding to their purinergic receptors, which is inter-
preted by APCs as a ‘find me’ signal. ATP can be either
passively released from cells because of the loss of plasma
membrane integrity or actively secreted; in the latter case,
it is regulated by a specific signaling pathway.'? Like the
CRT mechanism, the precise mechanism of ATP release
under PDT treatment seems to have its specific features.
For example, in contrast to the ICD induced by chemo-
therapeutics,” hypericin-based PDT induces secretion of
ATP in an autophagy-independent manner.” All these
data suggest that PDT based on different PSs efficiently
induces the emission of the key DAMPs from cancer cells
(figure 2).
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Another factor that may modulate anticancer immune
responses to ICD, as well as ICD itself, is the PS dose and
the light energy used for irradiation in PDT regimen.
In fact, these two parameters affect the strength of cell
death induction and determine how quickly cancer cells
proceed to the late stages of cell death,** which has been
recently shown to be decisive in the immunogenicity of
dying cancer cells. In this regard, it has been shown that
the optimal radioimmunotherapy regimens are highly
dependent on how the radiotherapy doses and fraction-
ation schedules modulate type I IFN.”® ™ Therefore, a
better understanding of the correlation between ICD on
the one hand and the PS dose and the light energy on the
other will provide a deeper understanding of the molec-
ular mechanism of immunogenicity. In turn, that will lead
to the development of novel, more efficient therapeutic
approaches that may have important implications for the
choice of PDT regimens in the clinic to convert immuno-
therapy unresponsive patients into responders.

Non-porphyrin PSs in ICD induction

The first PS shown to induce ICD is hypericin, an anthra-
quinone derivative of natural origin with specific ER
localization®® % (figure 2). It is still the most studied PS,
and the molecular mechanisms underlying its induction
of ICD and subsequent development of ICD have been at
least partially elucidated.** ® " In their initial work, Garg
et alshowed that in T24 human bladder carcinoma cells in
vitro, hypericin-based PDT can induce ICD with surface
exposure of HSP70 and CRT as soon as 30 min after PDT,
and that this is associated with the active secretion of ATP
and passive release of CRT, HSP90 and HSP70. Co-in-
cubation of PDT-treated dead cells with JAWSII murine
DCs resulted in their phenotypic maturation (CD80"8",
CD83"s"  cD86M" MHC I1"#8") and functional stimula-
tion (NO"&" TL-10°™" IL-1p"8")*# 54 (table 1). In vivo,
they showed that cancer cells undergoing cell death after
hypericin-based PDT are immunogenic in two different
mouse models by using CT26 colon carcinoma cells and
orthotopic glioma cells (GL261). The authors showed that
dead/dying CT26 murine colon carcinoma cancer cells
protected syngeneic mice against subsequent challenge
with the same viable cell line,* and the prophylactic effi-
cacy of the ICD-based DC vaccine was demonstrated in the
orthotopic GL261 murine glioma. It has been shown that
the ICD-based DC vaccine induces an increase in brain
infiltration with CD3’, CD4" and CD8" Tlymphocytes,
Thl cells, CTLs and Th17 cells, along with a significant
reduction in regulatory T cells.”” Re-exposure of spleno-
cytic T cells to untreated glioma cells led to enhanced
IFN-y production, which can be regarded as a sign of an
immune memory response. These studies demonstrate
that hypericin-based PDT efficiently induced ICD in
several cancer models in vitro and in vivo.

The other promising non-porphyrin PS is benzo-
phenazine OR141,* which also localizes specifically in
the ER. OR141 induces cell death mainly through the
mammalian target of rapamycin signaling pathway and

by inhibition of proteasomal deubiquitinases, resulting in
ER stress. CRT exposure and release of HSP90, annexin
Al, HMGBI1 and ATP on treatment with OR141-PDT has
been reported for several cell lines.”? " In a therapeutic
vaccination model, dying cells induced marrow-derived
dendritic cell maturation (CD80"8", CD86"5" MHC
I1"'8") in vitro as well as in vivo and led to a delay of tumor
growth and an increase in survival of syngeneic mice with
SCC7 murine head and neck carcinoma™ or Abl meso-
thelioma®' (table 1). Importantly, the DC-based vaccine
proved to be even more effective than vaccination with
the PDT-treated carcinoma cells themselves.”

ICD can also be induced by PDT based on
8-methoxypsoralen (8-MOP). This PS has a different
mechanism of photo-induced toxicity: it does not require
oxygen but intercalates into DNA and forms cross-links
with one or two DNA strands on UVA irradiation. 8-MOP
is applied in extracorporeal photochemotherapy for cuta-
neous T-cell lymphoma; white blood cells in peripheral
blood are exposed to 8-MOP-UVA and then infused into
the patient vasculature. 8-MOP-UVA treatment of murine
melanoma cells was shown to result in exposure of CRT
and emission of ATP, HMGBI and type I IFN** (table 1).
In addition, a prophylactic vaccination model proved
that ICD can be induced by 8-MOP-UVA treatment in
several melanoma cell lines.*” In another study, dying
YUMM!1.7 murine melanoma cells or MC38 murine colon
adenocarcinoma cells pretreated with 8-MOP-UVA were
co-incubated with platelet-containing peripheral blood
mononuclear cells from tumor-bearing mice. Intravenous
reinfusion of the cell mixture into the tumor-bearing
mice (multiply repeated procedure) induced a signifi-
cant delay in tumor growth.” These data indicate that the
selective antitumor effects of extracorporeal photochem-
otherapy are based on the induction of ICD and suggest
that extracorporeal photochemotherapy of cutaneous T
cell lymphomas is a potential therapeutic approach. The
opposite results were obtained for 8-MOP-UVA-treated
peripheral blood mononuclear cells from patients with
graft versus host disease and alloreactive T cells.** Despite
pronounced expression of several DAMPs by dying cells,
including CRT and HMGBI, and their engulfment by
APC, these dying cells did not stimulate DC maturation.
These data may be explained by the stage of cell death.
It is conceivable that the cell death stage at which dying
cells were co-cultured with DC was not immunogenic
enough to induce activation/maturation of DCs. In this
regard it has been shown that only cells in the early death
stage are immunogenic.**

Pronounced production of DAMPs has been reported
after treatment with the non-porphyrin PSs listed above,
and after application of RBA, a fluorescein derivative.”
The authors showed that the pattern of DAMPs differs
between cells dying by apoptosis and those undergoing
autophagy: apoptotic cells exposed CRT while autophagic
cells did not, and they were not able to release ATP. Yet,
the immunogenicity of cell death induced by RBA-ICD
must be demonstrated in vivo.* ®

Alzeibak R, et al. J Immunother Cancer 2021;9:e001926. doi:10.1136/jitc-2020-001926



panuiuon

1Qy 01 pasodxa-al usym
(uoneindod ,8@o eAsod
A-N41) uononpoid A-N4| |
‘sejhoous|ds

ur s|j9o 1+ao pue ,8ao |
'S|[992 ewol[ay10saW

palI- L7 1O Yum pawnd

sO(Q Jo [elpuajod uonesbiw |
Jowny

ul A-4N| pue ‘serfooydwiA|

-1 +800 Yum uonesyyul |
(slPo Lay) 821w

9/97vg Ul [9pOW UOITBUIDOBA
L. 0Q peseq-1ad dnnadessyl
siown}

pajesi}-1ad ul uolesjyul ,.8dd
"UOIJRUIDORA S|[90 /DDS
PalIM-1Ad ueyl 8AI108)8 aiow
uoljeurooeA DA pased-1ad
:901W [NeH/HED Ul

(youll OHN
“46y07A0 ‘46,9800 ‘46,,08AD)
sD(Q J0 uojesnjew oidAjousyd

(4!l OHI 46,9800 ‘45,,08A00)

LEDINH PuUe 06dSH JO eses|al
{140 J0 ainsodxs 9oBUNS

dlv pue LgoINH
‘| UIXSUUE ‘06dSH 40 oses|al

a/N

(Bulureys

8Ap [enA B yum
ainsodxa JaSpid
‘abenes|o duvd
:gaM) sisoydode

BUWOI[OY10SaW
auuNW Z1qy ‘ LAy

BuwouloIed
plowJspids uewny
LEPY ‘ewoulded %osu

2S |opow uopeulooea oinadelay]  sOQ 40 uoljeinew oidAiousyd {140 10 ainsodxe 9oBUNS 91| pue SIS0I0aN pue peay auunw /00S u3 Ly LHO
S|199 192719 yim
uolje|nwiisal uo uononpo.d
A-N4I Joybiy Apueoyiubis
pamoys s||99 | d1koous|ds
sjj90 2 }"1 pue
s710 ‘sieo 1M1 ‘se1kooydwiAl-L
.80 pue @D ‘seyhooydwi|
-1 ,£a9 Aq uonesnyui ureiq |
901w 9/19.80
olpuabuAs uaradwooounwiwil (4l OHN dlv pue
Ul [9POW UOIeUIdoBA Od  ‘45,07AD ‘46,9800 ‘y6,08a0)  LEDINH 4O 8sesjal (06dSH pue (abees|o g-asedseo
0/ paseq-1ad a1oejAydoid sOQ jo uoneinjew aidAlousyd 0/dSH ‘14D 10 ainsodxe aoepng :gM) sisoidody ewolb suunw 19219
20IW
9/g7vg 1us1edwosounwiwl
Ul S]182 9210 peiesli-1dd (e6eAEBIO dHVd
-uiouadAy Buisn jepow dl1V jo ases|ai pue g-asedsed BWOUIDIBD
uojjeulooen oljoelAydoid a/N {149 Jo ainsodxs aoepng :gM) sisoydody uo|02 BuLINW 9219
(g d L1
“uesqe0 LTI “yg,ON) UoneINwlS 0LdSH
[eUOlOUN) PUE (46,1l OHIN PUE ‘06dSH ‘LHO d1V O osesjai
‘69800 ‘46, €8AD ‘45,08AD) ‘06dSH 0 Sinsodxs 8oeNns ON (eunsodxa BWOUIDIBD
(5172 a/N s9OQ Jo uoireiniew didAjouayd {140 J0 8insodxe 80eunS  J8SpPid) sisoidody Jappe|q uewny g1
06dSH
o JO aInsodxa 82epNs ou YD BWOUIDIBD
% 99 an d/N Pue 0/dSH jo ainsodxs 80eung an Jappe|q uewny gL 43 urousdAH
% LELIVEYETE)E| OAIA Ul S||92 OJMA Ul S||92 ainsodxa sadA} yjeap auj |19D Sd Jo Sd
© J90ueo Jo Ayolusbounwwi]  J9oued Jo Apolusbounwwy /aseaja1 sdNVAd Jo 3poN 1192 pue yjeap uonezijeoo|
c 1199 o suayIe|\ Jejnjjeagns
(V]
%. sieziyisussoloyd uuAydiod-uou Ag uononpul a9l | al9eL

Alzeibak R, et al. J Immunother Cancer 2021;9:e001926. doi:10.1136/jitc-2020-001926



‘sIsA|eue 10|q uissam ‘gp\ ‘uoljeziunwiwisuedy ‘|| ‘eues|Apneydsoyd Yespid eziisuasoloyd ‘Sd fioydadal
aoelNsS JojeAoe usboulwseld aseupjoin ‘YN 1d ‘@pipol wnipidoid ‘|4 ‘Adessyy oiweulpoloyd ‘| ad {1992 Jesjonuouow poojq [essyduad Bulureiuoo-aieie|d ‘OINgd ‘esesswA|od asoqu 4ay Alod dHvd ‘@pIxo ouuu ‘ON
I9||1Y [ednjeu ‘YN {pa1odlep 1ou ‘a/N xoldwod Ajjigiredwooolsiy Jofew ‘OHIA ‘eulienepedjAsuepouow ‘O LUNajIdIul | ‘Uolapalul ‘N4| | 9|NdajoW UoISaypE Je|n|j@iaiul ‘ L-\YD] ‘uleioid ¥o0ys 1eay dSH ‘| xoq uejoid
dnoub Ayjigow-ybiy ‘LgoINH ‘usbiiue 814003na| uewny ‘yH ‘@seasip 1soy snsiaA Jelb ‘gqHAD ‘wninonial olwse|dopus ‘Y3 (|90 olpusp ‘O ‘Ulindiaied 1y ‘uolenuaiayip o Jaisnio ‘gD ‘ereydsoydii] suIsouspe d1y

(s1199 2n10108U AepuodsS
Aq) LGONH pue (s|j90 onoidode

Aq Aluo) d1v ‘06dSH ‘0./dSH 43
10 asesjal ‘s||90 o1beydoine uo (Dan pue ‘snjesedde
06dSH Pue 0/dSH j0 @insodxe ainsodxs JoSpld 104 16105
‘s|j@0 onoydode uo 0gdSH pue Buluiels) Abeydoine BWOUIDBD  ‘BLPUOYIOHW
G9 a/N a/N 0/dSH ‘14D 10 ainsodxe 9oeuNS pue sisoydody [eOIAJ9D UBWINY BTOH  ‘UO}9|9XsS01AD) a1e100e [BBUag 8soy
s0@ Aq s||99 | eAleu azuejod
pue eye|nwis 0} Ajjige oN
's0 Aq uoneioes A-N4|
pue 9-7| ‘gL~ Jo souasqe
PUE (4,070 ‘1,080d0) SOA
JO uopesnyew oidAjousyd
JO 9ouesqy "sejhoouow sjuaned gHAD wouy
wioJ} pajenualayip O pue dlv jo S||99 Jeajonuouow pPooiq
sebeydoioew Aq paynbus  ases|al ON "L gDINH 10 asesjal (eansodxa lesaydiad ‘0JYA Ul S||90
8 a/N Ajpusioe s||@o payeal) ‘14D Jo ainsodxse aoepnNg  JaSpld) sisoidody | 9AI}0BBIO|[B PaIRAIOY
20IW BWOUIDJBO0USPE
9/19/5D 1usiadwosounwiw sa1kooydwiA| ,8aD uo|02 duuNWw 8O\
ul s|199 88N PUB HININNA olj1oads-iown} jo Buiwud ‘ewouejgw auunw
‘YAO-919 pelea-Idd -SSOJO 8y} dALP 03 selkoouow (slled vAO-91 4 HAWNNA ‘(VAO-919)
-dOIN-8 Buisn |spow Aq paynbus Ajjusioe ul) Lg9INH PUe d1V J0 ases|al (2ansodxa ulwngeAo buissaidxa
28 uoljeulooeA aioejAydoid S|[92 YAO-919 pajea.] ‘14D JO @Insodxe 92oeuNS  J9SPld) sisoidody BWOUBRDW dULNW 919
20IW
Buriesd-Z° LINIWNA Payeail-| L
woJ} s||99 | olua|ds payouua
Jo sajhoous|ds paje|os! Buisn
|9pow uoljeulooeA onoejAydoid
‘juswiesi] |1 Jo (sl192 +2100 pue 4NV 1d ‘I
109}48 JOWNHIUB By} paysiulwip -] |) UoljeAi}oe sajfoouow
201w Buriead-Z" LINININA Ul ‘(98a0 pue ‘€8dd ‘08dD
S99 + 1" LMN PUB S||90 | 840  ‘HA-VIH 8y} Jo uone|nbaidn
‘s|l99 1 @D jo uonsideqg 90BJINS) UOIjBIN}EW pUE
©oIW 919280 uolieAiloe soQ :0Ngd Adeisyjowsyooioyd
Burieag-iowny ui s|j99 Jowny uewny Buisn j0o0304d || (g, PuturEsS Id [eaiodiodeiIxe JOIN-8
pajeali-| d Yim paregnoul (46 dA-VTH ‘4ol OHIN pue JaSpid Jo/pue BLWOUIDIBO0USPE UO|0D Adessyjowsyoojoyd
SOINEd J0 ainxiw Buisn  “5,9800 ‘,6,€800 ‘45,0800) ‘an|g uedAil ‘34 euunNw GEDIN ‘BwouUBaW [easodiode.Ixd (dOIN
GEl €8 [|9pow uojjeulooeA onpnadelay] s 1o uoieiniew oidAlousyd a/N -20dv) sisoydody auunw 2 LININNA a/N -8) usjeiosdAxoyio|N-8
saoualajey OAIA Ul S||92 OJMA Ul S||92 ainsodxa sadf} yreap aul| 19D sd Jo sd
J90ued Jo Aydlusbounwiwi]  J9oued Jo Apdlusbounwwy /oseaja1 sdINVQd Jo SpoN 1199 pue yjesp uonezijeoo|
1199 Jo suayIe|\ Jejn|jeagns

panunuod | 9|qeL

Alzeibak R, et al. J Immunother Cancer 2021;9:e001926. doi:10.1136/jitc-2020-001926



ICD induction by porphyrin photosensitizers of the first
generation and second generation
Several porphyrin-derived PSs have shown the ability to
induce ICD in PDT-treated cells (figure 2). As early as 2004,
it was reported that treatment with the first-generation
porphyrin PS, photofrin, led to the exposure of a number
of HSPs on the surface of cancer cells and promoted their
engulfment by DCs, followed by DC maturation mani-
fested in IL-12 production.” Of interest, intratumorally
injected DCs homed to regional and distant lymph nodes
and activated both spontaneous (NK cells) and specific
(CD8" T cells) cytotoxicity toward tumor cells. This initial
work on photofrin was further extended by others.”® " It
has been shown that photofrin-based PDT of Lewis lung
carcinoma cells induced release of HSPs, and surface
exposure of CRT in vitro and in vivo within 1 hour after
PDT, as well as an increase of HMGBI1 in plasma.60 These
data indicate that photofrin is a potent inducer of ICD.

One of the promising modes of PDT is based on exog-
enous aminolevulinic acid (ALA), a low-molecular-weight
precursor of protoporphyrin IX. This compound does
not accumulate in sufficient amounts in cells with normal
metabolism, but in cancer cells its concentration rises
significantly mainly due to lowered activity of ferroche-
latase, which converts protoporphyrin IX into heme. ALA-
PDT induced ICD in two vaccination mouse models. First,
ALA-PDT-treated murine SCC cells injected into SKH-1
mice provided complete protection in the tumor prophy-
lactic vaccination model” (table 2). Second, vaccination
of mice with DCs prestimulated by ALA-PDT-treated SSC
cells was also shown to be effective against rechallenge
with cancer cells. This prophylactic vaccination efficacy is
in line with the production of DAMPs, including surface
exposure of CRT by ALA-PDT-treated cancer cells of
various origin,75 87 as well as HSP7O,7O 588 and release of
ATP” and HMGB17 (table 2). An increase in IFN-I tran-
scription was reported for murine melanoma cells treated
with 5-methylaminolevulinic acid (Me-ALA), a derivative
of ALA with similar biological properties.87 The expres-
sion of IFN-0,/IFN-B correlated with the doses of Me-ALA
and was specific for PDT-treated cells but not for cells
treated with doxorubicin, a bona fide chemotherapeutic
ICD inducer. It has been proposed that IFN-I acts in an
autocrine loop to induce the apoptosis of treated cells,
as well as in a paracrine mode stimulating DC migration
(table 2).87

Recently, ICD induction was shown for PDT based on
several second-generation porphyrin PSs. In this regard,
PDT based on glucose-linked tetra(fluorophenyl)chlorin
(G-chlorin) induced an ICD in CT26 murine colon carci-
noma cells characterized by surface exposure of CRT and
release of HMGB1®' (table 2). Vaccination of immuno-
competent mice with CT26 cells pretreated with G-chlo-
rin-PDT protected them against a subsequent challenge
with live CT26 cells. The role of DAMPs production by
these dead tumor cells was demonstrated by the absence
of a vaccination effect when tumor cells in which the CRT

or HMGBI1 gene was knocked-down were used in the
vaccination experiment.

Another study compared ICD induction by PDT based
on chlorin ¢6 derivative photodithazine with that based
on the phthalocyanine dye photosens.” The authors
showed that both PSs induce ICD associated with DAMPs
emission in murine MCA205 fibrosarcoma and GL261
glioma cells.** However, the intensity and timeline of CRT
exposure and release of ATP and HMGBI1 by cancer cells
depended on both the cell line and the PS. Photosens-
based PDT led to a more active engulfment of dead/
dying cancer cells by BMDCs and, at least for GL261
glioma cells, a larger increase in the expression of CD40
and CD86 co-stimulatory molecules on the surface of
BMDCs. However, both PSs were comparably efficient
in a mouse tumor prophylactic vaccination model. The
most intriguing aspect of the ICD-inducing capability of
photosens is that it has strong vesicular localization. The
negative charge and hydrophilic properties of photosens
hamper its escape from endosomes and lysosomes. In
contrast to most of the PSs studied, the primary target of
photosens-PDT is not the ER. Importantly, the cell death
induced by photosens combines features of apoptosis
and ferroptosis, as it was blocked by specific inhibitors of
apoptosis (zZVAD-fmk) and ferroptosis (ferrostatin-1 and
deferoxamine)® (table 2). This suggests that certain PSs
can induce ICD with mixed cell-death phenotypes. This
can be particularly interesting when cancer cells develop
resistance to a specific type of cell death. In such cases,
triggering several cell-death types makes it possible to
circumvent cell death resistance and may increase the
efficiency of cell death induction in cancer cells.

A new combined treatment strategy has been proposed
based on two PSs and on the ability of PDT to directly
kill tumor cells and to initiate antitumor immunity.*” The
pheophorbide-derivative  2-[1-hexyloxyethyl]-2-devinyl
pyropheophorbide-oc  (HPPH) and photofrin were
applied for two-step PDT: an immune-enhancing low-
dose PDT treatment was followed by a tumor-controlling
high-dose PDT treatment (table 2). This combined
PDT regimen led to higher numbers of activated tumor-
specific CD8" T cells in the tumor-draining lymph nodes,
and this coincided with reduced metastatic ability of the
tumor (ie, murine Colon26-HA and mammary 4T1 carci-
nomas). It was also associated with enhanced long-term
control of tumor growth and resistance of the cured mice
to tumor rechallenge. This work indicates that combined
PDT may provide an effective adjuvant for therapies that
fail to stimulate the host antitumor immune response.

There are several intriguing findings supporting a
rationale for combination treatments of PDT based on
radachlorin (also known as bremachlorin) and immuno-
therapy. When the lysates of TC-1 cells carrying human
papillomavirus 16 E7 were induced by radachlorin-based
PDT in combination with the immuno-adjuvant CpG-
oligodeoxynucleotide (ODN), tumor growth after both
prophylactic and therapeutic vaccination doses in vivo
were significantly suppresssed.”’ Interestingly, PDT-cell
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Table 2 Continued

Markers of cell

Immunogenicity of cancer cells in

vivo

Immunogenicity of cancer

cells in vitro

death and cell death

types

Subcellular

References

DAMPs expression

Cell line

localization of PS

PS

Prophylactic vaccination model using

Surface exposure of

GL261 murine Apoptosis and

Lysosomes

Photosens

Phenotypic maturation of
DCs (CD40"", cD86"9",

Photosens-PDT-treated MCA205 cells

CRT; release of ATP and

HMGB1

ferroptosis in GL261
(inhibitors analysis,

glioma, MCA205

MHC 11I"%"), production of IL-6 in immunocompetent C57BL/6J mice

murine sarcoma

PtdSer exposure with
a vital dye staining)

89

Tumor-bearing BALB/c mice that

N/D

Apoptosis (caspase-3 N/D
colorectal carcinoma, activity and TUNEL

Mitochondria Colon26-HA murine

2-[1-Hexyloxyethyl]-2-devinyl
pyropheophorbide (HPPH)

remained tumor free after the treatment
were challenged with Colo26 or 4T1

cells.

(A tumor-controlling PDT regimen was
combined with an immune-enhancing

PDT regimen)

assay'®)

mammary carcinoma

4T1 murine

Sodium Porfimer (Photofrin)

PDT-F,BOH cured CT26 tumor-bearing 139

BALB/c mice rejected tumor re-

N/D

N/D

N/D CT26 murine Apoptosis and

Hydrophilic bacteriochlorin

(F,BOH)

colorectal carcinoma necrosis (PtdSer

inoculation 1year after the treatment

exposure with a vital
dye staining)

CD, cluster of differentiation; CRT, calreticulin; DC, dendritic cell; ER, endoplasmic reticulum; GRP, glucose-regulated protein; HMGB1, high-mobility group protein box 1; HSP, heat shock protein; IFN, interferon; IL, interleukin; MHC, major

histocompatibility complex; N/D, not detected; NF-xB, nuclear factor kappa-light-chain-enhancer of activated B; PDT, photodynamic therapy; PtdSer, phosphatidylserine; TNF, tumor necrosis factor; TUNEL, terminal deoxynucleotidyl transferase-

mediated nick end labeling analysis.

lysates induced release of DAMPs, including HSP70,
and in combination with ODN injection, IFN-y produc-
tion and cytotoxic T lymphocytes responses (CD8" T
cells) were stronger than when ODN or PDT was used
alone.” Similar effects were shown for a combination
of radachlorin-based PDT of TC-1 cells and adenoviral
delivery of interleukin-12 (AdmlIL-12) in a mouse tumor
model.”" In that work, combined treatment significantly
increased the production of IFN-y and TNF-o. and the
expansion of the CTL subset mediated by CDS8" T cells,
resulting in complete regression of tumors of 9mm in
mice.”’ In another study in the mouse model of thera-
peutic vaccination, RMA cells (aggressive T-cell lymphoma
cell line induced by Rauscher murine leukemia virus)
were treated with bremachlorin-based PDT in combi-
nation with synthetic long peptides containing epitopes
from tumor antigens. This procedure resulted in efficient
induction a significant CD8" T-cell response against the
tumor.” All these results indicate that contemporary
antitumor treatments should be based on a combination
of several antitumor strategies where activation of the
immune system is crucial.

Third-generation PSs: enhancing immunogenicity by use of
nanoconstructs

The concept of targeted PDT has been actively pursued
in recent years. This approach is closely linked to the
design of the third-generation PSs, namely, liposomal
forms of PSs, PSs in combination with nanocarriers and
PSs conjugated with sugar molecules, monoclonal anti-
bodies or peptides (figure 2). The advantages of targeted
PDT compared with the insufficient selectivity of first-
generation and second-generation PSs are improvement
of PS pharmacokinetics, significant reduction in the
required dose of the PSs and decrease of side effects.” One
of the requirements for an ‘ideal” PS is that it has absorp-
tion in the near infra-red spectrum (NIR) (600-1000nm).
In this range, light is slightly scattered by most tissues and
poorly absorbed by endogenous chromophores such as
melanin, hemoglobin and cytochromes. Consequently,
farred and NIR light can penetrate well in human tissue
and can be selectively absorbed by photosensitizing
agents such as porphyrins, chlorins, phthalocyanines
and naphthalocyanines.” In recent decades, researchers
in the field of PDT have decided to combine the use of
NIR PSs with their delivery to the target organs by anti-
bodies or nanocarriers. This approach has increased the
efficiency of PDT and broadened the boundaries for the
treatment of tumors at different sites.”” The strategy of
using NIR PSs conjugated with the guiding antibody has
been called near-infrared photoimmunotherapy (NIR-
PIT).”* Notably, NIR-PIT has been shown to induce ICD.
For instance, Ogawa et al”® revealed that NIR-PIT with Tra-
IR700 induces translocation of DAMPs (CRT, Hsp70 and
Hsp90) to the cell surface and is associated with the rapid
release of ATP and HMGBI, followed by maturation of
DCs (table 3).
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ROS production, hypoxia significantly diminishes PDT
efficiency for solid tumors. Therefore, it is important
to develop strategies to overcome this hypoxia-related
limitation of PDT. The effectiveness of PDT in triggering
ICD can be improved by the introduction of agents that
increase the oxygen concentration in the tumor microen-
vironment, a strategy named oxygen-boosted PDT. One
approach is to develop versatile oxygen carriers or gener-
ators, such as nanoparticles based on perfluocarbon,
which is used in artificial blood in clinical applications.'”
Thanks to its high oxygen capacity, perfluocarbon
provides a long 1O2 lifetime, which results in long-lasting
photodynamic effects.'” However, in that study, though
the therapeutic efficacy of PDT was established in exper-
iments on tumor-bearing mice, the immunogenicity of
tumor cell death was not examined. Therefore, additional
studies are needed to understand whether this strategy
can induce ICD.

Other strategies are linked to the creation of nanopar-
ticles based on manganese dioxide (MnO,). MnO,
degradation in the acidic and H,O,rich tumor microen-
vironment generates sufficient oxygen and increases ROS
production, which in turn increases PDT efficacy. In addi-
tion, the Mn (II) ion reduced from Mn (IV) in response to
increased acidic H,O, provides an opportunity to carry
out selective MRI in vivo.'” Of interest, core-shell gold
nanocages encapsulated in MnO, (AuNC@MnO,) altered
the hypoxic and immunosuppressive tumor microenvi-
ronment and demonstrated reliable PDT and ICD effects.
Oxygen-boosted PDT based on such nanoparticles is
characterized by the emission of DAMPs such as CRT,
ATP and HMGBI, followed by DC maturation and subse-
quent effector cell activation, including CD8" and CD4" T
cells and NK cells. It has been shown that this provoked
an antitumor immune response and effectively inhibited
tumor growth and recurrence in two different tumor
models (mice with CT26 colorectal and 4T1 mammary
carcinomas).'*® 107

Oxygen supply to the tumor microenvironment can
also be augmented by using hemoglobin-based nano-
structures. Directed delivery of hemoglobin to tumor
cells via hybrid nanostructures ensures gradual O, release
in a hypoxic environment and significantly enhances
ROS production during PDT.'® ' It was also shown that
chlorin e6-based PDT can trigger an ICD characterized by
DAMPs release (CRT, HMGB1, ATP), DC maturation and
activation of CD4" and CD8" T lymphocytes and NK cells
in vivo. Activation of the immune system by hemoglobin-
based nanostructures was shown to eradicate primary
tumors and effectively suppress distant tumor growth
and lung metastasis in a murine metastatic triple-negative
breast cancer model.'” Thus, overcoming hypoxia in the
tumor microenvironment is essential for increasing PDT
efficiency. Development of hybrid systems based on nano-
constructs that can relieve hypoxia and include an immu-
nological component is the most promising strategy, and
we may see a new milestone for PDT in anticancer treat-
ment in the near future.

In conclusion, the insights from the last several years
increasingly support the idea that PDT is a powerful
strategy for inducing ICD in experimental cancer therapy.
However, most studies have focused on mouse models, but
it is necessary to validate this strategy in clinical settings.
Moreover, further insights into the interplay between PDT
and oxygen-boosted therapy may provide new ground for
the development of novel cancer immunotherapy. PDT
and ICD represent a challenging research area with many
possible promising future applications in the treatment
of cancer.
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