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Abstract

Computational methods that predict protein stability changes induced by missense muta-

tions have made a lot of progress over the past decades. Most of the available methods

however have very limited accuracy in predicting stabilizing mutations because existing

experimental sets are dominated by mutations reducing protein stability. Moreover, few

approaches could consistently perform well across different test cases. To address these

issues, we developed a new computational method PremPS to more accurately evaluate

the effects of missense mutations on protein stability. The PremPS method is composed of

only ten evolutionary- and structure-based features and parameterized on a balanced data-

set with an equal number of stabilizing and destabilizing mutations. A comprehensive com-

parison of the predictive performance of PremPS with other available methods on nine

benchmark datasets confirms that our approach consistently outperforms other methods

and shows considerable improvement in estimating the impacts of stabilizing mutations. A

protein could have multiple structures available, and if another structure of the same protein

is used, the predicted change in stability for structure-based methods might be different.

Thus, we further estimated the impact of using different structures on prediction accuracy,

and demonstrate that our method performs well across different types of structures except

for low-resolution structures and models built based on templates with low sequence iden-

tity. PremPS can be used for finding functionally important variants, revealing the molecular

mechanisms of functional influences and protein design. PremPS is freely available at

https://lilab.jysw.suda.edu.cn/research/PremPS/, which allows to do large-scale mutational

scanning and takes about four minutes to perform calculations for a single mutation per pro-

tein with ~ 300 residues and requires ~ 0.4 seconds for each additional mutation.

Author summary

The development of computational methods to accurately predict the impacts of amino

acid substitutions on protein stability is of paramount importance for the field of protein

design and understanding the roles of missense mutations in disease. However, most of

the available methods have very limited predictive accuracy for mutations increasing sta-

bility and few could consistently perform well across different test cases. Here we present
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a new computational approach PremPS, which is capable of predicting the effects of single

point mutations on protein stability. PremPS employs only ten evolutionary- and struc-

ture-based features and is trained on a symmetrical dataset consisting of the same number

of cases of stabilizing and destabilizing mutations. Our method was tested against numer-

ous blind datasets and shows a considerable improvement especially in evaluating the

effects of stabilizing mutations, outperforming previously developed methods. PremPS is

freely available as a user-friendly web server at http://lilab.jysw.suda.edu.cn/research/

PremPS/, which is fast enough to handle the large number of cases.

This is a PLOS Computational BiologyMethods paper.

Introduction

Protein stability is one of the most important factors that characterize protein function, activ-

ity, and regulation [1]. Missense mutations can lead to protein dysfunction by affecting their

stabilities and interactions with other biological molecules [2–9]. Several studies have shown

that the mutations are deleterious due to decreasing or enhancing the stability of the corre-

sponding protein [10–15]. To quantify the effects on protein stability requires estimating the

changes in folding/unfolding Gibbs free energy induced by mutations. Experimental measure-

ments of protein stability changes are laborious and appropriate only for proteins that can be

purified [16]. Therefore, the computational prediction is urgently required, which would help

the prioritization of potentially functionally important variants and become vital to many

fields, such as medical applications [17] and protein design [18].

A lot of computational approaches have been developed in the last decades to predict the

effects of single mutations on protein stability [19–48]. The vast majority of them are machine

learning approaches and based on protein 3D structures. They are different in terms of algo-

rithms used for building models, structural optimization procedures, or features of energy

functions. The prediction performances of these methods have been assessed and compared

using several different datasets of experimentally characterized mutants [14,49–52]. The results

indicate that all methods showed a correct trend in the predictions but with inconsistent per-

formances for different test sets. A majority of methods presented moderate or low accuracies

when applied to the independent test sets, and INPS3D [47], PoPMuSiC [21], FoldX [28], and

mCSM [22] that are among the most tested predictors showed relatively better performances

in comparison with other methods on most of the data sets.

The machine learning approaches are prone to have overfitting problems [53], namely their

predictions tend to be biased towards the characteristics of learning datasets. The training data

sets available so far with experimentally determined protein stability changes are enriched

with destabilizing mutations [21,54]. Thus, the vast majority of predictors that did not con-

sider the unbalance of the training dataset showed a better performance for predicting destabi-

lizing than stabilizing mutations [55,56]. A study constructed a balanced data set with an equal

number of destabilizing and stabilizing mutations and was used to assess the performance of

15 methods [57]. The results showed that almost all these predictors present a strong bias

towards predicting the destabilizing mutations. Additionally, two recent studies discussed the

problem of bias of anti-symmetric property for six predictive methods [58,59]. The anti-sym-

metric property, namely, free energy change introduced by a forward mutation (ΔΔGF) plus

the change induced by its reverse mutation (ΔΔGR) should be equal to zero. Correcting for
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such bias in the method’s performance is not a trivial task, which requires enriching the train-

ing set with stabilizing mutations and developing new energy functions. Several algorithms

have been proposed to correct this bias, but the prediction accuracy has yet to be improved

[46–48,57–59].

To address this issue, we developed PremPS that uses a novel scoring function composed of

only ten features and trains on a balanced dataset including five thousand mutations, half of

which belong to destabilizing mutations and the remaining half are stabilizing mutations. It

has been comprehensively validated that PremPS performs significantly better than other

methods especially in predicting the effects of stabilizing mutations and shows a very low pre-

diction bias toward the anti-symmetric property. In addition, we further estimated the perfor-

mance of our method on different types of structures using all available experimental

structures of a protein and models built based on templates with different sequence identifies.

The results demonstrate that our method performs well across different types of structures

except for low-resolution structures and the models built based on templates with low

sequence identity.

Materials and methods

Experimental dataset for parameterizing PremPS

ProTherm database is a collection of thermodynamic parameters for wild-type and mutant

proteins [54]. It contains unfolding Gibbs free energy changes that provide important clues for

estimating and interpreting the relationship among structure, stability, and function of pro-

teins and their mutants. It is frequently used as a training template for developing in silico pre-

diction approaches.

S2648 dataset includes 2,648 non-redundant unique single-point mutations from 131 glob-

ular proteins (S1A Fig), which was derived from the ProTherm database and compiled by [21].

Among these 131 proteins, there are 110 clusters of “similar proteins”. MMseqs2 software [60]

was used to find the “similar proteins”; the sequence identity is set to 25% and the alignment

covers at least 50% of query and target sequences. S2648 was used as the training dataset of

PoPMuSiC [21], mCSM [22], DUET [23] and INPS3D [47] methods. Here, we also used the

mutations and their unfolding Gibbs free energy changes from the S2648 to parameterize the

PremPS model. The protein 3D structures were updated by applying the following criteria:

structure obtained or extracted from monomer or homomer is preferred over heteromer;

wild-type protein structure is preferred over mutant; structure with a minimal number of

ligands is used; crystal structure is preferred over NMR; higher resolution structure is chosen,

and the resolution of the crystal structure is 3 Å or higher. The multimeric state of each protein

was either assigned by manually checking the references used to measure protein stability

changes or retrieved from the PQS server [61].

Unfolding free energy change (ΔΔG) of a system can be characterized as a state function

where the ΔΔGF value of a forward mutation plus ΔΔGR of its reverse mutation should be

equal to zero. Given the unbalanced nature of the S2648 dataset with 2,080 destabilizing

(decreasing stability, ΔΔGexp� 0) and 568 stabilizing (increasing stability, ΔΔGexp< 0) muta-

tions, we modeled their reverse mutations in order to establish a more accurate computational

method. Therefore, the final training set for parameterizing PremPS model contains 5,296 sin-

gle mutations (it will be referred to as S5296) (S1A Table). The dataset is available for down-

load from https://github.com/minghuilab/PremPS.

For the forward mutations, 3D structures of wild-type proteins were obtained from the Pro-

tein Data Bank (PDB) [62]. For the reverse mutations, the initial protein 3D structures were

produced by the BuildModel module of FoldX [28] using wild-type protein structures as the
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templates. FoldX only optimizes the neighboring side chains around the mutation site when

creating a mutant structure. We did not produce the mutant structures for either forward or

reverse mutations.

Experimental datasets used for testing

First, we used the following eight datasets that were taken from the previous studies to assess

the predictive performance of PremPS and perform the comparison with other computational

methods [21–48].

• S350, it is a randomly selected subset from S2648 including 350 mutations from 67 proteins

compiled by [21]. This dataset is widely used to compare the performance of different meth-

ods. During the comparison, all methods were retrained after removing S350 from their

training sets.

• S605, it was compiled from the Protherm database by [26] and contains 605 mutations from

58 proteins, which is the training dataset of Meta-predictor method [26].

• S1925, it includes 1,925 mutations from 55 proteins evenly distributed over four major

SCOP structural classes, which is the training dataset of AUTOMUTE method [29].

• S134, it consists of experimentally determined stability changes for 134 mutations from

sperm-whale myoglobin [49], and six different high-resolution crystal structures of myoglo-

bin were used for the energy calculation.

• p53, it includes 42 mutations within the DNA binding domain of the protein p53 with exper-

imentally determined thermodynamic effects, and the data was obtained from [22].

• Ssym, a dataset was manually curated by [57]. It contains 684 mutations, half of which belong

to forward mutations, and the remaining half are reverse mutations with crystal structures of

the corresponding mutant proteins available.

• S250, it contains an equal number of forward and reverse mutations from nine proteins pro-

posed by [58], for which both wild-type and mutant structures are available.

• S2000, it comprises 1,000 pairs of single-site mutations without experimental ΔΔGexp values

[56]. The protein sequences for each pair differ by exactly one residue and the high-resolu-

tion protein 3D structures are available for all pairs. This dataset can be used to assess the

bias of anti-symmetric property.

The number of mutations in each test set is shown in S1A and S1B Table, and the number

of mutations in the training dataset of S5296 that overlaps with each test set and belongs to the

“similar proteins” with more than 25% sequence identity to the proteins in each test set is pre-

sented in the S1C Table.

Next, we removed the redundant mutations from the above datasets and the overlapped

mutations with S5296, then established a combined independent test set. S2000 was not used

to construct this combined dataset due to the lack of ΔΔGexp values. The same criteria as the

processing of the training dataset were used here to update the 3D structures of proteins. For

the conflicting entries with multiple experimental measurements, if the difference between the

maximal and minimal ΔΔGexp for this mutation is less than 1.0 kcal mol-1, we used the average

value, otherwise we removed all entries (S1B Fig). As a result, the combined independent test

set contains 921 single mutations from 54 proteins (it will be referred to as S921, S1A Table

and S1C Fig). We further clustered these proteins according to the sequence identity of less

than 25% and still obtained 47 protein clusters, which demonstrates the diversity of S921. S921
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does not have the overlapped mutations with our training dataset, while it includes 41 “similar

proteins” with more than 25% sequence identity to the proteins in the training set. All datasets

are available for download from https://github.com/minghuilab/PremPS.

The model of PremPS

The random forest (RF) regression scoring function of PremPS is composed of ten distinct fea-

tures belonging to six categories (described below) and parameterized on the S5296 dataset.

The contribution of each category of features is shown in the S2 Table.

• PSSM score is the Position-Specific Scoring Matrix created by PSI-BLAST. It finds similar

protein sequences for the query sequence in which the mutation occurs by searching all pro-

tein sequences in NCBI non-redundant database, then builds a PSSM from the resulting

alignment [63]. The default parameters were applied to construct PSSM profile.

• ΔCS represents the change of conservation after mutation calculated by PROVEAN method

[64]. The features of PSSM and ΔCS illustrate that the evolutionarily conserved sites may

play an important role in protein folding.

• ΔOMH is the difference of hydrophobicity scale between mutant and wild-type residue type.

The hydrophobicity scale (OMH) for each type of amino acid residue, obtained from the

study of [65], was derived by considering the observed frequency of amino acid replacements

among thousands of related structures.

• SASApro and SASAsol is the solvent accessible surface area (SASA) of the mutated residue in

the protein and in the extended tripeptide respectively. The SASA of a residue in the protein

and in the extended tripeptide was calculated by DSSP program [66] and obtained from

[67], respectively.

• PFWY, PRKDE and PL is the fraction of aromatic residues (F, W or Y), charged residues (R, K, D

or E), and leucine (L) buried in the protein core, respectively. For instance, PL ¼
NL
NAll

,NL is the

number of all leucine residues buried in the protein core andNAll is the total number of resi-

dues. If the ratio of solvent accessible surface area of a residue in the protein and in the extended

tripeptide is less than 0.2 [68], we defined this residue as buried in the core of the protein.

• NHydro and NCharg is the number of hydrophobic (V, I, L, F, M, W, Y or C) and charged

amino acids (R, K, D or E) at 23 sites centered on the mutated site in the protein sequence,

respectively, [69].

In addition to Random Forest, we also tried two other popular learning algorithms of Sup-

port Vector Machine (SVM) and eXtreme Gradient Boosting (XGBoost), and the results

shown in the S3 Table indicate that the random forest regression model presents the best

performance.

The running time of PremPS for a single mutation per protein with ~ 300 residues is about

four minutes, and it requires ~ 0.4 seconds for each additional mutation. Thus, it takes about

ten minutes for PremPS to perform calculations for one thousand mutations introduced in the

same protein. The source code of PremPS is publicly available at https://github.com/

minghuilab/PremPS.

Cross-validation procedures

We performed five types of cross-validation (CV1-CV5). For CV1 and CV2, we randomly

chose 80% and 50% of mutations from the S5296 set respectively to train the model and used
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the remaining mutations for blind testing; the procedures were repeated 100 times. The num-

ber of mutations is not uniformly distributed over proteins (S1A Fig), in order to conquer the

bias toward the proteins with the large number of mutations, we carried out the third type of

cross-validation (CV3). Namely, a subset was created by randomly sampling up to 20 muta-

tions for each protein from S5296; the procedure was repeated 10 times and resulted in 1,704

mutations in each subset. Then 80% of mutations were randomly selected from each subset to

train the model and the rest of the mutations were used for testing, repeated 10 times. Next, we

performed leave-one-protein-out validation (CV4), in which the model was trained on all

mutations from 130 protein structures and the rest of the protein/mutations were used to eval-

uate the performance. This procedure was repeated for each protein and its mutations. Last,

the leave-one-protein-cluster-out validation (CV5) was performed, where not only a protein

in the validation set was removed from the training set, but also all other “similar proteins”

with more than 25% sequence identity to this protein, repeated for each protein cluster. In all

five described cross-validation procedures, during the training/test splits, the forward and

their corresponding reverse mutations were retained in the same set, either training or testing.

Statistical analysis and evaluation of performance

We used two measures of the Pearson correlation coefficient (R) and root-mean-square error

(RMSE) to verify the agreement between experimental and predicted values of unfolding free

energy changes. All correlation coefficients reported in the paper are significantly different

from zero with p-value smaller than 0.01 (t-test). RMSE (kcal mol-1) is the standard deviation

of the residuals (prediction errors). To check whether the difference in performance between

PremPS and other methods is significant, we used Hittner2003 [70] and Fisher1925 [71] tests

implemented in package cocor from R [72] to compare two correlation coefficients. Hitt-

ner2003 and Fisher1925 are used to compare two correlation correlations based on dependent

groups with overlapping variable and independent groups, respectively. Receiver operating

characteristics (ROC) curves were compared with the DeLong test [73].

To quantify the performance of different methods in distinguishing highly destabilizing

(ΔΔGexp� 1.0 kcal mol-1) or highly stabilizing (ΔΔGexp� -1.0 kcal mol-1) mutations from the

others, we performed Receiver Operating Characteristics (ROC) analyses. True positive rate is

defined as TPR = TP/(TP+FN) and the false positive rate is defined as FPR = FP/(FP+TN) (TP:

true positive; TN: true negative; FP: false positive; FN: false negative). In addition, the Mat-

thews correlation coefficient (MCC) was calculated for estimating the quality of binary classifi-

cation and accounting for imbalances in the labeled dataset:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p

To compare across methods, the maximal MCC value was reported for each method by calcu-

lating the MCC across a range of thresholds.

Results and discussion

Currently, there are many published methods for predicting the protein stability change

induced by a single mutation. However, they present diverse prediction performance for dif-

ferent test cases, and their accuracy has yet to be further improved to guide experimental

research. Moreover, for the mutations increasing protein stability (stabilizing mutations),

almost all of the methods show poor performance. Therefore, we developed the new approach

of PremPS, in order to further improve the predictive performance for both destabilizing and

stabilizing mutations and correct the predictive bias of anti-symmetric property.
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PremPS employs only ten features belonging to six categories and is constructed by random

forest regression algorithm implemented in the R randomForest package [74]. The number of

trees “ntree” is set to 500 and the number of features, randomly sampled as candidates for

splitting at each node, “mtry” value is set to 3. All features have a significant contribution to

the model (S2 Table). The performance of PremPS trained and tested on S5296 is shown in

S2A Fig and S4 Table. Pearson correlation coefficient between experimental and calculated

unfolding free energy changes is 0.82 and the corresponding root-mean-square error and

slope is 1.03 kcal mol-1 and 1.08 respectively.

Performance on five types of cross-validation

Overfitting is one of the major concerns in machine learning, which may occur when the

parameters are over-tuned to minimize the mean square deviations of predicted from experi-

mental values in the training set. To overcome this problem, we performed five types of cross-

validation (details were explained in the Methods section), which is capable of estimating the

performance of a method on previously unseen data. As shown in Fig 1A and S4 Table, the

correlation coefficient of each round in either CV1 or CV2 is higher than 0.77, and the mean

values of R and RMSE for both validations are ~0.80 and ~1.08 kcal mol-1 respectively across

the 100 rounds. Taking the bias that the distribution of the number of mutations over proteins

is not uniform into account, the CV3 cross-validation was performed. The mean values of R

and RMSE are 0.74 and 1.21 kcal mol-1 respectively for CV3. Moreover, we evaluated the per-

formance of PremPS on two types of low redundant sets of proteins using leave-one-protein-

out (CV4) and leave-one-protein-cluster-out validation (CV5), respectively, and the Pearson

correlation coefficient reaches 0.73 and RMSE = 1.23 kcal mol-1 for both of them (Fig 1B and

S4 Table).

One of the main features of our method is the usage of the symmetrical training dataset

consisting of the same number of cases of forward and reverse mutations. Thus, we further

classified the mutations into two categories: destabilizing versus stabilizing mutations and for-

ward versus reverse mutations; the performance for each of them is shown in the S4 Table.

PremPS shows the balanced prediction accuracy for the categories of destabilizing/stabilizing

and forward/reverse mutations, although their correlation coefficients decrease compared to

all mutations. For instance, R is 0.65, 0.62, 0.72, 0.69, and 0.81 for destabilizing, stabilizing, for-

ward, reverse, and all mutations, respectively, upon CV1 cross-validation (S4 Table). Since the

prediction method is quite successful in matching experimental data, the majority of forward

mutations are in the first quadrant and reverse mutations are in the third quadrant, which

results in an artificially high correlation coefficient for all mutations (S2A Fig). In addition, the

correlation coefficient (RRF) between predicted ΔΔG values of the forward and reverse muta-

tions is ~ -0.90 indicating a very low-biased prediction of anti-symmetric property. In the S4

Table, we also present the performance for mutations occurring in protein core and surface,

respectively. The definition of core and surface is according to the location of the mutated site

in the protein 3D structure which has been illustrated in the Methods section. The experimen-

tal ΔΔG values for the majority of surface mutations are distributed near zero (S4A Fig), which

might be the reason for the relatively lower correlation coefficient and RMSE compared to the

mutations in the core of the protein.

Validation on the test sets

Eight widely used datasets were used to estimate the performance of PremPS and perform the

comparison with other methods. Among them, three datasets of Ssym, S250, and S2000 include

pairs of forward and reverse mutations which can further be used to check the issue of bias of
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anti-symmetric property (ΔΔGF+ΔΔGR = 0) (see Methods and S1B Table for more details).

The performances of PremPS and different methods on these eight datasets are presented in

S5A–S5H Table. Since the training dataset of S5296 includes the overlapped mutations and

“similar proteins” with each test set (S1C Table), we retrained the model after removing the

Fig 1. Pearson correlation coefficients between experimentally-determined and calculated values of changes in protein stability (ΔΔG) for PremPS performing three

types of cross-validation (A) and leave-one-protein-out validation on S5296 (B), and tested on the dataset of Ssym (C) and S921 (D), respectively. PremPSM: the model

was retrained after removing the overlapped mutations including their corresponding reverse mutations with the dataset of Ssym from the training dataset. See also S2

Fig and S1 and S4 Tables.

https://doi.org/10.1371/journal.pcbi.1008543.g001
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overlapped mutations including their corresponding reverse mutations (named as PremPSM)

and all mutations in the “similar proteins” (named as PremPSP) from the training dataset,

respectively, and then applied to each test set. The values of R and RMSE of all other methods

were taken from the published papers directly, so the number of methods included in compar-

ison with PremPS across the eight datasets is not consistent. To keep the comparison between

PremPS and other methods equally and fairly, we also used the same protocol as the other

methods to train PremPS and test on each dataset (the corresponding performance is shown

in bold in the S5 Table). The results shown in Fig 1C and Tables 1 and S5 indicate that our

method performs best or one of the best among all test cases, has the highest prediction accu-

racy for either forward or reverse mutations and a very low prediction bias of anti-symmetric

property, and still shows robust performance even if PremPSM or PremPSP model was applied

to each test set.

Moreover, we removed the redundant mutations from the above datasets and the over-

lapped mutations with the training set of S5296 and established the independent test set of

S921 (details were explained in the Methods section). For all mutations in this dataset, we cal-

culated the values of stability changes using PremPS and four other methods of INPS3D [47],

PoPMuSiC [21], FoldX [28], and mCSM [22] that were among the most tested and reliable

predictors (see S5 Table). The results reported in Figs 1D and S2B and Table 2 demonstrate

that PremPS achieves the highest prediction accuracy especially for stabilizing mutations with

R of up to 0.78, 0.72, and 0.60 for all, destabilizing and stabilizing mutations respectively. How-

ever, there are 16 mutations with a large difference of more than 4 kcal mol-1 between experi-

mental and predicted values (see Figs 1D and S5A). It can be seen from S5B Fig that the

experimental values of these mutations are all greater than 5 kcal mol-1 except one on the bot-

tom line, while in our training dataset, the experimental values of all mutations are less than 5

kcal mol-1. This is probably why the experimental and predicted values for these 16 mutations

differ so much. Furthermore, we evaluated the performance of PremPS when trained only on

the forward mutation dataset of S2648 and tested on the S921. The correlation coefficient is

0.73 and 0.29 for destabilizing and stabilizing mutations, respectively (S6 Table). The results

confirm that the usage of reverse mutations improved the performance of our model in esti-

mating the effects of stabilizing mutations without compromising the prediction accuracy for

destabilizing mutations. Next, we excluded the mutations in the “similar proteins” with more

Table 1. The performance of PremPSM tested on eight datasets. Here, the PremPS model was retrained after

removing the overlapped mutations including their corresponding reverse mutations with each test set from the

training set. The number of overlapped mutations is provided in the S1C Table.

Dataset R RMSE RFR

S350 0.72 1.09

S605 0.70 1.51

S1925 0.59 1.48

S134 0.65 0.84

p53 0.72 1.47

Ssym 0.75 1.26 -0.91

S250 0.78 1.22 -0.92

S2000 -0.92

R: Pearson correlation coefficient between experimental and predicted ΔΔG values. RMSE (kcal mol-1): root-mean

square error. RFR: Pearson correlation coefficient between predicted ΔΔG values of the forward and reverse

mutations. All correlation coefficients shown in the table are statistically significantly different from zero (p-

value < 0.01, t-test).

https://doi.org/10.1371/journal.pcbi.1008543.t001
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than 25% sequence identity to the proteins in S921 from the training set (The number of muta-

tions is 3710, S1C Table), retrained the model and tested it on the S921. The PremPS still pres-

ents a good performance with R = 0.70 (PremPSP in the S6 Table).

In addition, we carried out the ROC analysis in order to quantify the performance of

PremPS in distinguishing highly destabilizing (ΔΔGexp� 1.0 kcal mol-1) and highly stabilizing

(ΔΔGexp� -1.0 kcal mol-1) mutations from the others. Figs 2A and S3 show the excellent per-

formance of PremPS in evaluating highly destabilizing/stabilizing mutations, outperforming

four other methods. Besides, PremPS performed well for both core and surface mutations

(Figs 2B and S4 and S6 Tables).

How transferable is PremPS across different structures?

In the above study, we selected a single structure for a protein following the criteria shown in

the Methods section to calculate the stability change. As we know, a protein could have multi-

ple structures available, and if another structure of the same protein is used, the predicted

change in stability for structure-based methods might be different. Therefore, we will further

estimate the impact of using different structures on prediction accuracy. The forward mutation

dataset of S2648 and the independent test set of S921 were used to carry out this analysis. Since

the prediction accuracy for mutations at the protein-protein interface of homomers from

S2648 is reduced when using monomers (results are shown in S7A and S8 Tables), in order to

avoid interference from such mutations, the analysis was further restricted to mutations in

monomeric protein structures. In the dataset of S921, all structures are in a monomeric state.

Next, 2297 mutations in S2648 and 824 mutations in S921 can be mapped to multiple protein

structures (S7B Table). Therefore, the four datasets, named S2297, S824, RS2297, and RS824,

were used to assess the predictive performance of PremPS across different structures. S2297

and S824, subsets of S2648 and S921 respectively, consist of a selected single one structure for a

protein, while the datasets of RS2297 and RS824 include all the other mapped redundant struc-

tures. We then applied PremPS trained on S5296 to these four datasets. For S2297 and RS2297,

the leave-one-protein-out validation (CV4) results were also provided. The 131 models, gener-

ated when performing the CV4 validation on the dataset of S5296 (see Methods for more

details), were used to produce the CV4 results for RS2297.

First, we analyzed the effects of different protein structures on the derived prediction for

changes in stability. PremPS is a structure-based method and could produce different pre-

dicted values when using different structures, but the differences of ΔΔGPremPS calculated by

different structures for the majority of mutations are relatively small with a standard deviation

Table 2. Comparison of methods’ performance on the independent test set of S921.

Method

All mutations Destabilizing Stabilizing

R RMSE R RMSE R RMSE

PremPS 0.78 1.48 0.72 1.54 0.60 1.33

INPS3D 0.68 1.62 0.64 1.61 0.38 1.64

PoPMuSiC 0.64 1.68 0.68# 1.48 - 2.06

FoldX 0.57 2.06 0.56 1.99 0.22 2.21

mCSM 0.52 1.85 0.57 1.63 - 2.25

R: Pearson correlation coefficient between experimental and predicted ΔΔG values. RMSE (kcal mol-1): root-mean square error. The number of destabilizing (ΔΔGexp�
0) and stabilizing (ΔΔGexp < 0) mutations in S921 is 634 and 287, respectively (S1 Table). Only correlation coefficients with statistically significantly different from zero

(p-value < 0.01, t-test) are shown. The differences in R between PremPS and other methods are significant (all p-values<< 0.01 compared to PremPS except #p-

value = 0.04, Hittner2003 test).

https://doi.org/10.1371/journal.pcbi.1008543.t002
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Fig 2. Comparative performance of PremPS and four other methods of INPS3D, PoPMuSiC, FoldX, and mCSM on the independent test set of S921. (A) ROC

curves for predicting highly destabilizing (ΔΔGexp� 1 kcal mol-1) and highly stabilizing mutations (ΔΔGexp� -1 kcal mol-1). PremPS has substantially higher AUC-ROC

than other methods (p-value< 0.01, DeLong test, S3B Fig). (B) Pearson correlation coefficients between predicted and experimental ΔΔG for mutations occurring in

protein core and surface. The difference in R between PremPS and other methods is significant (p-value< 0.01, Hittner2003 test). More details are shown in S3 and S4

Figs.

https://doi.org/10.1371/journal.pcbi.1008543.g002
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of less than 0.5 kcal mol-1 (S6A Fig). The predictive performance of using all the other redun-

dant structures is not significantly different from that of using selected single one structures

(Tables 3 and S9), and the correlation coefficient between predicted stability changes for

S2297/S824 and the mean values for RS2297/RS824 is very high (R ~ 1.0, S6B Fig). Although

we cannot afford which structure will give the best prediction for a special case, from the above

statistical analysis, it can be concluded that our method is robust and its predictive accuracy is

not affected strongly by using different structures.

Second, we analyzed the differences in prediction performance of PremPS across protein

structures resolved by distinct experimental methods and at different resolutions. The number

of mutations and protein structures resolved by the experimental method of X-ray, NMR or

Cryo-EM and two or more methods in the datasets of S2297, S824, RS2297 and RS824, respec-

tively, are shown in S7C Table, and the corresponding performance of PremPS for each cate-

gory is shown in S10 Table. In general, PremPS performs well in structures resolved by X-ray,

NMR or Cryo-EM method. By comparing the performance for the cases resolved by two or

more methods, we found that PremPS performs better in X-ray than NMR structures and in

Cryo-EM than X-ray structures for the cases from RS2297 and RS824, respectively. Next, for

the structures resolved by X-ray and Cryo-EM, we analyzed how performance scale is as a

function of the resolution of protein structures. According to the distribution of resolution

(S6C Fig), we classified the structures into two categories:� 3Å and> 3Å, and� 2Å, 2Å ~ 3Å,

3Å ~ 4Å and> 4Å (The number of mutations and protein structures at different resolutions is

shown in S7D Table). The results reported in the S11 Table indicate that the prediction accu-

racy decreases with the decrease of structural resolution. The resolution of 3Å can be used as a

threshold for protein design studies.

The monomeric protein structures used in our study were either resolved in a monomeric

state or extracted from homomers and heteromers (S7E Table). As can be seen from the S12

Table, proteins that were determined in a monomeric state hold a slightly higher prediction

accuracy compared to those derived from homomers or heteromers.

Currently, more and more structures of homomeric and heteromeric complexes of high

molecular weight were determined by Cryo-EM experiments. These structures have not yet

been used or put to test for structure-based design in a quantitative manner. In our study, the

datasets of RS2297 and RS824 contain 14 mutations from three proteins that can be mapped to

high molecular weight Cryo-EM structures (more than 800kDa). S7 Fig shows their predicted

values using X-ray/NMR structures and the structures extracted from high molecular weight

Cryo-EM structures, respectively, and X-ray/NMR structures hold a slightly better perfor-

mance than Cryo-EM for four mutations. However, a statistically significant conclusion can-

not be drawn because of the small amount of data.

Table 3. PremPS’ performance on four datasets. Leave-one-protein-out validation (CV4) results are shown for

S2297 and RS2297. More details are provided in S9 Table.

Dataset R RMSE

S2297 0.57 1.23

RS2297 0.59 1.23

S824 0.74 1.48

RS824 0.71 1.61

R: Pearson correlation coefficient between experimental and predicted ΔΔG values. RMSE (kcal mol-1): root-mean

square error. No statistically significantly differences in correlation coefficient are observed between S2297 and

RS2297, and S824 and RS824 (Fisher1925 test).

https://doi.org/10.1371/journal.pcbi.1008543.t003
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Last, we investigated how errors in protein structure modeling affect prediction perfor-

mance. Modeller software (version 9.25) [75] was used to identify potential templates in the

ranges of sequence identity of 20–30%, 30–40%. . ., 90–100%, and build 3D models for each

protein from S2297 and S824 datasets. The alignment should cover at least 85% of the target

sequence length. The best model for each target-template pair was selected based on the molpdf

score implemented in the Modeller [76]. For each range of sequence identity, the number of

proteins for which at least one template were found and the number of modeled structures is

given in the S7F Table. Then we calculated the stability changes using all modeled structures.

Compared with experimental structures used, the prediction accuracy of PremPS is reduced sig-

nificantly when using models built based on templates with a low sequence identity of less than

30% (Tables 4 and S13). In addition, the root-mean-square deviation (RMSD) between coordi-

nates of all Cα atoms of experimental and modeled structures was used to measure the quality

of the models. As can be seen from S8 Fig, most of the models have low deviations from the

experimental structures. We further classified the models according to the ranges of RMSD:�

3Å, 3Å-5Å, 5Å-10Å, and>10Å (S7G Table). The performance presented in the S14 Table indi-

cates that the lower the quality of the model, the less accurate the prediction.

Online webserver

Input. The 3D structure of a protein is required by the webserver, and the user can pro-

vide the Protein Data Bank (PDB) code or upload the coordinate file. When the user provides

the PDB code, biological assemblies or asymmetric unit can be retrieved from the Protein Data

Bank (Figs 3 and S9A). After the structure is retrieved correctly, the server will display a 3D

view colored by protein chains and list the corresponding protein name (S9B Fig). At the sec-

ond step, one or multiple chains that must belong to one protein can be assigned to the follow-

ing energy calculation. The third step is to select mutations and three options are provided:

“Upload Mutation List”, “Alanine Scanning for Each Chain” and “Specify One or More Muta-

tions Manually” (Figs 3 and S9C). “Upload Mutation List” allows users to upload a list of muta-

tions for large-scale mutational scans. “Alanine Scanning for Each Chain” allows users to

perform alanine scanning for each chain. In the option of “Specify One or More Mutations

Manually”, users can not only perform calculations for specified mutations but also be allowed

to view the mutated residues in the protein structure.

Output. For each mutation of a protein, the PremPS server provides the following results

(Figs 3 and S10): ΔΔG (kcal mol-1), predicted unfolding free energy change induced by a single

mutation (positive and negative sign corresponds to destabilizing and stabilizing mutations,

respectively); location of the mutation (COR: core or SUR: surface), a residue is defined as

Table 4. Pearson correlation coefficient between experimental and predicted ΔΔG values calculated using experimental and modeled structures in different ranges

of sequence identity. Selected models: when several templates were available in a given range of sequence identity, the one whose sequence identity with the target was

closest to the middle of the range and deviation from the experimental structure was the lowest was selected. Leave-one-protein-out validation (CV4) results are shown for

S2297 and RS2297. More details are provided in S13 Table.

Dataset Structure 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100%

S2297 Exp. Structs. 0.62 0.58 0.57 0.55 0.56 0.58 0.53 0.57

All models 0.49� 0.53 0.54 0.50 0.56 0.60 0.57 0.53

Selected models 0.56 0.55 0.56 0.55 0.54 0.57 0.53 0.58

S824 Exp. Structs. 0.72 0.68 0.69 0.57 0.72 0.74 0.70 0.74

All models 0.65 0.67 0.71 0.57 0.67 0.69 0.68 0.76

Selected models 0.55� 0.58 0.66 0.57 0.74 0.72 0.66 0.72

�p-value < 0.01 compared to experimental structures (Fisher1925 test).

https://doi.org/10.1371/journal.pcbi.1008543.t004
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buried in the protein core if the ratio of solvent accessible surface area of this residue in the

protein and in the extended tripeptide is less than 0.2, otherwise it is located on the surface of

the protein. In addition, for each mutation, our server outputs the contribution of each feature

in the target function and provides an interactive 3D viewer showing the non-covalent

Fig 3. Left corner: the entry page of PremPS server; right corner: the third step for selecting mutations and three options are provided: “Specify One or More Mutations

Manually”, “Upload Mutation List” and “Alanine Scanning for Each Chain”, see also S9 Fig; and bottom: final results, see also S10 Fig. “Processing time” refers to the

running time of a job without counting the waiting time in the queue. The contribution of each feature is provided in the download file.

https://doi.org/10.1371/journal.pcbi.1008543.g003
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interactions between the mutated site and its adjacent residues, generated by Arpeggio [77]

(S10B Fig). The mutant structure is produced for each mutation upon the user’s request in the

third step (S10C Fig). Usually, PremPS requires additional ~ 40 seconds to produce a mutant

structure for a protein with ~ 300 residues.
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average value was used for each mutation. (C) The independent test set of S921 is composed of

five datasets.
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S2 Fig. Pearson correlation coefficients between experimental and calculated values of

changes in protein stability (ΔΔG) for PremPS trained and tested on S5296 and perform-

ing the leave-one-protein-out validation. Black: forward mutations; Red: reverse mutations

(A), and for INPS3D, PoPMuSiC, FoldX and mCSM methods tested on S921, respectively (B).
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S3 Fig. ROC analysis for predicting highly destabilizing and stabilizing mutations. (A)

ROC curves for PremPS trained and tested on S5296 and applying leave-one-protein-out vali-

dation (CV4) on S5296. (B) AUC and MCC values for different methods tested on S921. The

difference of AUC between PremPS and other methods is significant (p-value << 0.01,

DeLong test). Maximum Matthews correlation coefficient is calculated for each method. (C)

The definition and the number of mutations for making ROC curves.
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S4 Fig. (A) Distribution of experimental values of stability changes for mutations occurring in

protein core and surface respectively. (B) Pearson correlation coefficients between experimen-

tal and calculated ΔΔG values. The difference in R between PremPS and other methods is sig-

nificant (p-value < 0.01, Hittner2003 test). (C) The number of core and surface mutations in

S5296 and S921 datasets.
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S5 Fig. (A) Distribution of differences between experimental and predicted values for S921.

There are 16 mutations with a large difference (ΔΔGexp-ΔΔGPremPS) of more than 4 kcal mol-1.

(B) Experimental (exp) and predicted values (PremPS) in change of stability for these 16 muta-

tions.

(PDF)

S6 Fig. (A) Distribution of mean value (MV) and standard deviation (SD) of ΔΔGPremPS for

mutations in datasets of RS2297and RS824. The mean value and standard deviation were cal-

culated using all mapped structures of a protein. (B) Pearson correlation coefficients between

ΔΔGPremPS calculated using selected single one structure for a protein in S2297/S824 and the

mean value calculated using all other mapped redundant structures in RS2297/RS824. (C) Dis-

tribution of resolution of protein structures resolved by X-ray and Cryo-EM. Leave-one-pro-

tein-out validation (CV4) results were shown for S2297 and RS2297 datasets.

(PDF)
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S7 Fig. Experimental and predicted stability changes for 14 mutations from three proteins.

One X-ray and two NMR structures from S2297 and S824 and three structures extracted from

high molecular weight Cryo-EM structures (more than 800kDa) from RS2297 and RS824 were

used to perform the calculations. Leave-one-protein-out validation (CV4) results are shown

for S2297 and RS2297 datasets. The predicted stability changes of four mutations have a rela-

tively large difference of ~ 0.5 kcal mol-1 between using X-ray/NMR structures and two high

molecular weight Cryo-EM structures.

(PDF)

S8 Fig. (A) Distribution of root-mean-square deviation (RMSD) between coordinates of all

Cα atoms of experimental and modeled structures. (B) Boxplots of RMSD for different ranges

of sequence identity of 20–30%, 30–40%. . ., 90–100%. The red line is 3Å.

(PDF)

S9 Fig. (A) The entry page of PremPS server. (B) The second step for selecting protein chains.

(C) The third step for selecting mutations and three options are provided: “Specify One or

More Mutations Manually”, “Upload Mutation List” and “Alanine Scanning for Each Chain”.

The mutant structure is produced for each mutation upon the user’s request in the third step.

(PDF)

S10 Fig. (A) The final results. “Processing time” refers to the running time of a job without

counting the waiting time in the queue. The contribution of each feature is provided in the

download file. (B) Interactive 3D viewer showing the non-covalent interactions between the

mutated site in the protein myoglobin (PDB ID: 1U7S, mutation: L104D) and its adjacent resi-

dues in the wild type (left) and mutant (right) respectively, generated by Arpeggio. The mutant

structure was produced for each mutation for this job.

(PDF)

S1 Table. Experimental datasets used for training and testing. (A) The number of mutations

and proteins/structures in each dataset. (B) The number of forward and reverse mutations in

the dataset of Ssym, S250 and S2000, respectively. (C) The number of mutations and protein

structures (in bracket) in the training dataset of S5296 that overlaps with each test set (the first

row) and belongs to the “similar proteins” with more than 25% sequence identity to the pro-

teins in each test set (the second row).

(PDF)

S2 Table. The importance of each category of features for PremPS model. IncNodePurity is

used for describing the importance which is the total decrease in node impurities from split-

ting on the variable, averaged over all trees.

(PDF)

S3 Table. The performance on S5296 and S921 when the model was built using Random For-

est (RF), Support Vector Machine (SVM) and eXtreme Gradient Boosting (XGBoost) algo-

rithms respectively. Leave-one-protein-out validation (CV4) results were shown for S5296.

(PDF)

S4 Table. The performance for PremPS trained and performing five types of cross-valida-

tion (CV1-CV5) on S5296 set.

(PDF)

S5 Table. Comparative performance of different methods on the dataset of S350. (A), S605

(B), S1925 (C), S134 (D), p53 (E), Ssym (F), S250 (G) and S2000 (H), respectively. The values of

R and RMSE for all methods except PremPS were taken from the published papers directly.
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The performance of PremPS using the same protocol as the other methods when applied to

each dataset is shown in bold. In addition, we provided the performance of PremPSM and

PremPSP. PremPSM: the model was retrained after removing the overlapped mutations and

their corresponding reverse mutations with each test set from the training dataset; PremPSP:

the model was retrained after removing all mutations in the “similar proteins” from the train-

ing dataset. The number of mutations removed were provided in the S1C Table.

(PDF)

S6 Table. Comparison of methods’ performance on the independent test set of S921.

PremPS: the model was trained on S5296; PremPSF: the model was trained on the forward

mutation dataset of S2648; PremPSP: the model was retrained after removing all mutations in

the “similar proteins” with more than 25% sequence identity to the proteins in S921 from the

training dataset.

(PDF)

S7 Table. The number of protein structures and mutations. (A) The number of mutations

from monomeric and homomeric protein structures in S2648 dataset, respectively. The number

of protein structures are shown in parentheses. Interface: mutations at the protein-protein inter-

face of homomers. (B) The number of monomeric protein structures/mutations that can be

mapped to multiple experimental structures in S2648 and S921, respectively. The number of

mapped redundant structures has excluded the selected structures used in the datasets of S2648

and S921. (C) The number of protein structures resolved by experimental method of X-ray, NMR

or Cryo-EM and two or three methods. (D) The number of protein structures resolved at different

resolutions. (E) The number of protein structures resolved in a monomeric state or extracted

from homomers and heteromers. (F) The number of proteins for which at least one templates

were found and the number of modeled structures in each range of sequence identity. (G) The

number of proteins and modeled structures in each range of root-mean-square deviation.

(PDF)

S8 Table. The performance for PremPS applied on mutations from homomeric protein

structures in S2648 and monomeric structures extracted from the corresponding homo-

mers respectively.

(PDF)

S9 Table. Method’ performance on four datasets. S2297 and S824, subsets of S2648 and S921

respectively, consist of selected single one structure for a protein, while the datasets of RS2297

and RS824 include all the other mapped redundant structures.

(PDF)

S10 Table. Prediction performance for protein structures resolved by experimental

method of X-ray, NMR or Cryo-EM and two or three methods respectively. The number of

proteins resolved by both NMR and Cryo-EM are almost the same as that resolved by X-ray,

NMR and Cryo-EM (see S7C Table), so the performance for two methods of NMR and Cryo-

EM is not shown.

(PDF)

S11 Table. Prediction performance for protein structures resolved at different resolutions.

(PDF)

S12 Table. Prediction performance for protein structures resolved in the monomeric state

or extracted from homomers and heteromers.

(PDF)
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