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Abstract

A better understanding of the molecular mechanisms underlying
disease is key for expediting the development of novel therapeutic
interventions. Disease mechanisms are often mediated by interac-
tions between proteins. Insights into the physical rewiring of
protein–protein interactions in response to mutations, pathological
conditions, or pathogen infection can advance our understanding of
disease etiology, progression, and pathogenesis and can lead to the
identification of potential druggable targets. Advances in quantita-
tive mass spectrometry (MS)-based approaches have allowed unbi-
ased mapping of these disease-mediated changes in protein–
protein interactions on a global scale. Here, we review MS tech-
niques that have been instrumental for the identification of
protein–protein interactions at a system-level, and we discuss the
challenges associated with these methodologies as well as novel MS
advancements that aim to address these challenges. An overview of
examples from diverse disease contexts illustrates the potential of
MS-based protein–protein interaction mapping approaches for
revealing disease mechanisms, pinpointing new therapeutic
targets, and eventually moving toward personalized applications.
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Introduction

Identifying the principal molecular basis of human diseases is

crucial for successful prevention, diagnosis, and treatment. In the

past two decades, scientists have placed a lot of hope on large

genomic studies for deciphering disease mechanisms. Nevertheless,

despite the wealth of genomic information gathered, the molecular

mechanism of most diseases remains unknown. This can be

explained at least in part by the fact that many human diseases are

complex and do not follow a classical genotype to phenotype model.

They may result from multiple genetic changes, epigenetic modifi-

cations, or infection by a pathogen. The fallacy of expecting simple

genetic changes to explain complex disease phenotypes has been

demonstrated especially well in the case of cancer, where a distinct

collection of mutations is often not exclusive to a given cancer type

(Junttila & de Sauvage, 2013; Leiserson et al, 2015). Additionally,

mutations of a single gene can lead to multiple different diseases,

with the corresponding proteins having several functions in dif-

ferent cellular contexts (Nadeau, 2001). Consequently, extracting

useful diagnostic or prognostic information from genetics alone can

be difficult.

Considering genetic information in the context of disrupted cellu-

lar processes and networks can help overcome this challenge.

Systems biology approaches, which aim to provide a comprehensive

picture of a biological process by quantifying all observable compo-

nents and their relationships, are well-suited to understand the

influence of disease mutations on a complex network of intercon-

nected pathways. Proteins are the key components of these

networks. Often, individual proteins do not perform any of their

functions in isolation but accomplish the task through direct interac-

tions with other proteins. As such, studying protein–protein interac-

tion (PPI) networks has become a powerful tool for identifying the

functional consequences of genetic variation. In this approach,

disease-related gene mutations are mapped to vital PPIs of cellular

processes. Comparison of disease states with the wild-type reference

map—either through the introduction of proteins carrying mutations

or exogenous expression of pathogen proteins—promises to reveal

how networks change during disease pathogenesis (Krogan et al,

2015; Willsey et al, 2018).

Cellular proteins are directly responsible for adaptation to

disease-mediated changes. Because of the connectivity between

proteins, the impact of a disease-related mutation is not restricted to

a specific gene product. Instead, it affects the entire network and

can accordingly impact the activity of a whole subset of proteins.

Instead of focusing on individual genes or loci implicated in human

disease, PPI-based analyses study the parts of pathway connections

1 Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
2 J. David Gladstone Institutes, San Francisco, CA, USA
3 Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA

*Corresponding author. Tel: +1 415 476 2980; E-mail: nevan.krogan@ucsf.edu

ª 2021 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 17: e8792 | 2021 1 of 18

https://orcid.org/0000-0002-4869-2945
https://orcid.org/0000-0002-4869-2945
https://orcid.org/0000-0002-4869-2945
https://orcid.org/0000-0001-8143-6129
https://orcid.org/0000-0001-8143-6129
https://orcid.org/0000-0001-8143-6129
https://orcid.org/0000-0003-4902-337X
https://orcid.org/0000-0003-4902-337X
https://orcid.org/0000-0003-4902-337X


that are most changed by the disease state, thus offering an alterna-

tive to identify a mutation’s impact on cellular function. Interacting

proteins can be visualized using a network-based approach, with

nodes representing the “bait” proteins of interest of a PPI study.

Nodes are connected by edges to the interacting proteins identified

by Affinity Purification Mass Spectrometry (AP-MS), proximity

labeling, Cross-Linking Mass Spectrometry (XL-MS), or other types

of experiments. This mapping is performed in both the diseased

state and non-diseased or WT states, and variations between the

global regulation of PPIs in the networks are monitored. The intro-

duction of disease-related mutations can lead to perturbations in

these networks, including a complete loss of interactions, partial

loss of specific interactions, or a rewiring or gain in new interactions

(Fig 1). This connectivity suggests that small changes to a PPI

network, such as the introduction of mutations to a particular gene,

can cause significant changes at multiple nodes across the system.

Changes in the interaction partners of the disease-related protein,

either during disease progression or following an infection, might

contribute to a specific disease state, potentially linking genotype

and phenotype. Applying a network-based approach to study

human diseases has multiple clinical and therapeutic advantages.

The finding that a gene or protein is implicated in a given biochemi-

cal process or disease suggests that its interacting proteins may also

play a role in the same processes, thus providing potential mecha-

nistic explanations and therapeutic implications beyond a single

gene or protein.

Here, we review the current state of research using mass spec-

trometry (MS)-based global and unbiased PPI networks to study

human disease. Throughout, we will highlight current challenges of

the field, and how new advances in the mapping of PPI networks

address some of them. For a detailed examination of other PPI iden-

tification tools not relying on MS for detection, we refer the reader

to other reviews (e.g., Snider et al, 2015; Beltran et al, 2017).

MS-based methods for global PPI studies

Liquid chromatography-MS (LC-MS) is a sensitive, accurate, and

selective method to quantify proteins (Richards et al, 2015; Aeber-

sold & Mann, 2016). One of its major benefits to identify PPIs is the

global and unbiased nature of MS proteomics. This is in contrast to

other methods for identifying PPIs, including yeast-2-hybrid (Y2H),

which maps physical, binary interactions of a predetermined set of

proteins of interest (Walhout & Vidal, 2001). The general workflow

of utilizing discovery MS to develop PPI networks is outlined in

Box 1 and illustrated in Fig 2. Below, we summarize a variety of

methods that, when combined with quantitative MS, allow the

proteome-level analysis of complex biological systems.

Affinity purification mass spectrometry (AP-MS)
AP-MS experiments (Fig 3A) utilize epitope tagging, where short

peptide or protein tags (for example, FLAG-, TAP-, Strep-Tag, or c-

myc (Chang, 2006)) are fused to the protein of interest—either in

the context of an exogenous expression construct or under the

gene’s endogenous promoter using gene editing technologies like

CRISPR-Cas9. The resulting bait protein functions as an affinity

capture probe for interacting, or “prey” proteins, eliminating the

need for specific antibodies to proteins of interest, as would be the

case in lower throughput immunoprecipitation (IP) experiments.

The affinity tag can easily be purified on a matrix recognizing the

epitope. After washing steps to eliminate non-specific interactors,

interacting proteins can be identified via MS.

Advances in high-throughput AP-MS methodologies have

enabled the identification of 1,000s of protein complexes and PPIs

in large-scale interaction networks, both in models of healthy and

disease states. The largest assembly of such PPI networks is the

BioPlex database, which has, to date, compiled over 56,533 interac-

tions with 10,961 proteins in HEK293T cells (Huttlin et al, 2015,

2017). Publicly available data sets like these, including hu.MAP 2.0

(Drew et al, 2017; preprint: Drew et al, 2020), represent important

resources for biomedical research efforts and have spurred a multi-

tude of discoveries of molecular mechanisms underlying disease,

some of which we discuss further below.

A limitation of AP-MS is the need for milder lysis conditions than

those typically employed in MS experiments. Membrane proteins

can be hard to capture using this approach due to problems in

protein extraction (Sastry et al, 2009; Pankow et al, 2016). Weaker

or more transient interactions are also prone to loss during extrac-

tion or washing steps. Tandem affinity purification (TAP) tagging

affixes two separate proteins or peptide tags to a fusion protein of

interest (Rigaut et al, 1999), and using one tag that can endure

harsher lysis or washing conditions (e.g., His-tag) can increase the

recovery rate of proteins that are lost in regular AP-MS experiments

(Puig et al, 2001). However, this comes at the disadvantage of more

laborious sample preparation and purification, as well as potential

artifacts due to the addition of large tags to the protein of interest.

Irrespective of the number of tags employed, non-specific interac-

tors that remain after washing can cause background issues, requir-

ing careful selection of negative controls. Another limitation of AP-

MS is the lysis-induced mixing of cellular compartments that do not

normally interact, which can result in false positive PPI identifi-

cations. Possible solutions to deconvolute the effects of compart-

ment mixing are currently being explored and will be discussed in

the section New Methodology. It is possible that introducing a tag to

the N- or C-terminus may disrupt normal protein function, making

it advantageous to test tagging both termini. It is also important to

note that AP-MS does not readily differentiate direct interactors from

indirect interactors. On the other hand, AP-MS offers many advan-

tages over earlier strategies for determining interactions (e.g. Y2H),

including high sensitivity and the quantification of multiple interac-

tors at the same time (non-binary). AP-MS also allows detecting

post-translational modifications (PTMs) on interacting proteins

(Matsuura et al, 2008). Following data generation, label-free quan-

tification can provide an intensity value for a given protein. This

quantitative information can be used to perform comparative analy-

ses and can thus help determine whether an interaction is specific to

the protein of interest.

Proximity labeling
Proximity labeling represents a complementary strategy to tradi-

tional AP-MS experiments (Han et al, 2018). In this case, proximal

proteins are monitored by expressing in cells a bait protein of inter-

est fused to a promiscuous labeling enzyme (Fig 3B). The addition

of a small molecule substrate, such as biotin, allows the covalent

tagging of endogenous proteins within a 10–20 nm range, capturing

the protein’s surrounding environment, including potential
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interactors. After cell lysis, proteins are denatured and solubilized,

followed by selective enrichment of biotinylated proteins, commonly

through streptavidin binding, and identification by MS. Because

of the strong binding affinity between biotin and streptavidin, prox-

imity labeling permits more efficient protein extraction, lysis meth-

ods and harsher washing conditions than AP-MS, allowing the

identification of weak or transient interactions that might be lost

with other methodologies. The procedure includes the use of deter-

gents during lysis, as complexes are not required to remain intact

during lysis and purification.

Various proximity labeling methodologies have been established.

BioID utilizes BirA, a biotin ligase with specific mutations rendering

the enzyme promiscuous. BirA catalyzes the transformation of

biotin to a more reactive form, and the resultant biotin cloud reacts

with primary amines of proteins in its vicinity, resulting in their

covalent biotinylation (Roux et al, 2018). Subcellular compartments

that have been targeted by BioID include the nuclear envelope (Kim

et al, 2016b), centrosome (Antonicka et al, 2020), nucleus (preprint:

Go et al, 2019), cytoplasm (Redwine et al, 2017), Golgi apparatus

(Liu et al, 2018), ER (Hoffman et al, 2019), endosome, lysosome,

mitochondrial matrix (Antonicka et al, 2020), cell–cell junctions

(Fredriksson et al, 2015), and flagella (Kelly et al, 2020), with label-

ing efficiency limited in the ER (Roux et al, 2018; preprint: Go et al,

2019). Due to slow reaction kinetics, BioID requires labeling for 18–

24 h to produce sufficient material for identification by MS, which

can lead to off-target labeling and high background, and somewhat
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Figure 1. A systems-level approach for converting genetic information into a pathway-level understanding of data.

Genetic variants, which may occur rarely across individuals with a specific disease, can be used as the basis of PPI networks. Comparisons of WT PPI networks and PPI
networks with disease-related mutations introduced can aid in determining the functional significance of these mutations. Similarly, the introduction of pathogenic
proteins can determine which host pathways are hijacked over the course of an infection.
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restricts the type of experiments amenable to BioID. Additionally,

due to its timescale, BioID experiments are limited to the generation

of static interaction maps. An alternative to BioID, BioID2, was

developed by introducing mutations to the biotin ligase of Aquifex

aeolicus. This significantly smaller enzyme decreases the disruption

to the fusion protein, allowing improved targeting and localization

to subcellular compartments (Kim et al, 2016a). However, it still

requires over 16 h of labeling. To improve labeling efficiency and

speed, Branon et al (2018) performed directed evolution on BirA,

which resulted in two faster-acting enzymatic variations: TurboID

carrying 15 mutations and miniTurbo carrying 13 mutations and a

deletion of the N-terminal domain. The high affinity of these

enzymes for biotin allows comparable labeling to BioID in under ten

minutes.

Another class of proximity labels arose from modifications to

peroxidases, enzymes responsible for catalyzing redox reactions.

Horseradish peroxidase (HRP) is the best-studied peroxidase and

has been employed for proximity labeling. However, it suffers from

poor labeling efficiency in reducing environments (Trinkle-Mulcahy,

2019). Engineered ascorbic acid peroxidase (APEX) does not have

this drawback, and can be genetically introduced as a tag on bait

proteins of interest (Rhee et al, 2013; Hung et al, 2016). Following

the timed addition of H2O2, APEX oxidizes phenol derivatives to

biotin-phenoxyl radicals that covalently react with electron rich

amino acids, providing biotin labeling kinetics on the order of

minutes (Martell et al, 2012). The rapid labeling capabilities of

APEX offer speed comparable to that of many biological processes

and thus make this approach well-suited to investigate transient or

dynamically changing protein interactions. APEX labeling can be

performed in most subcellular environments, as it retains activity in

reducing environments, including the cytosol (Martell et al, 2012).

Nevertheless, the need for peroxide has been criticized due to its

potentially harmful effect on cells and prevents APEX labeling in

living organisms. Newer iterations of proximity labeling methodol-

ogy seek to avoid potential toxicity issues while requiring short

labeling times.

The recently introduced, contact-specific SplitID divides the

TurboID enzyme in separate, inactive fragments (Cho et al, 2020).

These two fragments recombine when in close proximity, as with

interacting proteins. This method is well suited for organelle contact

sites, where each fragment is targeted to a specific organelle, and

Box 1.
The general workflow of discovery MS starts with digesting a mix-
ture of proteins into peptides with defined cleavage sites (e.g.,
using trypsin), which are separated using liquid chromatography
and their mass-to-charge (m/z) is measured in a mass spectrome-
ter. In standard tandem MS/MS experiments, the sequence of indi-
vidual peptides will be determined by collecting a second MS
spectrum after induced fragmentation. Taken together, the m/z
data of fragments and full peptides are then used to computation-
ally search large databases specific to the organism of interest and
thus identify proteins in the original mixture (Fig 2A). To identify
candidate interactors in protein–protein interaction studies, data
will be “scored” to determine the accuracy of the identified interac-
tion. This is oftentimes done by combining several parameters such
as reproducibility, specificity, and abundance of each detected pro-
tein. A variety of scoring algorithms exists for this purpose, includ-
ing MiST, CompPASS, and SAINT (Sowa et al, 2009; Choi et al, 2011;
Teo et al, 2014, 2016; Morris et al, 2014; Verschueren et al, 2015).
The general methodology of each algorithm differs—for example,
SAINT incorporates quality controls and quantitative data for a
given prey to determine the probability that an interaction
between the prey and bait protein is a true positive, while Comp-
PASS utilizes several scoring parameters that ultimately focus on
abundance, uniqueness, and reproducibility to distinguish between
true interactors and contaminant background proteins (Christian-
son et al, 2011). The output of these programs is a table of filtered,
scored data that can be imported into network visualization tools
such as Cytoscape (Shannon et al, 2003).

In addition to computational approaches assessing the speci-
ficity of PPIs by comparing to appropriate controls, a variety of dif-
ferent MS methods exists for quantifying changes between
different conditions (Fig 2B–E). Label-free quantitation allows com-
paring the relative abundances of identified proteins in an unlim-
ited number of samples (Fig 2B). However, there are limitations
with this approach, one of them being that for comparison pur-
poses, identical amounts of each sample should be injected on the
column for analysis. When this is not possible, normalization of the
data may be required. Additionally, to reduce instrumental bias,
samples being compared should be analyzed in a single acquisition
batch on the mass spectrometer. Randomization of run order can
also help avoid systematic errors. Metabolic or isobaric labeling
approaches such as Stable Isotope Labeling with Amino Acids in
Cell Culture (SILAC) and tandem mass tag (TMT) or other isobaric
labels allow the user to multiplex multiple samples together,
increasing experimental throughput. SILAC metabolically incorpo-
rates stable heavy amino acids at the protein level (Fig 2C; Ong
et al, 2002; Szklarczyk et al, 2019), while isobaric tagging methods
utilize NHS-activated molecules that label free amines with chemi-
cal tags in vitro following digestion (Fig 2D). All labeling methods
rely on the inclusion of additional control samples to which a mass
label is added, so that in a mixture of control and experimental
sample the origin of a respective protein interactor can be traced
(Ong et al, 2002; Thompson et al, 2003; Mann, 2014). Together,
these methods allow comparison across different conditions or
timepoints or to discriminate between specific and non-specific
interactions (Wiese et al, 2007; Virreira Winter et al, 2018). Addi-
tionally, targeted MS strategies, such as parallel reaction monitor-
ing (PRM) or multiple/selective reaction monitoring (MRM/SRM),
can also be used to validate interactions with greater consistency,
sensitivity, and accuracy (Lange et al, 2008; Gallien et al, 2012;
Peterson et al, 2012). Briefly, unique peptides of the target protein
are selected during assay development. These are then monitored
through their signature fragment ions for precise quantitation in
the final experiment (Fig 2E).

Among the identified proteins in MS-based interaction studies,
numerous non-specific interactors or contaminants are copurified
together with the protein of interest. Therefore, it is necessary to
analyze PPI studies in a way that separates true interactors from

artifacts. This can be done, in part, through careful experimental
design and suitable controls. Importantly, appropriate controls such
as an unrelated protein carrying the same tag, or the tag alone,
need to be included to determine the specificity of interaction
(J€ager et al, 2011b). For example, GFP can be used as a bait in con-
trol experiments. It is unlikely for GFP to form interactions with
many proteins, and identified interactors are presumably false posi-
tives due to the epitope tags or the affinity capture method (Morris
et al, 2014). Additionally, each type of affinity tag can capture
specific background contaminations. These contaminants can be
accessed via the CRAPome database (Mellacheruvu et al, 2013), a
public repository of interactions generated from negative control
data, and filtered out of experiments. Contamination can also result
from carryover of overexpressed proteins, with residual amount of
protein identified in subsequent MS experiments despite not actu-
ally being present as an interactor. Strict wash steps between
experimental conditions may be required to alleviate this problem.
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subsequently, biotinylation is restricted to their contact sites, elimi-

nating off-target labeling. Similarly, the N- and C-terminal fragments

of split APEX are inactive when separated, but when joined through

molecular interactions promote peroxidase activity (Han et al, 2019).

Experimental design should be carefully considered before

undertaking a proximity labeling experiment. With all proximity

labeling techniques, proteins neighboring the bait are captured

throughout the experiment. Proteins that are not direct interactors

but colocalize during the labeling period, simply due to diffusion

through the enzymatic labeling region, can lead to high background,

making it difficult to distinguish proteins that really reside in the

immediate environment (Lobingier et al, 2017). The parallel analy-

sis of the expressed ligase without an attached bait protein can help

identify proteins not expected to be interactors. A protein’s presence

in this control sample can arise from natural interactions with the

ligase (Roux et al, 2018) and proteins that attach to the streptavidin

used for enrichment. Similar to AP-MS, it is possible that insertion

of an enzyme at the N- or C- terminus may alter protein function.

Prior to generating an enzyme-expressing stable cell line, enzymatic

fusion on both the N- and C-termini of the protein of interest should

be tested to ensure there is no disruption to normal localization

(Sears et al, 2019). Another possibility is that proteins that are in

proximity to the non-labeled terminus fall outside the labeling

radius and will therefore not be detected. As such, separate experi-

ments where the N-terminus and C-terminus are labeled may be

advantageous.

Cross-linking mass spectrometry (XL-MS)
Although AP-MS can identify which proteins are within the same

complex, it does not provide information on which members of the

complex are actually in direct physical contact. XL-MS is an

approach that can fill this gap (Fig 3C). It provides structural infor-

mation by identifying proximate amino acid pairs—including weak

or transient interactions—covalently linked by a chemical cross-

linker of a specific length. The obtained distance restraint informa-

tion can be used to determine the topology and orientation of subu-

nits in the complex and PPI binding interfaces (Yu & Huang, 2018).

The cross-linking reaction is performed at near-native conditions.

Cross-linked peptides are generated through enzymatic digestion,

and the resultant cross-linked peptides are enriched, followed by

MS analysis and identification via database searching. Data analysis

provides information on the sequence assignment of cross-linked

peptides and localization of specific cross-linked amino acid resi-

dues. When paired with integrative modeling techniques, the physi-

cal interaction data derived from XL-MS can be used to inform

structural biology and computational modeling studies. Restraint

information is obtained for both inter- and intra-linked proteins and

has been used to determine the structure of various protein

complexes (Shi et al, 2014) and proteome-wide interactions (Weis-

brod et al, 2013). A limitation of XL-MS is related to the data analy-

sis step. Spectra contain a mix of various types of cross-linked

peptides, and complexities arise as all possible combinations of

these peptides must be considered. However, rapid progress has

been made in developing software to assist with this task, including

software specific for cleavable and non-cleavable cross-linkers (Liu

et al, 2017; Lu et al, 2018).

A variety of different cross-linkers is available, targeting various

amino acid side chains and distances between binding interfaces (Kao

et al, 2011; Gutierrez et al, 2016). To increase the sensitivity and accu-

racy of XL-MS, many different methods have been developed for

enriching cross-linked peptides (Tang et al, 2005; Rinner et al, 2008;

Leitner et al, 2012; Kaake et al, 2014), utilizing the advantages of vary-

ing cross-linker chemistry (Kaake et al, 2014), as well as optimizing

data acquisition and analysis workflows (Liu et al, 2015; O’Reilly &

Rappsilber, 2018). When cross-linking is performed prior to cell lysis,

in vivo interactions are stabilized and able to survive harsh denaturing

and wash conditions, removing background contamination while

preserving weak or transient interactions (Kaake et al, 2014).

The methods described above provide complementary

approaches for interactome mapping. Integration of these tech-

niques in MS workflows can aid the characterization of disease-

associated molecules, as we detail in the following sections.

Disease Network Analysis

Implementation of disease networks
An early study used AP-MS to identify binding partners for 338 bait

proteins specifically selected for their roles in various human

diseases, including cancer, diabetes, and obesity (Ewing et al,

2007). Following stringent data filtering, the authors reported 6,463

interactions between 2,235 proteins and demonstrated the tendency

of bait proteins to pull-down functionally related interaction part-

ners. Since then, AP-MS and proximity labeling have been used in

several small- and large-scale studies to identify the interaction part-

ners of proteins implicated in a variety of diseases (Table 1).

Directly comparing interaction networks and their changes in

response to disease-related perturbations can be used to identify

the disease mechanisms of specific mutations. For example, Nissim

et al (2019) used this approach to validate the causal role of an

◀ Figure 2. Overview of different mass spectrometry techniques.

(A) Workflow for bottom-up proteomics. Preparing proteomic samples for LC-MS/MS analysis requires protein extraction, proteolysis, and, optionally, peptide-level
fractionation. Online LC separation of complex peptide mixtures introduces analytes into the mass spectrometer for precursor and fragment ion mass analysis.
Tandem mass spectra are matched to theoretical spectra generated in silico to garner peptide sequences that are used for protein inference. (B) Label-free
quantitation. Following protein digestion, for each sample, an equal amount of peptides is separately loaded on the column. Relative quantitation is performed by
comparing the extracted peak intensity of a given peptide across runs in the dataset. (C) SILAC. During cell culture, “light” or “heavy” versions of specific amino
acids are metabolically incorporated into samples. Following sample preparation, cell lysates are mixed in equal total protein ratios and digested into peptides.
Intensities of peptide extracted ion chromatograms from the MS1 scan can be used to quantify relative protein abundances between samples. (D) Isobaric labeling.
Each sample is digested into peptides, labeled with a unique isobaric label, and mixed in equal ratios. During MS/MS analysis, each tag yields a fragment with a
unique mass that can be used for relative quantitation. (E) Targeted MS. In SRM, each fragment of a protein of interest is individually monitored and quantified.
The peptide of interest is first isolated, and its characteristic fragments can be monitored for quantitation. Only the specific peptide and fragment masses selected
by the user are monitored over the analysis.
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inherited mutation in the RAS oncogene family-like 3 (RABL3),

which they found to be significantly associated with familial

pancreatic cancer. The biological function of RABL3 was previ-

ously largely unknown. Comparison of WT and mutated RABL3

interactomes revealed differential interactions that implicated

RABL3 as a KRAS regulator and possible biomarker of pancreatic

cancer. The power of comparing disease-related PPI networks with

their healthy counterparts was also highlighted in a study by the

Yates lab (Pankow et al, 2015), who used IP-MS to determine

interactions driving the phenotype of cystic fibrosis (CF). CF is a

Mendelian disorder predominantly caused by protein instability

resulting from an in-frame deletion of phenylalanine 508 in the

CFTR gene. The resulting misfolding of ΔF508 CFTR recruits alter-

nate chaperones, creating an altered PPI network defined by the

addition of novel interaction partners not present in the WT CFTR

network. In total, 209 interacting proteins significantly differed in

either relative abundance or addition or removal of nodes between

WT and mutant CFTR. As glycosylation of ΔF508 CFTR can

partially restore its function, changes in interacting partners occur-

ring between WT and ΔF508 CFTR were analyzed under a shift to

lower temperature and inhibition of histone deacetylase, conditions

known to promote CFTR glycosylation. Both conditions yielded

significant changes between their respective WT and ΔF508 CFTR

interactomes. For example, incubation at 30°C results in the

removal of 89% of interactions unique to ΔF508 CFTR, including

interactions involved with degradation proteins of ubiquitin-medi-

ated pathways and ERAD, heat-shock proteins involved in protein

folding, and RNA-processing proteins, and rescued proteins

involved in ER quality control. Surprisingly, many of the proteins

showing differential interactions between WT and ΔF508 CFTR

were associated with other diseases caused by protein misfolding

or aggregation, such as neurodegenerative diseases, suggesting

common mechanisms and pathways for these otherwise unrelated

diseases (Pankow et al, 2015).

Host–pathogen interactions
Comparative network analysis can go beyond individual genes and

mutations. As viruses and many intracellular bacteria require the

host protein machinery to propagate, host–pathogen interactions

represent an obvious choice for the application of disease network

analysis (Shah et al, 2015). Unbiased AP-MS approaches have been

used to identify these interactions for a wide range of viruses and

bacteria (Table 2). As mentioned above, proximity labeling can help

resolve even short-lived PPIs, such as those expected during the

replication of pathogens. As an example, BioID was used to identify

proteins associated with the replication/transcription complex (RTC)

of the coronavirus mouse hepatitis virus (V’kovski et al, 2019). Over

500 proteins proximal to the RTC were identified, uncovering a

spatial link between translational and replicational complexes. More

global approaches aimed at creating networks across complete

pathogen proteomes have been reported, including human immun-

odeficiency virus (J€ager et al, 2011a), Hepatitis C Virus (Ramage

et al, 2015), Kaposi’s Sarcoma-associated Herpesvirus (Davis et al,

2015), and many more, outlined in Table 2. AP-MS and gene pertur-

bation techniques were combined to map and compare host–

pathogen PPI networks for the related flaviviruses Dengue and Zika

virus, in both human and mosquito hosts (Shah et al, 2018). Twenty-

eight host proteins common to both humans and mosquitoes were

found to interact with Zika and dengue viruses, including the SEC61

translocon complex. Chemical inhibition of SEC61 halted replication

of both viruses in human and mosquito hosts, demonstrating the

power of comparative analyses of PPI networks in identifying shared

pathways that can be exploited to develop powerful broad-acting

antiviral strategies. Using large-scale host–pathogen interaction stud-

ies to develop host-directed strategies promises to reveal more

broadly acting antivirals with reduced potential for viral escape

(Batra et al, 2018; Shah et al, 2018). This approach can also be used

for exploring drug repurposing, where drugs already approved for

treatment of a specific disease may target the same proteins impli-

cated in another disease. This was recently applied to find treat-

ment options for coronavirus disease 2019 (COVID-19), the disease

caused by the pandemic coronavirus strain severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). Currently, no antiviral

drugs or vaccines are available for the treatment of SARS-CoV-2 or

the related coronaviruses SARS-CoV or Middle Eastern respiratory

syndrome (MERS). AP-MS PPI networking for 26 of the 29 SARS-

CoV-2 proteins generated a map of 332 interactions between host

and viral proteins. Identified host proteins included 66 druggable

human proteins known to be targeted by 69 compounds approved

for use in humans or in advanced clinical investigations. A subset

of these was tested for antiviral activity, revealing several candi-

dates for expedited drug development (Gordon et al, 2020b). Simi-

lar PPI maps were generated for SARS-CoV-1 and MERS-CoV,

enabling comparisons between these less transmittable but more

lethal coronaviruses (Gordon et al, 2020a). To facilitate these types

of studies, a large amount of available data for virus interactomes

has been made available in several dedicated databases, including

VirusHostNet and VirusMentha (Calderone et al, 2015; Guirimand

et al, 2015).

Cancer-associated protein interaction networks
The importance of studying disease networks was recently high-

lighted in a meta-analysis showing that, for example, in cancer,

proteins encoded by cancer driver genes interact with other cancer

driver proteins more than randomly expected (Bouhaddou et al,

2019). Additionally, cancer-associated mutations are often located

◀ Figure 3. Overview of MS-based methods to determine protein–protein interaction networks.

(A) General workflow for identifying interacting proteins using AP-MS. Bait proteins are endogenously tagged and expressed in cells, followed by cell lysis and affinity
purification of bait proteins and interacting prey proteins. The mixture is digested and analyzed by LC-MS/MS. Following data processing to determine true interactors
(BOX), bait and prey proteins can be incorporated into PPI networks. (B) Identification of proximal proteins using proximity labeling. The protein of interest is fused with
a promiscuous ligase and expressed in cells. Following the addition of biotin, proteins interacting within the fusion protein’s labeling radius are tagged and can be
subsequently lysed and captured using an affinity matrix. The mixture is digested and analyzed by LC-MS/MS. Following data processing to determine true proximal
proteins (BOX), bait and proximal proteins can be incorporated into PPI networks. (C) Direct interactions via cross-linked peptides using XL-MS. Following cross-linking
with the appropriate reagent, cells are lysed and digested, and the mixture is enriched for peptides tagged with the cross-linker. Following LC-MS/MS, data
interpretation is performed to identify cross-linked peptides and build PPI networks of directly interacting proteins.
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on protein interfaces responsible for protein and ligand binding

(Buljan et al, 2018). Although these somatic mutations may drive

important cellular changes, determining the impact of cancer-associ-

ated mutations on protein function is difficult, as these mutations

usually occur only rarely across the human population and, conse-

quently and statistically, appear to have a minimum impact on

disease phenotypes (Fragoza et al, 2019). Large-scale interaction

studies using the most significantly disease-associated genes as

baits, especially when there are no or few hits deemed significant

on a genome-wide scale, can help identify biologically relevant

mutations. This systems-level view offers a powerful method to

study interactions, where individual genes are knocked out or

mutated, and perturbed interactions can be linked to specific path-

ways (Krogan et al, 2015; Willsey et al, 2018). In this way, muta-

tions affecting similar pathways can be identified to develop new

drug targets. For example, the serine/threonine protein phosphatase

2A (PP2A) usually acts as a tumor suppressor through the negative

regulation of several oncogenic signaling pathways. Mutations in

PPP2R1A, the gene encoding a PP2A subunit responsible for binding

additional catalytic and regulatory subunits, are present in various

cancer types, but their exact mechanisms of tumorigenesis are not

fully understood. Using AP-MS to study the effects of PP2A’s most

frequently mutated residue, Arg-183, on global protein interactions

across multiple cell types, Narla et al demonstrated that its role

in tumorigenesis might be due to reduced binding of several

tumor suppressive regulatory subunit family members (O’Connor

et al, 2020).

RAS family genes are GTPases whose activation or deactivation

is dependent on whether they are bound to GTP or GDP, respec-

tively. Activating RAS mutations are present in approximately 20%

of human cancers, particularly lung, colorectal, and pancreatic

cancers (Gimple and Wang, 2019). Gaps in our knowledge of RAS

biology, including how RAS genes activate downstream pathway

members and a poor understanding of RAS effectors and regulators,

have contributed to a lack of therapeutic approaches (Stephen et al,

Table 1. Selection of disease focused MS-based PPI studies

Disease area Specific disease Method Citation

Autosomal Neurofibromatosis type 1 AP-MS Kobayashi et al (2019)

Cancer Breast Cancer BioID Kazazian et al (2017)

Cancer Breast Cancer BioID Luo et al (2018)

Cancer Breast Cancer BioID Zhu et al (2019)

Cancer Breast Cancer BioID Thuault et al (2020)

Cancer Breast Cancer BioID Kothari et al (2020)

Cancer Leukemia BioID Okuyama et al (2019)

Cancer Lung Cancer BioID Kim et al (2017)

Cancer Non-Small-cell Lung Cancer BioID Manshouri et al (2019)

Cancer Prostate Cancer BioID Reina-Campos et al (2019)

Cancer AP-MS Hauri et al (2013)

Cancer AP-MS O’Connor et al (2020)

Cardiac Cardiac Disease AP-MS Waldron et al (2016)

Cardiac Cardiac Disease BioID Chu et al (2018)

Cardiac Heart Failure AP-MS Chiang et al (2018)

Metabolic Diabetes Mellitus BioID Zhang et al (2018)

Neurological Autism Spectrum Disorder IP-MS Li et al (2015)

Neurological Huntington’s Disease AP/IP-MS Shirasaki et al (2012)

Neurological Amyotrophic Lateral Sclerosis and Frontotemporal Dementia BioID Chou et al (2018)

Neurological Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder AP-MS Malty et al (2017)

Neurological Huntington’s Disease, Parkinson’s Disease, Alzheimer’s Disease AP-MS Hosp et al (2015)

Table 2. Selection of host–pathogen focused MS-based PPI studies

Pathogen Method Citation

Chlamydia trachomatis AP-MS Mirrashidi et al (2015)

Cytomegalovirus IP-MS Moorman et al (2010)

Epstein–Barr Virus AP-MS Georges and Frappier (2017)

Epstein–Barr Virus BioID Rider et al (2018)

Herpesvirus BioID Cheerathodi and Meckes
(2020)

HIV-1 BioID Le Sage et al (2015)

Human bocavirus 1 BioID Wang et al (2020)

Human Papillomavirus AP-MS White et al (2012a, 2012b)

Mycobacterium
tuberculosis

AP-MS Penn et al (2018)

Respiratory Syncytial Virus IP-MS Wu et al (2012)

West Nile Virus AP-MS Li et al (2019)

Zika Virus BioID Coyaud et al (2018)
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2014), with alterations in RAS family genes associated with poor

patient prognosis in pan-cancer studies (Gao et al, 2013). Under-

standing the molecular functions of RAS interactors may help

develop effective therapeutics. Kennedy et al (2020) investigated

how a common KRAS mutation, KRASG13D, affects EGFR signal-

ing in colorectal cancer (CRC) cells by utilizing AP-MS to compare

the network of 95 bait proteins involved in this pathway in WT

and KRAS-mutated cells. Significant differences in PPIs suggest

that the majority of rewiring in the EGFR network results from the

gain or loss of interacting proteins, linking KRAS activity to a

myriad of adaptive network alterations spanning from core interac-

tions throughout the network periphery. These vast rearrange-

ments might offer an explanation for the failure of single-pathway

inhibitors to treat KRAS-mutated cancers, and point towards the

need for combinatorial therapies. To capture transient and

dynamic RAS signaling targets, Kovalski et al utilized BioID to

identify neighboring proteins of WT and mutant RAS isoforms H-,

K-, and N-RAS. These mutations represent the most frequently

altered genes for each cancer type, and BioID experiments were

performed in cell lines relevant to the specific RAS mutant—blad-

der cancer cells for H-RAS, colon cancer cells for KRAS, and mela-

noma cells for N-RAS. Of the 690 proteins identified as proximal to

RAS, 150 were common across all mutations. These proteins were

enriched for known RAS functions, including cytoskeleton forma-

tion and cell junction integrity. To help identify the proteins essen-

tial for RAS-mediated tumor growth, CRISPR-Cas9 knockout

screening of the identified proximal proteins was performed.

Seventeen of these proteins were found to negatively impact

cancer cell proliferation, representing novel RAS-related proteins

required for cancer cell growth. Among these, the mTORC2

complex was identified as a target of oncogenic RAS, particularly

mTOR and MAPKAP1, which support mTORC2 kinases signaling

at the plasma membrane (Kovalski et al, 2019).

As protein kinases modulate cellular signaling and are frequently

mutated in various cancers, kinase inhibitors represent the largest

category of anticancer drug targets. DYRK2, a 26S proteasome regu-

lating kinase (Banerjee et al, 2019), has been implicated in cancer

progression, both as an oncogene and as a tumor suppressor

(Mimoto et al, 2017). Mehnert et al combined AP-MS, BioID, and

XL-MS to establish the molecular response to five cancer-associated

DYRK2 mutations. These results were compared with WT DYRK2

and a catalytically inactive, non-cancerous DYRK2 mutation to

determine the effect of each mutation on cancer-relevant interac-

tions and biochemical pathways (Mehnert et al, 2020). The different

mutations resulted in varied perturbations of the interactome, with

a C-terminal truncated mutant and the catalytically inactive mutant

causing the strongest interactome changes, including a loss of inter-

actions with the DYRK2 kinase core complex. Of note, the interac-

tion networks generated from AP-MS and BioID were highly

complementary, suggesting good coverage of both stable and tran-

sient interactions. These mutations also altered the interactions with

the Y-complex, changing the phosphorylation status of DYRK2. In

addition to interactome remodeling, differential phosphorylation

was observed for known cancer driver proteins following DYRK2

mutation, further implicating the selected mutations in cancer

progression. Significant topological changes between the mutants

were detected by XL-MS, suggesting these changes may steer the

observed interactome alterations.

Integrating orthogonal data
Integrating MS-based PPI interactomes with complementary data

can further boost the discovery potential. For example, genetic inter-

action data can aid in determining functional relationships between

genes. Genetic interaction studies map the phenotypic readout

between pairs of depleted genes, allowing thousands of comparisons

between genes linked to specific biological processes (Roguev et al,

2013). This strategy provides information on which genes are work-

ing in concert, and this can be used to develop novel therapeutic

strategies targeting synthetic lethal partners of inactivated tumor

suppressors (Helleday, 2011). Importantly, the information about

functional relationships is not limited to the identification of direct

physical interactions and can reveal the molecular cross-talk

between pathways. For example, coupling GI studies with PPI

networks identified novel regulators of b-catenin and helped define

the functional networks required for the survival of b-catenin-active
cancers (Rosenbluh et al, 2016). This approach was recently

adapted to investigate the genetic interactions fundamental to HIV-1

infection. 356 human genes linked to HIV-1, including host-depen-

dency factors identified in a previous AP-MS study (J€ager et al,

2011a), were depleted in a pairwise manner, resulting in over

63,000 comparisons. This study identified the RNA deadenylase

complex CNOT, which had not previously been implicated in this

process, as a mediator of HIV-1 infection through the innate

immune response (Gordon et al, 2020c).

Integrating data across networks of different diseases offers yet

another powerful avenue. For example, network analysis has been

used to study the role of viral infection in cancer development.

Several cancers can develop as a result of viral infection, suggesting

that tumors and viruses may affect the same pathways even if the

genes they directly alter are different. To determine the role of viral

proteins in this process, studies have used AP-MS to determine the

PPI networks across tumor-associated proteins from different viral

species. A more focused analysis was performed for all viral

proteins of human papillomavirus (HPV). Identifying cancer genes

in these networks highlighted the rewiring of Notch signaling across

different cancer-associated viruses (Rozenblatt-Rosen et al, 2012).

Integrating differential mutation patterns of HPV-associated cancer

samples using network propagation, on the other hand, identified

oncogenic events phenocopied by a virus infection, including

increased tumor cell invasion depending on both viral and human

proteins that were found to interact (Eckhardt et al, 2018).

Pairing MS-based interaction data with structural biology tech-

niques can provide powerful insights into structural changes occur-

ring during disease progression. Disease-related protein complexes

can be mapped using XL-MS, X-ray crystallography, and cryo-EM to

guide the development of therapeutic compounds. Such a strategy

was used to study the progression of the Ebola virus (EBOV) infec-

tion, a well-studied virus that results in recurrent deadly outbreaks.

The virus–host interactome for six of the seven EBOV proteins

revealed 194 high-confidence interactions, including one between

the viral VP30 protein and the human ubiquitin ligase RBBP6. X-ray

crystallography revealed that this interaction mimics the EBOV

nucleoprotein (NP) binding to VP30 at the same interface, blocking

this virus–virus PPI required for viral transcription. RBBP6 thus

represents a host restriction factor, and peptide mimics successfully

inhibited EBOV replication in cell culture. These findings suggest

that the binding interface of VP30-RBBP6 represents a potential
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therapeutic target for inhibitors (Batra et al, 2018). Other groups

have used similar strategies to identify subunit orientation and bind-

ing sites implicated in disease pathogenesis. Cryo-EM was used in

combination with AP-MS identified interactions between the intra-

cellular pathogen Chlamydia trachomatis and the human proteome

to determine the crystal structure of the Chlamydia complex, provid-

ing novel insight into retromer assembly (Elwell et al, 2017).

Although cryo-EM provides near-atomic resolution for protein struc-

tures, certain arrangements are prone to areas of low electron

density, making it difficult to resolve individual subunits without

orthogonal structural information (Yu & Huang, 2018). Possible

crystal structures can be fitted within the cryo-EM volume, with the

distance restraints from XL-MS experiments providing the location

and orientation of subunits. Henry et al used this approach to iden-

tify the active structure and binding mechanisms of apolipoprotein

E4 (ApoE4). ApoE4 is involved in lipid transport and is linked to

Alzheimer’s disease. Two conformations of ApoE4 were resolved,

revealing an activation mechanism of ApoE4 based on the accessi-

bility of the receptor-binding region (Henry et al, 2018).

Taken together, disease networks have the power to reveal

underlying biological mechanisms not only for the disease model

under investigation, but can also increase our understanding of

basic biological mechanisms more broadly.

New developments

Since protein–protein interactions are dynamic and can differ

between tissues or cell lines or in response to stress, time, environ-

mental stimulus, and disease state, creating a complete interactome

remains a challenge (Ideker & Krogan, 2012). To mitigate this and

our understanding of disease networks, we rely on continuous inno-

vations in high-throughput technologies, MS methods and adapta-

tions, and new combinations of existing approaches.

Adapting advanced proteomics techniques can bring us closer to

a complete fundamental understanding of a given biological system

and can consequently allow its manipulation for disease treatment.

Especially, more quantitative MS methods, such as targeted

approaches and new acquisition techniques, are driving the field

forward (Fig 4). Of these, data-independent analysis (DIA) has

shown particular promise in the analysis of AP-MS samples. DIA is

a powerful MS/MS data acquisition technique that attempts to quan-

tify all peptides expressed in a given proteome (Gillet et al, 2012;

Collins et al, 2013). Rather than sampling the most intense precur-

sor ions present in an MS1 scan, as done in traditional data-depen-

dent approaches, all peptides within a defined m/z range are

fragmented, allowing data to be collected for all peptides in a

mixture. This process is repeated until the entire m/z range is frag-

mented (Fig 4A). As the same subset of peptides is always frag-

mented between DIA experiments, this can lead to improved sample

reproducibility and fewer missing values compared to traditional

data-dependent acquisition (DDA). Additionally, DIA methods

provide highly accurate and reproducible quantitation, similar to

that achieved with targeted proteomics methods, while offering the

advantage of unbiased analysis (Gillet et al, 2012). The increased

dynamic range and sensitivity of these new MS methods promise

more complete PPI network descriptions, by decreasing false nega-

tives when probing for the interaction between two given proteins.

They also allow for quantitative detection of changes in interactions.

For instance, Lambert et al used DIA to develop a pipeline to score

altered interactors following drug exposure or related to disease

state. This pipeline was used to quantify differences in interactors

between WT and melanoma-associated sequence variants in the

human kinase CDK4. DIA captured known interacting partners and

discovered new interactors, revealing specificity in the recruitment

of HSP90 to CDK4 mutants at Arg24 (Lambert et al, 2013).

In addition to the sensitivity issues of traditional methods,

another limitation is that sample sets can easily reach sizes that are

difficult to manage. For instance, it can be difficult to individually

tag and analyze all disease-related point mutations belonging to a

single gene. Extending the analysis across several genes or condi-

tions can become laborious. To alleviate this problem, strategies to

identify PPIs on a global scale without requiring affinity purification

have been explored. These techniques can be complementary to

traditional AP-MS workflows, as the goal is to characterize changes

across the entire interactome in a single experiment (Smits &

Vermeulen, 2016). For example, Aebersold and colleagues have

advanced the concept of protein correlation profiling using complex-

centric analysis to systematically detect protein complexes (Fig 4B).

Here, protein complexes are fractionated by size exclusion chro-

matography (SEC; Kristensen et al, 2012; Hu et al, 2019). Each frac-

tion is then proteolytically digested and analyzed by DIA MS, and

explored using a newly developed software package, CCprofiler.

Interactions can be inferred based on proteins present in the same

fraction. In a proof-of-principle experiment, the authors found 462

protein complexes comprising 2,127 protein subunits in the HEK293

cell line. This technique shows great promise for large-scale PPI

identification without the need for epitope tagging (Heusel et al,

2019). On the other hand, Nordlund et al adapted their cellular ther-

mal shift assay (Savitski et al, 2014) to develop thermal proximity

coaggregation (TPCA), a high-throughput method to monitor PPIs

across the proteome (Dai et al, 2018). The basis of TPCA is that dif-

ferent proteins will become denatured at certain temperatures. By

analyzing this denaturation-mediated loss of solubility across speci-

fic timepoints, a melting curve can be generated. As individual

proteins denature, any interacting proteins will have similar solubil-

ity profiles and can be analyzed by MS. An advantage of this

method is that interactions are studied in vivo. Intact cells are

heated to the desired temperature prior to cell lysis, preserving exist-

ing interactions and eliminating false interactions occurring after

lysis. This approach makes use of sample multiplexing with TMT,

combining up to sixteen samples that are heated to different

▸Figure 4. New MS methodologies and preparation developments for PPI analysis.

(A) DIA. Rather than individually isolating and fragmenting a given peak in an MS1 spectrum, DIA collectively fragments all precursors present in a specified m/z window.
(B) Complex identification utilizing SEC. Native protein complexes are fractionated by SEC, each fraction is digested, and LC-MS/MS is employed to identify the proteins
present in each fraction. This information can be utilized to identify complexed proteins. (C) Following exposure to a temperature gradient and TMT-labeling, thermal
proteome profiling allows identification of complexed proteins.
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temperatures (Fig 4C). Comparison of melting curves obtained for

7,693 proteins identified from K562 cells with 111,776 publicly

available PPIs showed that known interacting protein pairs were

statistically more likely to have equivalent melting curves than

random pairs of proteins. Melting curves were then generated across

multiple cell lines, identifying a core set of common complexes and

complexes unique to each cell line (Tan et al, 2018). This approach

was used to study cells treated with cancer drugs, identifying the

expected binding partners and several novel interactors and down-

stream effectors (Savitski et al, 2014).

A common critique of MS-based approaches is the mixing of

cellular compartments during lysis and the resulting loss of impor-

tant information on the subcellular localization of the proteins of

interest. To address this, a variety of MS methods has been adapted

in recent technological developments under the umbrella term of

spatial proteomics (Trotter et al, 2010; Geladaki et al, 2019; Lund-

berg & Borner, 2019). These new strategies provide quantitative,

high-throughput means for assessing global protein translocation in

health and disease states. For example, APEX proximity labeling can

be used to extract subcellular localization information from

“bystander proteins” that are within the labeling environment of the

protein of interest, but are not interactors. A proof-of-principle study

showed that this approach can be used to provide both spatial and

temporal resolution during the rapid signaling cascade of G protein-

coupled receptor signaling (Lobingier et al, 2017). In addition to

new MS methodologies, existing approaches are evolving to capture

a wider picture of disease networks. For example, APEX was

recently adapted to label functional, intact mouse hearts, determin-

ing the mechanism behind adrenaline stimulated cardiac function

(Liu et al, 2020). New technologies as well as novel combinations of

existing approaches for purification and detection of proteins and

their interaction partners will continue to enable advances in the

study of PPI networks and informing novel therapeutic approaches.

Conclusions and outlook
Improvements in MS instrumentation, workflows, and data analysis

have enabled the collection of very large datasets and greatly

increased our ability to place disease-related mutations and alterations

in a biological context. Because of the connectivity between proteins,

the impact of a genetic mutation is not restricted to a specific gene

product. Instead, it affects an entire network, impacting the activity of

whole subsets of proteins. The unbiased study of these interactions

can provide clues about the spatial and temporal locations of mole-

cules and allows us to identify specific pathways affected by different

disease states. These data can be further integrated with structural

information obtained from cryo-EM or XL-MS or functionally analyzed

using genetic interaction maps, ideally placing complexes into path-

ways and providing clues on their mechanisms.

Disease networks should, however, not be viewed in isolation.

Instead, it is critical to evaluate the biological significance of the

mechanisms indicated by an interactome, just like with all systems

biology approaches (Eckhardt et al, 2020). For example, immortal-

ized cell lines are often used for PPI studies as they are easily scal-

able for large experiments. Although easy to manipulate, these cell

lines do not necessarily capture biologically relevant relationships in

more complex tissues and organisms. Newer genetic tools, including

CRISPR/Cas9-based genome engineering of primary cells, can lead

to the development of more physiologically accurate and

functionally relevant disease models to study interactions. As tech-

nology continues to advance and the availability and throughput of

these methods increases, we are moving closer to integrating these

approaches into personalized medicine applications. Their utility

does not end with elucidating biological mechanisms, but also

reveal the network disruption points for a particular patient and

inform physicians about the most promising interventions.
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