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Abstract

Computed Tomography (CT) imaging is widely used for studying body composition, i.e., the 

proportion of muscle and fat tissues with applications in areas such as nutrition or chemotherapy 

dose design. In particular, axial CT slices from the 3rd lumbar (L3) vertebral location are 

commonly used for body composition analysis. However, selection of the third lumbar vertebral 

slice and the segmentation of muscle/fat in the slice is a tedious operation if performed manually. 

The objective of this study is to automatically find the middle axial slice at L3 level from a full or 

partial body CT scan volume and segment the skeletal muscle (SM), subcutaneous adipose tissue 

(SAT), visceral adipose tissue (VAT) and intermuscular adipose tissue (IMAT) on that slice. The 

proposed algorithm includes an L3 axial slice localization network followed by a muscle-fat 

segmentation network. The localization network is a fully convolutional classifier trained on more 

than 12,000 images. The segmentation network is a convolutional neural network with an encoder-

decoder architecture. Three datasets with CT images taken for patients with different types of 

cancers are used for training and validation of the networks. The mean slice error of 0.87± 2.54 

was achieved for L3 slice localization on 1748 CT scan volumes. The performance of five class 

tissue segmentation network evaluated on two datasets with 1327 and 1202 test samples. The 

mean Jaccard score of 97% was achieved for SM and VAT tissue segmentation on 1327 images. 

The mean Jaccard scores of 98% and 83% are corresponding to SAT and IMAT tissue 
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segmentation on the same dataset. The localization and segmentation network performance 

indicates the potential for fully automated body composition analysis with high accuracy.
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network

1. Introduction

Body composition is an important measurement for patients suffering from cancer and/or 

having conditions such as sarcopenia and cachexia. Studies show that the total body skeletal 

muscle and adipose tissue volumes are correlated with muscle and fat tissue areas derived 

from axial (cross-sectional) CT images taken at the third lumbar (L3) (Shen et al., 2004; 

Mourtzakis et al., 2008) vertebral location. Body composition assessment on L3 slice 

requires the tedious and time-consuming task of manual expert segmentation. In recent 

years, several methods have been proposed for automatic L3 slice localization and tissue 

segmentation. Some recent papers applied convolutional neural networks on maximum 

intensity projection (MIP) of the CT scan volume to find the location of L3 slice in the 

spinal column while reducing the input CT scan stack to a 2D dimensional image (Kanavati 

et al., 2018; Belharbi et al., 2017). Networks trained on the MIP of the CT scan volumes, do 

not include the significant information of the vertebra, skeletal muscle and other organs’ 

shape and location for feature learning on the cross-sectional slices. Therefore, while this 

method might achieve acceptable results for normal cases, it fails when applied on the scans 

with spine curvature disorders (Kanavati et al., 2018). Bridge et al. presented another 

approach based on the regression of the axial L3 slice (Bridge et al., 2018). DenseNet 

(Huang et al., 2017) is the network that is trained to find the off-set of each image with the 

L3 slice. This approach can result in multiple L3 candidates for one CT volume. Although 

this issue is resolved by choosing the slice closest to the head as L3, it cannot be employed 

as a general rule. Here, we address this problem and propose another approach to localize 

the L3 slice.

Initial papers on automatic L3 CT segmentation proposed shape prior models for body 

composition analysis at L3 and at T4 vertebra levels (Chung et al., 2009; Popuri et al., 2013, 

2016). Recently, deep learning methods have been used for L3 tissue segmentation. Lee et. 

al applied a fully convolutional network (FCN) for skeletal muscle segmentation on L3 slice 

(Lee et al., 2017). Later the performance of Unet investigated (Bridge et al., 2018) and an 

improvement reported. In this work, a convolutional neural network (CNN) is proposed to 

further improve the generalization and accuracy of muscle and fat segmentation on CT L3 

slice.

2. Method

The objective of the proposed framework is to accurately find the middle axial slice at the 

third lumbar vertebrae from the full or partial body scan of each patient and segment the 

skeletal muscle (SM), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and 
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intermuscular adipose tissue (IMAT). The algorithm of L3 localization and muscle and fat 

segmentation is a two-step process shown in Figure 1.

In the first step, the group of CT images is fed into the localization network to extract the 

axial L3 slice from the CT scan volume, details are described in section 2.1. In the next step 

the extracted L3 image is given to the segmentation network as an input to estimate the 

muscle, SAT, VAT and IMAT regions, section 2.2 explains the network’s architecture. The 

images and labels used for the L3 localization and muscle and fat segmentation are 

described in 3.1.

2.1. L3 localization

Since all the CT scan volumes might not include the full spinal column, designing the L3 

localization algorithm based on its location with respect to other vertebrae reduces the 

model’s robustness. Our approach to the L3 localization problem is to classify the L3 slices 

from other slices at other vertebrae levels using the features from the 2D axial slices. 

Therefore, the task is defined as a binary classification of L3 slices and all other slices at 

other locations. With this procedure, all CT scan volumes with any number of images or 

field of view can be studied. The L3 localization network learns the L3 slice features and 

finds the slices regarding the learned features in the input CT volume.

The pre-trained VGG-11 network (Simonyan and Zisserman, 2014) is used for the L3 slice 

localization. The network consists of 8 convolution layers with rectified linear unit (ReLU) 

activation function and 3 fully connected layers. Each convolution block is followed by a 

max-pooling layer with kernel and stride size of 2. The classifier contains two fully 

connected layers with 4096 nodes and one two nodes layer for binary classification. The 

weights are initialized with the weights of the pre-trained model on ImageNet (Deng et al., 

2009).

2.2. SM, SAT, VAT and IMAT segmentation

Once the middle L3 slice is extracted from the CT scan volume, it is fed to the five class 

(SM, SAT, VAT, IMAT and back ground) segmentation network. Figure 2 illustrates the 

segmentation network architecture. This network is the modified version of the binary 

segmentation network presented in our muscle segmentation study (Dabiri et al., 2019). This 

multi-label segmentation network is designed to address the Unet and FCN limitations and 

refine them by proposing a network that leverages from both networks advantages and 

diminishes their drawbacks. The inputs to this network are the axial L3 images and targets 

are their corresponding masks showing muscle, SAT, VAT and IMAT regions. The core 

model consists of 8 convolutional layers and is inspired by the encoder-decoder architecture 

proposed by Ronneberger et al. in (Ronneberger et al., 2015). This architecture has multiple 

connections between encoder layers and decoder layers at the same level. These connections 

translate the fine spatial information on the earlier encoder layers to the decoder which 

results in fine boundaries in the generated mask. The encoder part consists of four 

convolution layers each followed by a max-pooling layer. Mirroring that in decoder, four 

transpose convolution layers follow four convolution layers. The prediction from this model 

is called mask 1. In the full network, three up-sampling layers and three dilated convolution 
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layers are added to the core model to generate mask 2 and mask 3. Mask 2 is generated 

following the procedure presented for FCN with 16-pixel stride by Long et al. (Long et al., 

2015). In our application of the method, the 2-pixel stride layer is generated and up-sampled 

once more to get the original image size. The prediction taken from the 2-pixel stride layer is 

generated by summing the output of the pooling layers with the encoder’s output. This 

requires up-sampling for upper layers so that they reach the same size as the previous layer. 

Mask 1 and mask 2 is then concatenated and fed to the three dilated convolutions with 64 

channels, kernel size of 3×3 and dilation rate of 4, 6 and 8. The outputs from these layers are 

concatenated to feed to the prediction layer that gives the final mask.

3. Experiments

3.1. Dataset

Three different datasets were used for training the L3 localization and segmentation 

networks. Dataset-1: The first dataset consists of abdominal axial CT images taken at the L3 

level from patients with head, neck and lung cancers. This dataset was acquired at the Cross 

Cancer Institute (CCI), University of Alberta, Canada. The manual segmentation was 

performed by a single expert operator using Slice-O-Matic V4.3 software. Dataset-2: The 

second dataset is the 3D CT scan volumes from the ”C-scan Study” of patients diagnosed 

with stage IIII invasive colorectal cancer who had a surgical resection at Kaiser Permanente 

Northern California (KPNC) between 2006 and 2011 (Caan et al., 2017). Participants (male/

female) were taken from a range of race/ethnicity and body mass index (BMI) categories. A 

trained researcher quantified the muscle tissue discriminating components using Slice-O-

Matic software version 5.0 (Tomovision, Montreal, Canada). Dataset-3: The third dataset 

consists of CT images at third lumbar level and is from female patients in the ”B-scan 

Study” aged 18 to 80 years diagnosed with stage II or III invasive breast cancer at KPNC 

between January 2005 and December 2013 (Caan et al., 2018). Two trained researchers 

quantified the cross-sectional area of muscle using Slice-O-Matic software version 5.0.

3.1.1. Data preparation—CT images are stored in DICOM format. The normal images’ 

sizes are 512 by 512. In this step, the DICOM images are converted to grey scale PNG 

images. All images were standardized so that their pixel values lie in the range of [0,1]. To 

reduce the possibility of over-fitting and improve the generalization of the network some 

transformation is done on the available data. Random rotation, horizontal and vertical flip 

are the transformations used on the training dataset.

3.2. L3 Localization Network Training

The L3 localization network is trained to classify the inputs as L3 or non-L3 images. The 

inputs to the network are the 2D axial slices at L3 and non-L3 vertebrae levels. While 

Dataset-2 consists of 3D CT image volumes, Dataset-3 and Dataset-1 only include the 2D 

axial slices at L3 level. Therefore the L3 localization network is trained on 60% of the 

subjects in Dataset-2 (L3 and non-L3 slices) and all L3 slices from Dataset-3 and Dataset-1. 

In total, more than 6600 slices for each class of L3 and non-L3 were available for training 

the network. The loss function is defined as the binary cross-entropy and stochastic gradient 
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descent is the optimizer of localization network. In the test stage, the network evaluated on 

the rest 40% of the subjects from Dataset-2.

3.3. L3 Segmentation Network Training

The segmentation network is trained in two steps. At first, the core encoder-decoder part is 

trained to find a good weight initialization for training the full network. Afterwards, the full 

network is trained to achieve the final prediction. The network was trained on approximately 

60% of subjects in each dataset and evaluated on the remaining 40% kept as unseen test 

data. The model is optimized using Adam optimizer. The loss function for this step is the 

multi-class cross entropy. For training the full network the weighted loss of mask 1, mask 2 

and final mask with the weight vector of [0.2, 0.2, 1] was considered. While ReLU was the 

activation function of all hidden layers, softmax was applied on the output prediction layer.

The Hounsfield unit (HU) range for each tissue was used in the postprocessing of the 

predicted final segmentation mask. The SM, VAT, SAT and IMAT on CT images are found 

to respectively have the range between [−29, 150], [−150 −50], [−190 −30] and [−190 −30] 

HU in intensity. These ranges were applied as the threshold to the segmentation mask to 

remove pixels that classified as the tissue of interest but are outside its intensity range.

4. Results

4.1. Results of L3 slice localization

To evaluate the L3 slice localization model, its performance on 1748 unseen 3D CT image 

volumes investigated. The 3D CT images consist of 2D axial slices at different vertebrae 

levels. These 2D slices are fed into the network to find the L3-candidate slices of each 3D 

CT image. L3-candidate images were extracted based on the classifier’s output. Then the 

slice with the highest probability among the L3-candidates of each CT image volume was 

chosen as the middle L3 slice.

The mean slice error for 1748 volumes is 0.87 ± 2.54 slice. For 1149 of the test volumes the 

labeled L3 slice predicted correctly. In 435 of the incorrect cases, one of the L3-candidate 

images is the true middle L3 slice and the other one is the slice before or after the true 

middle L3-slice. Therefore we ran an experiment to study the affect of choosing either of 

these two slices as L3 on the body-composition analysis results. For this experiment the ratio 

of the tissue difference between the true middle L3 and predicted L3 slice to the tissue in the 

true L3 slice calculated. Respectively the mean values of 0.049, 0.174, 0.084 and 0.096 were 

achieved for SM, IMAT, SAT and VAT.

The proposed method is also compared to two other methods of L3 localization applied on 

the frontal MIP image of the CT scan volumes. The fully convolutional network proposed in 

(Kanavati et al., 2018) and the regression algorithm using VGG16 in (Belharbi et al., 2017) 

were trained and tested on our dataset. The mean slice error of FCN with frontal MIP images 

as input and 1D confidence map as output (Kanavati et al., 2018) and regression algorithm 

using VGG16 network (Belharbi et al., 2017) on 1748 CT scan test images is reported in 

table 1.
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As shown in table 1, while the mean slice error of the method presented in Kanavati et al. 

(2018) and our approach is the same, our proposed classification method has lower standard 

deviation. To evaluate the generalization of our proposed algorithm and Kanavati et al. 

model we further tested them on the same dataset but with the partial field of view. To 

generate the partial field of view scans, a number of slices from the coccyx location of the 

vertebral column to the bottom of the scans were removed. While the performance of our 

model remained the same, the FCN model error in terms of the number of slices increased to 

3.37 ± 11.89. These results demonstrate the importance of the features extracted from the 

individual axial slices such as the vertebrae structure shape, muscle shape and other organs 

presented on the axial slices of each vertebrae location.

4.2. Results of tissue segmentation on L3 slices

The generalization of the segmentation network to unseen images was investigated by 

training the proposed network on two datasets separately and using subsets of the two 

datasets set aside for testing. The Jaccard score, Dice coefficient, sensitivity and specificity 

of each experiment are reported for bench marking performance in Table 2. Figure 3 

displays the two trained models as the distribution of the Jaccard score for each segmented 

tissue. The red and green histograms are the results of testing the model trained on Dataset-2 

and Dataset-3, respectively. Based on the violin plot the Jaccard score of SM, SAT and VAT 

are above 90 percent for all experiments. The poorest network performance is for the IMAT 

segmentation. One possible reason is the fact the area of IMAT tissue is small and one mis-

classified pixel penalizes the average performance more. Different classification of adipose 

tissue (Mitsiopoulos et al., 1998; Gorgey and Dudley, 2007) leads to difficulty in accurately 

segmenting this adipose tissue on CT scan images in the labeling process. The reduction in 

performance in some cross-database experiments could be attributed to different manual 

labeling protocols followed for the datasets.

Figures 4 represents some of the best and poor predicted segmentation maps for SM, VAT, 

SAT and IMAT from Dataset-2 and Dataset-3. Note that the test set is identical in bench 

marking the performance of the two separately trained networks. For comparison purposes, 

Unet is also trained and tested on Dataset-2. Its performance on 1327 L3 test samples from 

Dataset-2 resulted in 96.21, 96.82, 94.39 and 60.17 Jaccard score for SM, SAT, VAT and 

IMAT respectively. Comparing these scores with the proposed network performance from 

Table 2 an improvement for all the four regions is achieved.

5. Conclusion

In this paper, we developed an algorithm to automatically extract the third lumbar middle 

slice from the volume of full-body or partial-body CT scans and segment the SM, VAT, SAT 

and IMAT tissues. The generalization of the model was investigated using experiments 

conducted on three datasets. The results from these experiments suggest that L3 slice 

localization is possible employing only the 2D axial slices for feature learning. Moreover, 

the network is applicable for CT scans of various field of view and device settings. 

Regarding the segmentation network, the features were carefully studied considering our 

goals to retain high spatial resolution, the smoothness of labeling within a given region and 
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the accuracy of the boundary for small degenerated areas in the muscle. Results show the 

high performance of the segmentation model on datasets from different CT devices and data 

acquisition settings.
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Highlights:

• An algorithm is proposed to automatically extract the CT slice at the third 

lumbar (L3) vertebra level and segment the muscle and adipose tissue regions 

from that.

• The L3 localization network is a binary classification model trained on the 2D 

axial slices of a partial or full CT scan image to classify the input images as 

L3 or non-L3 slices.

• The five class segmentation network is a convolutional neural network trained 

to segments the skeletal muscle (SM), subcutaneous adipose tissue (SAT), 

visceral adipose tissue (VAT) and intermuscular adipose tissue (IMAT) on the 

middle L3 slice.

• Models are validated on three CT scan datasets. The mean slice error of 

0.87±2.54 achieved for L3 slice localization on 1748 CT scan volumes. The 

performance of the tissue segmentation network evaluated on two datasets 

and high Jaccard scores in the range of 0.97–0.98 is achieved for SM, SAT 

and VAT. The Jaccard score for IMAT segmentation is 0.85.
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Figure 1: 
The two-step network pipeline. First step is extracting the middle L3 slice from CT scan 

volumes and the next step is muscle and fat tissue segmentation on the extracted L3 slice.
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Figure 2: 
The illustration of the full network architecture. The prediction from Pooling layers 1 and 2 

and also the prediction from the Convolution layer 5 from the core model is extracted and 

fed to up sampling layers shown in purple to achieve the second map. Then, map1 and map 

2 is concatenated and fed to three dilated convolution layer shown in cyan. Finally the 

outputs of these three layers are concatenated and generates the final map. The circles with + 

symbol means the feature maps summation.

Dabiri et al. Page 11

Comput Med Imaging Graph. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Violin plot demonstrating the segmentation network’s performance. The group of four 

graphs from the left are the performance of the two trained networks tested on Dataset-2 and 

Dataset-3, respectively. Each group shows the distribution of Jaccard scores for SM, SAT, 

VAT and IMAT for testing the model trained on Dataset-2 (Showing in red) and Dataset-3 

(showing in green).
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Figure 4: 
Illustration of some of the best and poor performances. Each row represents the SM, VAT, 

SAT and IMAT of one sample respectively. Yellow regions are the pixels that correctly 

classified. Red pixels are the pixels that mis-classified and green pixels are the pixels which 

are missed from predicted map.
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Table 1:

The comparison of three L3-localization algorithm performances on 1748 CT images.

Method Training Data Test Error
(mean±standard deviation)

FCN (Kanavati et al., 2018) Frontal MIP images 0.87 ± 4.66

VGG16 (Belharbi et al., 2017) Frontal MIP images 2.04 ± 2.54

VGG11 (Proposed method) Axial images 0.87 ± 2.54
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Table 2:

The quantitative results of the two trained model on two test sets of L3 images. The top row of the table shows 

the results of testing each of the two networks on the test samples set aside from Dataset-2. The images used 

for the two trained networks are shown in the second column. The bottom row displays the results of applying 

each of the two networks on the test samples set aside for Dataset-3.

Test set
(Number of samples)

Training set
(Number of samples)

Tissue Jaccard Score Dice Coefficient Sensitivity Specificity

Dataset-2 (1327) Dataset-2(3774) Muscle 97.82 ± 2.51 98.88 ± 1.37 99.02 ± 1.34 99.89 ± 0.16

VAT 97.47 ± 5.39 98.6 ± 4.31 98.63 ± 4.90 99.92 ± 0.09

SAT 98.07 ± 4.58 98.94 ± 3.96 98.98 ± 4.32 99.88 ± 0.15

IMAT 83.63 ± 7.70 90.87 ± 5.01 90.09 ± 7.41 99.94 ± 0.05

Dataset-3(1801) Muscle 94.61 ± 3.67 97.19 ± 2.10 95.5 ± 2.98 99.91 ± 0.12

VAT 96.43 ± 6.26 98.03 ± 4.85 98.52 ± 5.36 99.85 ± 0.13

SAT 96.59 ± 5.25 98.16 ± 4.25 98.9 ± 4.36 99.69 ± 0.34

IMAT 61.23 ± 12.13 75.21 ± 9.8 63.08 ± 12.32 99.98 ± 0.02

Dataset-3 (1202) Dataset-2(3774) Muscle 94.34 ± 4.23 97.02 ± 3.38 99.03 ± 3.46 99.63 ± 0.23

VAT 95.28 ± 6.01 97.46 ± 4.27 96.94 ± 4.92 99.92 ± 0.11

SAT 97.74 ± 1.97 98.85 ± 1.04 98.65 ± 1.45 99.83 ± 0.23

IMAT 63.25 ± 12.13 76.76 ± 9.87 93.86 ± 7.45 99.79 ± 0.16

Dataset-3(1801) Muscle 96.28 ± 2.73 98.08 ± 1.50 98.34 ± 1.87 99.84 ± 0.14

VAT 96.12 ± 5.39 97.92 ± 3.90 98.17 ± 4.00 99.91 ± 0.12

SAT 98.36 ± 1.72 99.16 ± 0.91 99.36 ± 0.85 99.83 ± 0.25

IMAT 81.96 ± 10.73 89.65 ± 7.56 88.95 ± 9.23 99.96 ± 0.04
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