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A B S T R A C T   

In many applications, microbubbles (MBs) are encapsulated by a lipid coating to increase their stability. However, the complex behavior of the lipid coating including 
buckling and rupture sophisticates the dynamics of the MBs and as a result the dynamics of the lipid coated MBs (LCMBs) are not well understood. Here, we 
investigate the nonlinear behavior of the LCMBs by analyzing their bifurcation structure as a function of acoustic pressure. We show that, the LC can enhance the 
generation of period 2 (P2), P3, higher order subharmonics (SH), superharmonics and chaos at very low excitation pressures (e.g. 1 kPa). For LCMBs sonicated by 
their SH resonance frequency and in line with experimental observations with increasing pressure, P2 oscillations exhibit three stages: generation at low acoustic 
pressures, disappearance and re-generation. Within non-destructive oscillation regimes and by pressure amplitude increase, LCMBs can also exhibit two saddle node 
(SN) bifurcations resulting in possible abrupt enhancement of the scattered pressure. The first SN resembles the pressure dependent resonance phenomenon in 
uncoated MBs and the second SN resembles the pressure dependent SH resonance. Depending on the initial surface tension of the LCMBs, the nonlinear behavior may 
also be suppressed for a wide range of excitation pressures.   

1. Introduction 

A microbubble (MB) excited by an ultrasound pressure wave is an 
instance of a complex nonlinear dynamical system with resonances, 
several attractors and their basins, multiple bifurcations and chaotic 
behavior and not “yet fully describable behavior” due to its infinite 
complexity [1–3]. In spite of the complexity, MBs are used in industrial 
applications like cleaning [4,5], food production [6], sonochemistry 
[7–9], sonoluminescence [9,10], mixing [11,12], therapeutic [13–16] 
and diagnostic [17–20] ultrasound. 

One of the first nonlinear phenomena detected with MBs in sound 
fields was through historical observations of Esche [21]. Esche reported 
the generation of a frequency peak at half the excitation frequency (f) in 
the power spectrum of the received signal [21]. In his investigation of 
MBs driven with 3Hz-3.3 MHz, he found the appearance of spectral lines 
at f/2 and in some cases f/3 for sufficiently high acoustic pressures. In a 
continuation of Esche’s work, Bohn reported spectral lines down to f/4 
[22]. In the chaotic (broadband noise) region of the sound emitted by 
the MBs, Holzfuss & Lauterborn [3] observed a surprisingly low- 
dimensional attractor with correlation dimension of about 2.5 which 
is the characteristic for driven damped nonlinear oscillators. Several 
other experimental studies investigated the nonlinear dynamics of ul
trasonically excited MBs [23–29]; observing subharmonics, 

ultraharmonics and chaotic behavior. Numerical investigations have 
demonstrated the existence of multiple resonance peaks [2,30,31], 
period doubling route to chaos [32–34], strange attractors and chaotic 
behavior (e.g. [1–3,28,29]). 

Within the last decade several studies have employed the methods of 
dynamical systems to study the behavior of MBs. There have been suc
cessful attempts in classification of some of the nonlinear dynamics of 
the MB oscillator [35–38]. Hegedüs [39] found numerical evidence for 
the existence of stable period 1 solutions beyond Blake’s threshold [39]. 
Occurrence of higher order subharmonics (SHs) (f/3, f/4, f/5 etc) has 
been extensively investigated in [38,40] and for the case of ambient 
pressures slightly below the vapor pressure [39]. They are experimen
tally observed and numerically modelled in [41–43]. 

Hegedus [44] studied the topology of stable periodic solutions near 
Blake’s threshold. The effect of high dissipation on the nonlinear evo
lution of the MB behavior is considered in [45,46] and it has been shown 
that MB becomes an over-damped oscillator suppressing collapse-like 
behavior. Moreover, they reported the existence of transient chaos 
[45]. Using two frequencies was proposed in [47] and extended in 
[48–51] to control the chaotic behavior of the MBs. The effect of mul
tiple frequencies on the resonance behavior and nonlinear dynamics of 
the system was investigated in [52–55]. 

The influence of the pressure amplitude on the resonance frequency 
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and bifurcation structure of the MBs which is driven by its resonance 
frequency is studied in [56]. It is shown that increasing the incident 
ultrasound pressure decreases the resonance frequency of the MB; when 
the MB is sonicated with its pressure dependent resonance frequency a 
saddle node bifurcation takes place at the corresponding pressure 
amplitude which enhances the nondestructive back-scattered pressure 
by the MBs. Non-spherical MB oscillations in a viscous liquid is studied 
in detail in [46] and its been shown that the increased rate of dissipation 
can significantly extend the stable domains in the acoustic excitation 
parameter planes. We have studied the ultraharmonic (UH) and super 
harmonic (SuH) behavior of the MB oscillator by introducing a more 
comprehensive method of construction of bifurcation diagrams [57]. 
Using this method, the bifurcation structure of the MBs undergoing 
period doubling and 1/2 order sub-harmonic emissions have been 
extensively studied [34]. It was found that sonication of MBs with twice 
their linear resonance frequency results in period doubling at a lower 
excitation and leads to non-destructive stable period 2 oscillations, 
however, sonication with resonance will most likely result in MB 
destruction before the appearance of period 2 oscillations. We showed in 
[58] that SH resonance frequency decreases with increasing pressure; 
and maximum SH strength is generated when the sonication frequency is 
1.5–1.6 times the resonance frequency of the MBs. 

In spite of numerous studies on the complex behavior of free (un
coated) MBs, the dynamics of the coated MBs have not been thoroughly 
studied. MBs stabilized by a coating in the form of phospho-lipid (e.g. 
Definity®[59]), or albumin (e.g. Optison [60]) or polymer (Point [61]) 
are designed to be used in clinical and pre-clinical medical ultrasound 
applications. Addition of the coating (more specifically in case of 
phospho-lipid coating) immensely increases the complexity of the MB 
oscillator. During MB oscillations phospho-lipid shell can undergo 
buckling and rupture [62] resulting in a dynamical system with varying 
stiffness. The dynamic stiffness of the nonlinear oscillator enhances the 
generation of nonlinear signatures in the oscillation of the coated MBs. 

Buckling of the lipid shell has been shown to be one of the possible 
reasons for enhanced non-linearity [62–71]. Phospho-lipid shell MBs 
exhibit compression only behavior [67] during which MBs compress 
more than they expand. There exists a threshold behavior for the onset 
of oscillations [72]; the MB starts to oscillate only above a pressure 
threshold. It has been experimentally observed that phospholipid shell 
MBs can generate SH oscillations even at very low acoustic pressures 
(<30 KPa [64,66,73]). Such low threshold values not only contradict the 
predictions of the theoretical models for coated MBs [65,74,75], they 
are even below the threshold values expected for uncoated free MBs 
[65,76]. The low pressure thresholds are despite the increased damping 
due to the presence of the shell. Through experiments and numerical 
simulations it has been shown in [64] that the low pressure threshold for 
SH emissions is due to the compression only behavior of the MBs due to 
the buckling of the shell. 

In [68] the lipid shell was found to enhance the nonlinear MB 
response at acoustic pressures as low as 10 kPa. The increase in acoustic 
pressure amplitude lead to a substantial decrease of the frequency of the 
maximum response even at very low acoustic pressures [68] resulting in 
a pronounced skewness of the resonance curve. Such shift in resonance 
has been postulated in [68] to be the origin of the ’thresholding’ 
behavior [72]. Nonlinear resonance behavior of the lipid shell MBs was 
also observed in higher frequencies (5–15 MHz) in [77]. It is shown in 
[66] that the shell elasticity of the phospholipid shell varies with MB 
oscillation amplitude and the magnitude of ’compression only’ behavior 
depends on the initial phospholipid concentration on the MB surface. 
Prosperetti [65] through theoretical analysis of the Marmottant model 
[62] attributed the lower SH threshold of the lipid MBs to the variation 
in the mechanical properties of the shell in the neighborhood of a certain 
MB radius (e.g. the occurrence of buckling). 

In addition to the widely studied 1/2 order SHs, we have experi
mentally detected higher order SHs (1/3, 1/4 and 1/5) in the oscillations 
of lipid coated MBs at very low acoustic pressures and high frequencies 

(e.g. 25 MHz) [41–43]. Through analyzing bifurcation diagrams we 
concluded that buckling or rupture of the shell is responsible for the 
enhanced nonlinear behavior [41–43]. The closer the initial surface 
tension of the MB to the two limit values of the buckling and rupture of 
the shell, the lower the pressure threshold for nonlinear oscillations. 
Variation of the mechanical properties of the shell can also manifest 
itself in expansion dominated behavior in liposome-loaded lipid shells 
[69]. Expansion dominated oscillations occur for MBs with an initial 
surface tension near that of water [69,77]. Upon expansion, the stiffness 
of the coating weakens and the MB expands more than it compresses. 
Expansion-dominated behavior was used to explain the enhanced non- 
linearity at higher frequencies (25 MHz) [78]. The Marmottant model 
effectively captures the behavior of the MB including expansion- 
dominated behavior [59,43,77], compression only behavior [67], 
thresholding [72] and enhanced non-linear oscillations at low excitation 
pressures [41,43,63,64,66,68]. 

Previous studies (e.g. [2,34,36,38–40,56,58]) investigated the 
bifurcation structure of the uncoated bubbles and bubbles coated with 
shells that exhibit linear viscoelastic behavior. However, the influence of 
the nonlinear viscoelastic behavior of the coating (e.g. buckling and 
rupture [59,62]) on the bifurcation structure of the bubble has not been 
investigated before. Due to the enhanced nonlinearity created by the 
behavior of the shell, it is important to rigorously investigate the impact 
of the exposure parameters on the MB oscillations. The current work 
addresses this problem for the first time. We perform a comprehensive 
analysis of the bifurcation structure of ultrasonically excited lipid coated 
MBs. Similar to our previous works in [34,38,56,58] we study the radius 
vs excitation pressure amplitude bifurcation structure of the lipid coated 
bubbles when the bubble is sonicated with multiples of its resonance 
frequency. Results are then compared to previous studies whereby we 
reveal the influence of the nonlinear shell viscoelasticity on the bubble 
behavior. We show that the buckling and/or rupture of the shell en
hances the subharmonics (SHs), superharmonics (SuHs), ultraharmonics 
(UHs) and chaos at very low excitation pressures. The enhanced non- 
linearity may disappear at moderate pressures. At higher pressures, 
nonlinear behavior may reappear in the bubble behavior exhibiting 
similar behavior to the uncoated bubbles and coated bubbles with linear 
viscoelastic behavior. 

Knowledge of the effect of the shell behavior on the nonlinear 
response of the MB is essential to optimize the MBs response to an ul
trasonic field. Moreover, the comprehensive knowledge that can be 
obtained through analyzing the bifurcation diagrams of the lipid coated 
MBs may help in revealing potential parameter spaces in which MB 
behavior can be beneficial to various applications. Last but not least, 
revealing the intricate behavior of the system and enhanced nonlinear 
effects is of potential interest in the field of nonlinear and chaotic 
dynamical systems. 

2. Methods 

2.1. Marmottant model 

The dynamics of the coated MBs undergoing buckling and rupture 
can be effectively modeled using the Marmottant equation [62]: 
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(1)  

In this equation, R is the bubble radius at time t, R0 is the initial bubble 
radius, Ṙ is the wall velocity of the bubble, R̈ is the wall acceleration, ρ is 
the liquid density (998 kg

m3), c is the sound speed (1481 m/s), P0 is the 
atmospheric pressure, σ(R) is the surface tension at radius R, μL is the 
liquid viscosity (0.001 Pa s), ks is the viscosity of the coating, k is the 
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polytropic index for the gas and Pa(t) is the acoustic driving force Pa(t) =
Pasin(2πft) where Pa and f are the amplitude and frequency of the 
applied acoustic pressure. The values in the parentheses are for pure 
water at 2930K. In this paper the gas inside the bubble is C3F8 and water 
is the host media. 

The surface tension σ(R) is a function of radius and is given by: 

σ(R) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if R⩽R(b)

χ(R
2

R2
b
− 1) if Rb⩽R⩽Rr

σwater if RupturedR⩾Rr

(2)  

where σ0 is the initial surface tension (at R = R0), σwater is the water 
surface tension and χ is the shell elasticity. Rr and Rb are the rupture and 
the buckling radius respectively where Rb = R0̅̅̅̅̅̅̅̅̅̅̅

1+σ(R0 )
χ

√ and Rr =

Rb

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 +

σrupture
χ

√
. In this work similar to [78], Rbreakup = Rr. In this paper, 

simulations were run for different values of σ0. The initial surface ten
sion σ0 is a property of the lipid coated bubble and varies when using 
different manufacturing methods [79,80]. Moreover, σ0 can be altered 
by varying the ambient pressure in the liquid [64,80]. Variations in σ0 
changes the Rb and Rr which in turn change the dynamical behavior of 
the bubble. In this paper, for simplicity, and similar to [78,80] we have 
assumed σrupture = σwater. Fig. 1 shows a representation of buckling and 
rupture and the dependence of the effective surface tension (σ(R)) on 
microbubble radius. 

2.2. Keller-Miksis model 

Dynamics of the uncoated bubbles were also visualized alongside the 
lipid coated bubbles to highlight the effect of the lipid shell on the 
bubble dynamics. To model the uncoated bubble dynamics the Keller- 
Miksis model [79] is used: 
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where G =
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R − P0 − Pasin(2πft). 

In both models we have neglected the effects of thermal damping. 
This is to decrease the problem complexity and to better highlight only 
the shell effects. Moreover, we have shown in [89] that in case of C3F8 
gas cores thermal damping is significantly smaller compared to air. 
Moreover, in case of coated bubbles with C3F8 gas cores, thermal effects 
maybe be fully neglected. However, in case of the uncoated bubble ef
fects of thermal damping at higher pressures should be considered using 
full ODEs [90] that account for the thermal damping. We have shown in 
[89] that the generally used linear assumptions [91] for thermal effects 
may lead to inaccuracies at pressures as low as ≈ 40 kPa. However, since 
the main focus of the paper is to highlight the coating effects and 
because the thermal effects of the C3F8 are weak [88], we have 
neglected the thermal effects in this paper. 

It should be noted that the Keller-Miksis model (Eq. (3)) has some 
additional terms compared to the the Marmottant model (Eq. (1)). In 
this paper, the purpose of the qualitative comparison between the two 
models is to demonstrate the effect of shell on the MB dynamics. The 
behavior of the bubble in the absence of shell is used as a reference to 
reveal the effect of the enhanced non-linearities due to coating at low 
excitation pressures. The Marmottant model [62] is written a popular 
form [59] and addresses the inaccuracies of the Keller-Miksis model 
when |Ṙ|c ≈ 1. We show in Appendix A, that in the absence of the shell 
terms in the Marmottant model the radial oscillations of the bubbles as 
predicted by the two models are relatively in good agreement. Radial 
oscillation amplitude of the periodic behavior, the pressure threshold of 
the onset of various nonlinear regimes and the chaotic behavior are in 
good agreement. However, when the oscillations are chaotic the radial 
oscillation amplitudes as predicted by both models are not always equal. 

Fig. 1. Schematic of the effective surface tension on a coated MB with R0 = 2 μm, χ = 3.5 N/m & σ0 = 0.036 N/m. The coating buckles when R⩽Rb making the 
surface tension zero. The coating behaves elastically for Rb⩽R⩽Rr . When R⩾Rr , the coating ruptures and exposes the gas to water, thus the effective surface tension 
becomes equal to σwater (0.072 N/m). 
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Fig. 2. Resonance curves of a bubble with R0 = 2μm at different pressures for: a) uncoated bubble, and the coated bubble with b) σ0 = 0 N/m, c) σ0 = 0.01 N/m, d) 
σ0 = 0.036 N/m, e) σ0 = 0.062 N/m & f) σ0 = 0.072 N/m. 
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2.3. Investigation tools 

Bifurcation diagrams are valuable tools to analyze the dynamics of 
nonlinear systems since qualitative and quantitative changes of the 
dynamics of the system can be investigated effectively over a wide range 
of control parameters. In this paper, we employ a more comprehensive 
bifurcation analysis method introduced in [73,74]. 

2.3.1. Conventional bifurcation analysis (Poincaré cross section at each 
driving period) 

When dealing with systems responding to a driving force, to generate 
the points in the bifurcation diagrams vs. the control parameter, one 
option is to sample the R(t) curves using a specific point in each driving 
period. The approach can be summarized in: 

P ≡ (R(Θ)){(R(t), Ṙ(t)) : Θ =
n
f
}wheren = 100, 101…150 (4)  

where P denotes the points in the bifurcation diagram, R and Ṙ are the 
time dependent radius and wall velocity of the bubble at a given set of 
control parameters of (R0,P0,PA,c,k,μ, σ,f) and Θ is given by nf . Points on 
the bifurcation diagram are constructed by plotting the solution of R(t)
at time points that are multiples of the driving acoustic period. In this 
work, the results are plotted for n = 100 − 150 to ensure a steady state 
solution has been reached. 

2.3.2. Method of maxima 
As a more general method, bifurcation points can be constructed by 

setting one of the phase space coordinates to zero: 

Q ≡ max(R){(R, Ṙ) : Ṙ = 0} (5)  

In this method, the steady state solution of the radial oscillations for 
each control parameter is considered. The maxima of the radial peaks 
(Ṙ = 0) are identified (determined within 100–150 cycles of the stable 
oscillations) and are plotted versus the given control parameter in the 
bifurcation diagrams. The bifurcation diagrams of the normalized bub
ble oscillations ( R

R0
) are calculated using both methods a) and b). When 

the two results are plotted alongside each other, it is easier to uncover 

more important details about the SuH and UH oscillations, as well as the 
SH and chaotic oscillations. 

3. Results 

3.1. Resonance curves 

Compared to uncoated bubbles and coated bubbles with pure vis
coelsatic behavior (e.g. Keller-Miksis model [81], Hoff model [82], 
Morgan model [83]), the resonance behavior of lipid coated bubbles are 
more complex. This is due to the buckling and rupture of the shell and 
dynamic variation of the effective surface tension of the bubble. As an 
example [68,77] have shown numerically and experimentally that a 
pressure increase leads to a significant displacement of the main reso
nance (frequency of maximum response) of the bubble leading to a 
significant shift of the resonance curve. 

Fig. 2 compares the resonance curves of a 2 μm bubble at excitation 
pressure amplitudes 1, 6, 11, 16 & 21 kPa. In order to better understand 
the effect of the initial surface tension we have presented the case of the 
uncoated bubble in Fig. 2a & the coated bubbles with σ0 of 0, 0.01, 
0.036, 0.062 & 0.072 N/m in Fig. 2b–f respectively. The shell parame
ters for the bubble model are χ = 3.5 N/m & ks = 4 ∗ 10− 9 kg/s 
[80,84]. 

Upon a first glance at Fig. 2, the high sensitivity of the coated bubble 
to σ0 is evident. While the resonance frequency of the uncoated bubble 
decreases slightly from ≈ 1.77 MHz to ≈ 1.69 MHz, the resonance fre
quency of the lipid coated bubble changes considerably over this rela
tively small pressure amplitude range (1 kPa–21 kPa). The resonance 
frequency (fr) change as a function of PA significantly depends on the σ0. 
The bubbles with σ0 = 0.01 & 0.062 N/m display the largest change in fr 
(fundamental frequency of the maximum response) which manifests 
itself in a skewness [68] in the resonance curve (Fig. 2c & e). Meanwhile, 
the coated bubbles with σ0 = 0 N/m (at buckling stage) & σ0 = 0.072 
N/m (at rupture state) display the least change in the resonance fre
quency; however, in both cases 1/2 and 1/3 subharmonic (SH) reso
nances are generated at the lowest pressure thresholds. The reason for 
large change in the fr of the bubble with σ0 = 0.01 & 0.062 N/m is that 
R0 is very close to Rb and Rr respectively, thus these bubbles are most 

Fig. 3. Resonance frequency as a function of pressure amplitude for the bubbles in Fig. 1.  

A.J. Sojahrood et al.                                                                                                                                                                                                                           



Ultrasonics Sonochemistry 72 (2021) 105405

6

sensitive to variations in effective surface tension as the pressure 
amplitude increases. 

The resonance frequency (fr) as function of pressure amplitude is 
shown in Fig. 3. At 1 kPa, the bubble with σ0 = 0.035 N/m has the 
highest resonance frequency. A pressure amplitude increase to 11 kPa 
results in a large change in the fr of the bubbles with σ0 = 0.01 N/m 
(6.62 to 3.47 MHz), σ0 = 0.062 N/m (from 6.73 to 3.58 MHz) & for 
σ0 = 0.036 N/m (6.89 MHz to 5.55 MHz). The uncoated bubble, and the 
bubbles with σ0 = 0 & σ0 = 0.072 N/m display very small changes in 
the fr as pressure amplitude increases from 1 kPa to 5 kPa. The bubbles 
with σ0 = 0 N/m and σ0 = 0.072 N/m have the largest Rr and Rb 
respectively and a larger pressure is needed to change the state of the 
coating from buckled to rupture and vice versa. Fig. 4 displays the 
buckling and the rupture radii as a function of σ0. The bubble with σ0 =

0 N/m is initially at the buckled state, and has the largest rupture radius 
of ≈ 1.0102R0. The bubble with σ0 = 0.072 N/m is initially at the 
ruptured state and has the lowest buckling radius of ≈ 0.989R0. Thus, 
for these two bubbles higher acoustic pressures are required to change 
the state of the coating and consequently the rates of change of their 
main resonance (fr) with pressure are the smallest. The bubble with σ0 =

0.01 N/m buckles at Rb = 0.9986R0 and the bubble with σ0 = 0.062 N/ 
m ruptures at ≈ 1.0014R0, thus a very small pressure excitation is able to 
change the state of the coating to buckled or ruptured respectively. 
Hence, these two bubbles display the highest rates of change of fr with 
increasing pressure. The relationship between Rb,Rr and χ and σrupture are 
further explored in Appendix B. 

Similar to our previous work in [34,37,38,56], in this work we will 
attempt to classify the nonlinear dynamics of the lipid bubbles as a 
function of pressure amplitude when they are sonicated with fractions or 
multiples of their fr. However, the initial sharp decrease of the resonance 
frequency with pressure will make the classification difficult. Moreover, 
characterization of the coating parameters of the bubbles in experiments 
are generally through attenuation measurements of the bubble solution 
when there is an excitation pressure amplitude above 1 kPa is applied. 
As an instance negative peak pressure amplitude of 25 kPa, 12.5 kPa, 30 
kPa, 10 kPa & 5 kPa were applied respectively in [85–87,80,84] and 
peak to peak pressures of 33 kPa were applied in [87]. Very low pres
sures can not be applied experimentally due to the signal to noise 

constraints of the measurements systems. 
To simplify the classification method and to have a better compari

son with published experimental data we have calculated the resonance 
frequency at Pa = 10 kPa and used it for further study. Thus, in this 
paper for coated bubbles fr refers to the resonance frequency at Pa =

10 kPa. 

3.2. Radial oscillations as a function of time and the corresponding 
changes in the σ(R)

In Fig. 2, we observed the generation of SuH as well as SH resonances 
at very low pressures in case of the coated bubbles. In this section, the 
enhanced nonlinear oscillations and their relationship with the bubble 
surface tension are briefly investigated to have a better insight on the 
mechanisms of enhanced nonlinearity. Fig. 5 shows the radial oscilla
tions of the uncoated bubble as a function of 10 acoustic driving periods 
(100–110). The left column shows the radial oscillations when Pa =

1 kPa and f = 0.3fr, 2fr and 3fr in Fig. 5a, c and e respectively. right 
column shows the radial oscillations when Pa = 60 kPa and f = 0.3fr,2fr 
and 3fr in Fig. 5b, d and f respectively. The red circles locate the 
amplitude of the radial oscillations at each period. This is the Poincaré 
cross section at each driving period which is used to generate the 
bifurcation diagram using the method introduced in 2.3.1. The bubble 
oscillations in Fig. 5 are period 1 (P1) and the red circles have the same 
value at each driving periods. This indicates the absence of any SHs. 
Only 3rd order SuHs are seen (P1 oscillations with 3 maxima) when 
pressure amplitude is 60 kPa in Fig. 5b. 

Fig. 6, depicts the case of the coated bubble with R0 = 2μm when f =
0.3fr and Pa = 1 kPa. Top row is for σ0 = 0 N/m with radial oscillations 
in Fig. 6a and the corresponding σ(R) in Fig. 6b. The oscillations are P1 
(red circle only represents one value), however, the radial oscillations 
have two maxima, indicating a 2nd order SuH regime of oscillations. The 
corresponding σ(R) drops to zero and stays zero in the buckled state until 
the bubble expands above the buckling radius and again drops to zero 
when the bubble buckles upon compression. The bubble with σ(R) =

0.072 N/m (Fig. 6c) exhibits P1 oscillation with 3 maxima and thus a 3rd 
order SuH regime. When the bubble expands, σ(R) can not grow beyond 
the surface tension of water (0.072 N/m) thus the σ(R) curve becomes 

Fig. 4. Rb (blue curve) and Rrupture (red curve) as a function of σ0. The circles mark the Rb & Rrupture with ones in blue corresponding to σ0 = 0 N/m, light blue 
corresponding to σ0 = 0.01 N/m, green corresponding to σ0 = 0.036 N/m, orange corressponding to σ0 = 0.062 N/m & red circles corresponding to σ0 =

0.072 N/m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. R/R0 as function of the driving periods for a C3F8 uncoated bubble with R0 = 2 μm when: a) f = 0.3fr & Pa = 1 kPa, b) f = 0.3fr & Pa = 60 kPa, c) f = 2fr & 
Pa = 1 kPa, d) f = 2fr & Pa = 60 kPa, e) f = 3fr & Pa = 1 kPa & f) f = 3fr & Pa = 60 kPa. Red circles correspond to the location of R(t) at each period. 
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flat(Fig. 6d). Upon contraction σ(R) decreases and upon expansion it 
grows until the coating breaks and surface tension becomes equal to 
0.072 N/m. In both cases, the buckling and rupture of the shell results in 
the enhanced nonlinearity (in these cases enhanced SuHs). For the 
bubble with σ0 = 0 N/m there is compression dominated behavior and 
for the bubble with σ0 = 0.072 N/m expansion dominated behavior is 
observed. 

Fig. 7, depicts the case of the coated bubble with R0 = 2μm when f =
2fr and Pa = 1 kPa. For σ0 = 0 N/m (Fig. 7a) compression dominated 
radial oscillations are P2 (red circle corresponds to two values). The 
corresponding σ(R) (Fig. 7b) remains equal to zero for a time duration of 
less than two periods followed by a short spike when the bubble expands 
above the buckling radius. The surface tension exhibits 5 spikes for the 
duration of 10 cycles. The bubble with σ(R) = 0.072 N/m (Fig. 7c) ex
hibits expansion dominated P2 oscillation with 1 maximum. The σ(R)
curve (Fig. 7d) exhibits the same behavior of Fig. 7b with an inverted 
shape. The surface tension displays 5 inverted spikes within 10 cycles. 

Fig. 8, depicts the case of the coated bubble with R0 = 2μm when f =
3fr and Pa = 1 kPa. For σ0 = 0 N/m (Fig. 8a) compression dominated 
radial oscillations are P3 (red circle corresponds to three values) with 3 
maxima. The corresponding σ(R) (Fig. 8b) remains zero for a time 

duration of less than three periods followed by a short spike when the 
bubble expands above buckling radius. The surface tension exhibits 3 
spikes for the duration of 10 cycles. The bubble with σ(R) = 0.072 N/m 
(Fig. 8c) exhibits expansion dominated P3 oscillation with 2 maxima. 
The σ(R) curve (Fig. 8d) exhibits the same behavior of Fig. 8b with an 
inverted shape. The surface tension displays 3 inverted spikes within 10 
cycles. 

Fig. 9 shows the radial oscillations and the surface tension of the 
coated bubble with R0 = 2 μm at Pa = 1 kPa as a function of periods for 
bubbles with σ0 = 0.01 N/m (Fig. 9a–b) and σ0 = 0.062 N/m 
(Fig. 9c–d). Both cases display a P1 oscillations with symmetric ampli
tude around the initial bubble radius. The σ(R) curves display symmetric 
oscillations and absence of sharp spikes that are seen in Figs. 6–8. When 
Pa increases the coating can buckle or rupture. Fig. 10 shows the radial 
oscillations and surface tension of the coated bubble with R0 = 2 μm at 
Pa = 60 kPa as a function of periods for bubbles with σ0 = 0.01 N/m 
(Fig. 10a–b) and σ0 = 0.062 N/m (Fig. 10c–d). Both cases display P3 
oscillations and 3 spikes in the σ(R) within 10 periods. 

Comparison between Figs. 5–10 shows that the sharp variations of 
the σ(R) in the neighborhood of the buckling or rupture radii enhances 
the nonlinear behavior. The coated bubbles initially at buckled or 

Fig. 6. R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2 μm when f = 0.3fr & Pa = 1 kPa for: a & b-σ0 = 0 N/m, c& 
d-σ0 = 0.072 N/m. Red circles correspond to the location of R(t) at each period. The green and red horizontal lines mark the buckling and rupture radii respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ruptured state display this behavior at a pressure amplitude as low as 1 
kPa. The coated bubbles with σ0 = 0.01 N/m and σ0 = 0.062 N/m need 
slightly higher pressures for the enhanced nonlinear oscillations. The 
uncoated bubble did not show any enhanced nonlinearity. 

3.3. Bifurcation structure of the uncoated bubble 

In this section, we briefly highlight the main nonlinear regimes of the 
dynamics of the uncoated bubble as a function of pressure amplitude at 
different frequencies. This data will be useful when analyzing the 
behavior of the lipid coated bubble by highlighting the shell effects on 
the coated bubble dynamics. The red curve is constructed using the 
method of maxima (Section 3) and the blue curve is constructed using 
the Poincaré cross section at each driving period. 

Fig. 11a shows the bifurcation structure of the uncoated bubble with 
R0 = 2μm sonicated with f = 0.3fr. Pressure increase above ≈ 50 kPa 
leads to the generation of 3 maxima in the bubble oscillations (3 blue 
lines) for a period 1 (P1) oscillation regime. Thus 3rd order SuH regime 
[57] is generated. In the regime of 3rd order SuH oscillations, the fre
quency component at 3f is stronger than the rest of the frequency 

components of the scattered pressure. Oscillations undergo period 
doubling (PD) at about 124 kPa. The blue curve with 3 maxima un
dergoes PD concomitant with the 1 PD in the red curve; thus oscillations 
become P2 with 6 maxima and 7/2 order UH oscillations are generated 
(124kPa < Pa < 178 kPa). When 7/2 order UHs occur the frequency 
component at 3.5f in the scattered pressure by the bubble is stronger 
than the frequency components at 0.5f, 1.5f, 4.5f, etc. The 3rd order 
region and the 7/2 order UH region are highlighted as an inset in 
Fig. 11a. Further pressure increase leads to SN bifurcation to 2nd order 
SuH oscillations of higher amplitude, followed by 5/2 UHs, and a small 
chaotic window. Finally a giant P1 resonance emerges out of the chaotic 
window undergoing further PDs at higher pressures. 

When f = 0.5fr (Fig. 11b), as pressure amplitude increases above 14 
kPa, 2 maxima are generated in the P1 oscillation regime (2nd order 
SuH). Further pressure increase results in a PD in both the blue and red 
graphs leading to a P2 oscillation with 4 maxima (5/2 UH oscillations). 
This region is highlighted as an inset in Fig. 11b. Chaos occurs in a small 
window above 160 kPa with a tiny window of periodic (P3 with 5 
maxima) behavior within. Afterwards, a giant P1 resonance emerges out 
of the chaotic window. The P1 oscillations undergo a multiple cascades 

Fig. 7. R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2 μm when f = 2fr & Pa = 1 kPa for: a & b-σ0 = 0 N/m, c& d- 
σ0 = 0.072 N/m. Red circles correspond to the location of R(t) at each period. The green and red horizontal lines mark the buckling and rupture radii respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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of PDs to chaos. 
When f = 0.6fr (Fig. 11c) 5/2 UH oscillations (P2 with 4 maxima) are 

developed and then transition to P1 oscillations through a bubble in the 
pressure window of 116–150 kPa (highlighted in an inset). P1 oscilla
tions then undergo a saddle node bifurcation to a P1 oscillation with 
higher amplitude at Pa ≈ 166 kPa. This is due to the pressure dependent 
resonance behavior that has been discussed in detail in [56]. Further 
pressure increase leads to a PD to P2 oscillations (at 406 kPa) which is 
followed by a cascade of PDs to chaos at ≈ 614 kPa. 

The dynamics of the bubble sonicated with f = 0.7fr (Fig. 11d) is 
similar to the case of f = 0.6fr; however, 5/2 UH oscillations are not 
generated and SN bifurcation occurs at a slightly lower pressure 
amplitude (117 kPa). At this pressure amplitude the red curve meets the 
blue curve. This is the pressure dependent resonance and the wall ve
locity becomes in phase with the driving signal. This is discussed in 
detail with numerical and experimental observations in [86]. PD occurs 
at 326 kPa which is lower than the PD threshold in Fig. 11c. Chaos 
settles through a cascade of PDs at 504 kPa. 

When f = fr (Fig. 11e) oscillations are P1 and the blue line and the 
red line have the same value (highlighted in the inset) which indicates 
that the wall velocity is in phase with the acoustic driving force due to 

the resonance (page 290 in [92]). The two curves start diverging as soon 
as pressure increases above 18 kPa and at 215 kPa the oscillations un
dergo PD. Oscillations become chaotic above 400 kPa with a small 
window of periodic behavior (P3 with 3 maxima). 

When f = 1.2fr (Fig. 11f), we witness the similar behavior as the case 
of f = fr; however, P2 oscillations are developed for Rmax/R0 < 2, thus 
P2 oscillations are more likely stable [93]. 

When f = 1.5fr (Fig. 12a), P1 oscillations undergo PD with 2 maxima 
at 236 kPa. P2 oscillations undergo a SN bifurcation to P2 oscillations of 
higher amplitude at 347 kPa. The SN bifurcation is coincident with the 
pressure dependent SH resonance (Pdfsh) [58]. This results in the over- 
saturation and enhancement of the SH signal from the pressure scattered 
by bubbles [58]. P2 oscillations undergo successive PDs to chaos at 
≈ 494 kPa. 

When f = 1.8fr (Fig. 12b) P1 oscillations undergo a SN bifurcation to 
P2 oscillations of higher amplitude at 155 kPa. The P2 oscillations 
amplitude Rmax

R0
< 2 thus bubbles may have higher stability compared to 

Fig. 12a. Further pressure amplitude increase leads to chaos through 
successive PDs. At 931 kPa a giant P3 resonance emerges out of the 
chaotic window. 

When f = 2fr (linear SH resonance frequency), PD occurs at the 

Fig. 8. R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2 μm when f = 3fr & Pa = 1 kPa for: a & b-σ0 = 0 N/m, c& d- 
σ0 = 0.072 N/m. Red circles correspond to the location of R(t) at each period. The green and red horizontal lines mark the buckling and rupture radii respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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lowest pressure threshold of 77 kPa (highlighted in an inset) [34]. P2 
oscillations undergo successive PDs and chaos appears at 400 kPa and 
extends to ≈ 600 kPa where giant P3 resonance emerges out of the 
chaotic window. Oscillations later become chaotic again through suc
cessive PDs. 

When f = 2.2fr (Fig. 12d), PD occurs at 189 kPa which is higher than 
the PD threshold when f = 2fr. P2 oscillations undergo PD to P4-2 at 
445 kPa and then are followed by chaos through consecutive PDs at 482 
kPa. 

The case of f = 2.8fr is depicted in Fig. 12e. P1 oscillations undergo a 
SN to P3 oscillations at 390 kPa. P3 oscillations undergo PD to P6 at 489 
kPa and a small chaotic window appears at 587 kPa. Chaos disappears 
and low amplitude P1 emerges out of the chaotic window at 588 kPa 
which later undergo a PD similar to Fig. 12d at 661 kPa. Further pressure 
increase results in the occurrence of P4 through a SN at 819 kPa. P4 
oscillations undergo PD to P8 at about 900 kPa. 

When f = 3fr (Fig. 12f), P3 occurs at 353 kPa through SN bifurcation. 
P3 extends to 567 kPa where P6 oscillations are generated through a PD. 
A small chaotic window appears before the low amplitude P1 which 
then undergoes a SN to P8 oscillations. Finally chaos is generated at 
≈ 800 kPa. 

3.4. Bifurcation structure of the coated bubble with σ0 = 0 & σ0 =

0.072 N/m 

Due to the sharp decrease of resonance frequency with pressure 
amplitude and for simplification of the comparisons, as well as to 
consider the experimental constrains fr is chosen to be the frequency of 
maximum response at 10 kPa. For the bubble with σ0 = 0N/m, fr =

f10kPa≊f1kPa. For the bubble with σ0 = 0.072N/m, fr = f10kPa =

0.865f1kPa. 
Fig. 13a–b show the bifurcation structure of the coated bubble when 

f = 0.3fr & σ0 = 0 (a) and σ0 = 0.072 (b). This assumes the coatings are 
initially in the buckled and ruptured states receptively. The bubbles start 
oscillation in a P1 with two maxima (2nd order SuH) right from Pa =

1 kPa. The following evolution 2nd order SuH → 3rd order SuH (P1 with 
3 maxima) → 4th order SuH (P1 with 4 maxima) takes place as pressure 
amplitude increases (these are highlighted as insets in Fig. 13a–b). 
Compared to the uncoated bubble case, the 2nd order SuH appears at a 
very small pressure threshold (Pa = 1 kPa). Wall velocity is in phase 
with the driving acoustic pressure for most of the pressures below 200 
kPa. Further pressure amplitude increases results in the gradual disap
pearance of the maxima, and above 210 kPa, only two maxima remain in 

Fig. 9. R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2 μm when f = 3fr & Pa = 1 kPa for: a & b-σ0 = 0.01 N/m, c& 
d-σ0 = 0.062 N/m. Red circles correspond to the location of R(t) at each period. The green and red horizontal lines mark the buckling and rupture radii respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the bubble oscillations for both cases. The radial oscillation amplitude 
increases, until PD occurs in both graphs and 5/2 UH resonance occur 
(P2 oscillations with 4 maxima which is highlighted as an inset in 
Fig. 13b). For σ0 = 0 N/m, 5/2 UH resonance exists for Pa =

431 − 450 kPa & for σ0 = 0.072 N/m, 5/2 UH resonance exist for Pa =

330 − 365 kPa. The UH resonance occurs and disappears through a 
bubbling bifurcation. 2nd maxima is annihilated soon after the disap
pearance of UH. Further pressure amplitude increase results in PD at 
very large oscillation amplitudes Rmax

R0
> 5 where the bubble may not 

sustain non-destructive oscillations. 
When f = 0.5fr (Fig. 13c–d), oscillations start with 2nd order SuH 

oscillations (P1 with 2 maxima) right from the start at 1 kPa and this 
stretches to ≈ 50 kPa in both cases at which point 2nd maxima disap
pears (highlighted as insets in Fig. 13c–d). For the case of σ0 = 0 N/m 
(Fig. 13c), second maxima re-appear at 147 kPa. At 190–231 kPa a 
bubbling bifurcation occurs where the oscillations become P2 with 4 
maxima (5/2 UH regime which is highlighted as an inset). The second 
maxima disappears again at 230 kPa. Wall velocity stay in phase for 
most of the driving acoustic pressure range of Pa < 262 kPa for σ0 = 0 
N/m & Pa < 151 kPa for σ0 = 0.072 N/m. Further pressure increase 

results in PD (Pa = 660 kPa for σ0 = 0 N/m & Pa = 473 kPa for σ0 =

0.072 N/m). 
Compared to the uncoated bubble case, the coating at its ruptured or 

buckled state reduces the pressure threshold for SuH oscillations. UH 
oscillations, however, are suppressed and only occur at higher pressures 
and for a much shorter range of excitation pressures. The pressure 
threshold for the giant PD increases and chaotic oscillations are sup
pressed within the excitation pressure amplitude range that is examined 
here. This can be due to the increased damping due to the coating. 

When f = 0.6fr (Fig. 13e–f), oscillations are P1 and above a pressure 
threshold (100 kPa for σ0 = 0 N/m & 40 kPa for σ0 = 0.072 N/m), the 
rate of the growth of the oscillations amplitude with pressure amplitude 
increases abruptly. This point is similar to a inflection point. When this 
occurs, the wall velocity becomes in phase with the driving acoustic 
pressure as the red curve has the same value of the blue curve 
(100 kPa < Pa < 189 kPa for σ0 = 0 N/m & 41 kPa < Pa < 90 kPa & 
σ0 = 0.072 N/m). The bubble with σ0 = 0.072 N/m undergoes a PD 
with 4 maxima (5/2 UHs) at ≈ 30 kPa which is highlighted as an inset in 
Fig. 13f. Further pressure amplitude increases results in the divergence 
of the blue and red curve and PD occurs at Pa = 576 kPa for σ0 = 0 N/m 
& 369 kPa for σ0 = 0.072 N/m. Oscillations undergo further PDs to P4 

Fig. 10. R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2 μm when f = 2fr & Pa = 60 kPa for: a & b-σ0 = 0.01 N/m, 
c& d-σ0 = 0.062 N/m. Red circles correspond to the location of R(t) at each period. The green and red horizontal lines mark the buckling and rupture radii 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Bifurcation structure of the R/R0 of the C3F8 uncoated bubble with R0 = 2 μm as a function of pressure amplitude when: a) f = 0.3fr , b) f = 0.5fr , c) f =

0.6fr , d) f = 0.7fr , e) f = fr & f) f = 1.2fr . 
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Fig. 12. Bifurcation structure of the R/R0 of the C3F8 uncoated bubble with R0 = 2 μm as a function of pressure amplitude when: a) f = 1.5fr , b) f = 1.8fr , c) f =

2fr , d) f = 2.2fr , e) f = 2.8fr & f) f = 3fr . 
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Fig. 13. Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2 μm as a function of pressure amplitude (left: σ0 = 0 N/m and right: σ0 =

0.072 N/m): a–b) f = 0.3fr , c–d) f = 0.5fr , e–f) f = 0.6fr , g–h) f = 0.7fr . 
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Fig. 14. Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2 μm as a function of pressure amplitude (left: σ0 = 0.0 N/m and right: σ0 =

0.072 N/m): a–b) f = fr , c–d) f = 1.2fr , e–f) f = 1.5fr , g–h) f = 1.8fr . 
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Fig. 15. Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2 μm as a function of pressure amplitude (left: σ0 = 0 N/m and right: σ0 = 0.072 N/ 
m): a–b) f = 2fr , c–d) f = 2.2fr , e–f) f = 2.8fr , g) f = 3fr h) f = 3.1fr . 

A.J. Sojahrood et al.                                                                                                                                                                                                                           



Ultrasonics Sonochemistry 72 (2021) 105405

18

as pressure amplitude increases. In case of the bubble σ0 = 0 N/m a P8 
regime is created and then annihilated through a bubbling bifurcation 
within the P4 window. Oscillations of the bubble with σ0 = 0.072 N/m 
becomes chaotic through successive PDs with intermittent windows of 
period behavior within. 

When f = 0.7fr (Fig. 13g–h), oscillations start in a similar manner to 
the case of f = 0.6fr. The growth rate of the P1 oscillation amplitude 
increases abruptly above a pressure threshold which is lower than the 
case of the f = 0.6fr (90 kPa for σ0 = 0 N/m & 29 kPa σ0 = 0.072 N/m). 
Consequently, wall velocity becomes in phase with the driving pressure 
(highlighted as an inset in Fig. 13)g and further pressure amplitude in
creases result in the divergence of the blue and the red curve. PD occurs 
at Pa = 495 kPa for σ0 = 0 N/m & 295 kPa for σ0 = 0.072 N/m. Chaotic 
oscillations are finally generated through successive PDs with some 
periodic windows within. 

The cases of the coated bubbles in Fig. 13e–h are similar to the case 
of the uncoated bubble sonicated with f = 0.6fr & f = 0.7fr (Pdfr [56]). 
However, the pressure threshold for the SN bifurcation or the increase in 
the growth rate of the oscillations (inflection point) is much lower in 
case of the coated bubble with σ0 = 0.072 N/m despite being excited 
with lower frequencies. Moreover, the pressure threshold for PD and 
chaotic oscillations are higher for the coated bubbles with PD occurring 
at a higher The Rmax

R0
. This can be due to the increased damping in the 

bubble oscillations. 
When f = fr (Fig. 14a-b) (note that in this paper in case of the lipid 

coated bubbles fr was considered the frequency of maximum response at 
10 kPa) the red and blue curve have the same value for Pa < 20 kPa. The 
P1 oscillations amplitude grows as pressure amplitude increases and the 
two curves diverge with amplitude increase. PD occurs at at Pa =

267 kPa for σ0 = 0 N/m & 317 kPa for σ0 = 0.072 N/m which are higher 
than the PD pressure amplitude for the uncoated bubble (Pa = 215 kPa 
(Fig. 11)e. Rmax

R0 
of the P2 oscillations of the coated bubble however, are 

below 2 while the oscillation amplitude of the P2 oscillations in un
coated bubble are above 2. In case of the bubble with σ0 = 0 N/m a 
further pressure amplitude increase leads to P4 oscillations through 
another PD. P4 oscillations become P8 and then again P4 through a 
bubbling bifurcation; P4 oscillations later undergo a PD cascade to 
chaos. At Pa ≈ 915 kPa a P4 oscillation emerges out of the chaotic 
window through reverse PD bifurcation. P4 becomes P2 through another 
SB. For the bubble with σ0 = 0.072 N/m, At Pa = 600 kPa the P2 os
cillations undergo a SN bifurcation to P2 oscillations of higher ampli
tude. This is similar to the behavior of the uncoated bubble sonicated by 
its Pdfsh =≈ 1.5 − 1.9fr [58] & Fig. 12a (f = 1.5fr). Thus, in case of the 
lipid coated bubble the buckling and rupture of the coating significantly 
decreases the Pdfsh. 

When f = 1.2fr (Fig. 14c-d), the P1 oscillation amplitude increases 
with increasing pressure amplitude and PD occurs at Pa = 314 kPa for 
σ0 = 0 N/m & 238 kPa for σ0 = 0.072 N/m. Pressure thresholds for PD 
are higher than the pressure threshold of PD (218 kPa) in the uncoated 
bubble case in Fig. 11f. In both cases, with increasing pressure amplitude 
a SN bifurcation takes place from P2 to another P2 with higher ampli
tude (Pa = 796 kPa for σ0 = 0 N/m & 314 kPa for σ0 = 0.072 N/m). 
This is similar to the dynamics of the uncoated bubble sonicated by its 
Pdfsh [58] & Fig. 12a–b (f = 1.5fr & 1.8fr). This shows that the dynamic 
variations of the effective surface tension including buckling and 
rupture decreases the Pdfsh. In the case of σ0 = 0.072 N/m chaos ap
pears through successive PDs, however, the bubble with σ0 = 0 N/m 
does not exhibit chaotic oscillations in this pressure amplitude range. 
Additionally at a given pressure, Rmax

R0 
is higher for the bubble with σ0 =

0.072 N/m because of the expansion dominated behavior of the bubble. 
This can be one of the reasons for lower pressure threshold of P2 and 
chaotic oscillations in case of the bubble in ruptured state. 

When f = 1.5fr (Fig. 14e-f), the bubble behavior is similar to the 
uncoated bubble sonicated with its Pdfsh. The pressure threshold for P2 
oscillations are Pa = 338 kPa for σ0 = 0 N/m & Pa = 98 kPa for σ0 =

0.072 N/m. In case of the bubble with σ0 = 0.072 N/m pressure 
threshold for PD is lower than the case of the uncoated bubble (Fig. 12a). 
Increasing the pressure amplitude results in a SN bifurcation from a P2 
regime to a higher amplitude P2 regime. In case of the uncoated bubble 
the SN bifurcation results in Rmax

R0
> 2, however, here P2 oscillations 

remain below 2 when SN occurs. The P2 oscillations undergo successive 
PDs to P8 in both bubbles (Fig. 14e-f). However, only the bubble with 
σ0 = 0.072 N/m, exhibits chaotic oscillations. Similar to the previous 
cases, Rmax

R0 
is higher for the bubble in the ruptured state due to expansion 

dominated behavior. 
When f = 1.8fr a very interesting phenomenon is observed (Fig. 14g- 

h). In both cases, the bubble starts oscillating in the P2 regime at the very 
low pressure threshold of 1 kPa. To our best knowledge, such a low 
excitation threshold for P2 oscillations in nonlinear oscillators is first 
reported here. The dynamic of the bubble exhibits three interesting 
stages. The generation of P2 oscillations (at very low pressure), the 
disappearance of P2 oscillations and regeneration of P2 oscillations. 
Such behavior has been observed experimentally in [73,94]. In [73], the 
disappearance of SH oscillations is referred to as an “unexpected 
standstill” of SHs. This will be discussed further in discussion. Within the 
initial P2 window, a very small P4 window occurs for both bubbles. The 
pressure threshold for the initiation of the P4-2 oscillations is as low as 5 
kPa for the bubble with σ0 = 0.072 N/m. The P2 oscillations disappear 
with increasing pressure amplitude above 173 kPa and 299 kPa for the 
bubbles with σ0 = 0 & 0.072 N/m respectively. A second P2 regime re- 
emerges through a SN bifurcation at 412 & 514 kPa for the bubbles with 
σ0 = 0 & 0.072 N/m respectively. This dynamical feature is similar to 
the case of uncoated bubble sonicated with its Pdfsh of 1.8fr (Fig. 12b); 
however, the SN occurs at a higher pressure. Similar to the uncoated 
bubble, after the SN occurrence, the bubble with σ0 = 0 N/m undergoes 
chaotic oscillations through successive PDs. 

When f = 2fr (Fig. 15a–b), the dynamics are similar to Fig. 14g–h. P2 
oscillations are generated at 1 kPa, and they disappear above 200 kPa. 
For the bubble with σ0 = 0 N/m, P2 oscillations re-emerge at ≈ 600 kPa 
and through a PD bifurcation. Similar to the coated bubble sonicated 
with its Pdfsh in [58], P2 oscillations undergo a SN bifurcation to P2 
oscillations with higher amplitude. Further pressure amplitude increase 
results in chaotic oscillations through successive PDs. In case of the 
bubble with σ0 = 0.072 N/m, soon after the disappearance of the P2 
oscillations, a rather small window (293–310 kPa) of P2 oscillations is 
generated through a SN. P2 oscillations disappear and P1 oscillations 
undergo a SN to P3 at 707 kPa.This dynamical feature is similar to 
Fig. 12f where the uncoated bubble is sonicated with f = 3fr. 

The dynamics of the bubble sonicated with f = 2.2fr (Fig. 15c–d) is 
similar to f = 2fr and the general dynamical features of the system stays 
the same. 

The dynamics of the bubbles with σ0 = 0 N/m & 0.072 N/m soni
cated with 1.8fr⩽f⩽2.2fr exhibits three main stages. In stage one the 
bubble shows enhanced non-linearity by which P2 oscillations are 
generated at very low pressure thresholds. The P2 oscillations disappear 
by increasing the pressure amplitude however, they re-emerge as P2 or 
P3 oscillations above a pressure threshold higher than the uncoated 
counterpart, and in a similar fashion to the uncoated bubble sonicated 
by its Pdfsh or f = 2.8 − 3fr. 

The bifurcation structure of the bubbles when f = 2.8fr is shown in 
Fig. 15e–f. Right at Pa = 1 kPa, the bubble with σ0 = 0 N/m starts P3 
oscillations. The enhanced non-linearity of P3 at such a low excitation is 
reported for the first time. Pressure amplitude increase leads to a sudden 
chaos at 104 kPa, with the P3 attractor coexisting with chaos until its 
disappearance at 112 kPa. Chaos stretches to 156 kPa. Chaotic oscilla
tions become P2 through a cascade of reverse PD bifurcations. 

Cases of f = 3fr & σ0 = 0 N/m and f = 3.1fr & σ0 = 0.072 N/m are 
shown in Fig. 15g & h respectively (case of f = 3fr and σ0 = 0.072 N/m 
exhibits the similar dynamic as of Fig. 11h. Thus, here we decided to 
present f = 3.1fr to highlight the generation of P3 at Pa = 1 kPa). P3 
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Fig. 16. Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2 μm as a function of pressure amplitude (left: σ0 = 0.01 N/m and right: σ0 =

0.062 N/m): a–b) f = 0.3fr , c–d) f = 0.5fr , e–f) f = 0.6fr , g–h) f = 0.7fr . 
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Fig. 17. Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2 μm as a function of pressure amplitude (left: σ0 = 0.01 N/m and right: σ0 =

0.062 N/m) sonicated with: a–b) f = fr , c–d) f = 1.2fr , e–f) f = 1.5fr , g–h) f = 1.8fr . 
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Fig. 18. Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2 μm as a function of pressure amplitude (left: σ0 = 0.01 N/m and right: σ0 =

0.062 N/m) sonicated with: a–b) f = 2fr , c–d) f = 2.2fr , e–f) f = 2.8fr , g–h) f = 3fr . 
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oscillations start at Pa = 1 kPa for both cases. For σ0 = 0 N/m, sudden 
chaos appear at 240 kPa. With pressure amplitude increase P2 oscilla
tions emerge out of the chaotic window through a cascade of reverse PD 
bifurcations. Lastly P1 oscillations appear above 400 kPa. For σ0 =

0.072 N/m, P4 oscillations emerge out of the P3 oscillations through a 
SN bifurcation and undergo reverse PD bifurcation to P2 and then P1. 

3.5. Bifurcation structure of the coated bubble with σ0 = 0.01 & σ0 =

0.062 N/m 

Bifurcation structures in this section are also plotted at multiples and 
fractions of the resonance frequency. Similar to the previous section, the 
resonance frequency is set to be the frequency of maximum response at 
10 kPa. For the bubble with σ0 = 0.01 N/m, fr = f10 kPa = 0.52f1 kPa & for 
the bubble with σ0 = 0.062 N/m, fr = f10 kPa = 0.53f1 kPa. 

The bifurcation structures of the bubbles with σ0 = 0.01 N/m & 
σ0 = 0.062 N/m insonified by 0.3fr⩽f⩽0.7fr are shown in Fig. 16. 
Fig. 16a–b shows the cases of sonication with f = 0.3fr. The dynamics of 
the bubbles are very similar to their counterparts with σ0 = 0 N/m & 
0.072 N/m sonicated with f = 0.3 − 0.5fr (Fig. 13a–d). However, there 
are two differences: 1) Rmax

R0 
is generally lower than the initially buckled or 

the ruptured bubble over all pressures studied and, 2) The threshold for 
the start of SuH oscillations is ≈ 11 kPa which was 1 kPa in (Fig. 13a–d). 
The pressure threshold for SuH oscillations is still lower than the case of 
uncoated bubble in Fig. 11a–b. 

Sonication with f = 0.5fr is depicted in Fig. 16c–d. There is a general 
similarity with the bubbles with σ0 = 0 & σ0 = 0.072 N/m sonicated 
with f = 0.6fr & f = 0.7fr. Above a pressure threshold in all cases there 
is a SN bifurcation or an increase in the growth rate of the bubble 
oscillation amplitude (manifested in the form of an inflection point) 
which corresponds to the Pdfr. At this point the red and blue curve meet 
indicating the wall velocity with the acoustic excitation is in phase. 
Referring to Fig. 3, the rate of the decrease of fr with pressure amplitude 
increase is higher for the bubbles with σ0 = 0.1 & 0.072 N/m compared 
to σ0 = 0 & σ0 = 0.072 N/m. This manifests itself in the occurrence of 
the SN or the inflection point at lower frequencies and lower pressures in 
Fig. 16e–h. 

When f = 0.5fr the bubbles exhibit 2nd order SuH (P1- 2 maxima) 
and 5/2 UHs within the pressure amplitude range of 10–28 kPa. Above 
28 kPa, the bubble with σ0 = 0.062 N/m undergoes a SN bifurcation 
from a P1 oscillation to another P1 oscillation with higher amplitude. At 
57 kPa, the growth rate of the oscillations amplitude increases for the 
bubble with σ0 = 0.062 N/m. This indicates the Pdfr point. Further 
pressure amplitude increase results in PD and chaotic oscillations. The 
pressure threshold for PD and Rmax

R0 
are smaller than their counter part 

with σ0 = 0 and 0.072 N/m (Fig. 13c–f). 
The dynamics of the bubbles with σ0 = 0.01 & 0.062 N/m sonicated 

with f = 0.6fr (Fig. 16e–f) are similar to the case of f = 0.5fr in 
Fig. 16c–d. A SN bifurcation takes place at ≈ 17 kPa for both bubbles and 
the oscillations amplitude increases abruptly (Pdfr). Just before the 
occurrence of SN, a small amplitude chaotic window appears. When SN 
occurs, blue curve and red curve obtain the same value. As pressure 
amplitude increases oscillation amplitude increases and the two curve 
diverge. PD occurs at Pa = 300 and 267 kPa respectively for σ0 = 0.01 
and σ0 = 0.072 N/m. The bubble with σ0 = 0.01 N/m exhibits the 
transition from P2 → P4 through a PD and P4 → P8 → P4 through a 
bubbling bifurcation and then chaos with increasing pressure. The 
bubble with σ0 = 0.062 N/m undergoes P4 and chaos through multiple 
PDs which is followed by the emergence of P2 oscillations through 
multiple reverse PD bifurcations out of chaos. 

The case of sonication with f = 0.7fr is shown in Fig. 16g–h. There 
are two SN bifurcations with pressure amplitude increase. The initial SN 

occurs at ≈ 15 kPa and results in P1 oscillations of higher amplitude. 
After the first SN oscillation amplitude grows with increasing pressure 
amplitude and PD occurs in both cases. A small P4 window is generated 
within the P2 window. For the case of σ0 = 0.01 N/m and at Pa =

710 kPa P4 oscillations are regenerated and then transition to P2 via 
reverse PD at 982 kPa. For the bubble with σ0 = 0.062 N/m at Pa =

479 kPa P2 oscillations undergo a SN bifurcation to P2 oscillations with 
higher amplitudes. This is similar to the dynamics of the uncoated 
bubble sonicated with its Pdfsh (Fig. 12a–b). 

Case of the f = fr is shown in Fig. 17a-b. At Pa = 10 kPa a SN bifur
cation takes place and oscillation amplitudes increase slightly (Pdfr at 
10 kPa). Oscillation amplitude increases slowly with pressure amplitude 
and PD occurs at Pa = 326 kPa & 148 kPa respectively for σ0 = 0.01 N/ 
m & σ0 = 0.062 N/m. After the SN, the dynamics of the bubble with 
σ0 = 0.01 N/m (Fig. 17a) & σ0 = 0.062 N/m (Fig. 17b) sonicated with 
f = fr are respectively similar to the dynamics of the bubble with σ0 = 0 
N/m (Fig. 14e) & σ0 = 0.072 N/m (Fig. 14f) sonicated with f = 1.5fr. 
For the bubble with σ0 = 0.01 N/m increasing pressure amplitude re
sults in a SN bifurcation from P2 oscillations to a higher amplitude P2 
oscillations at 378 kPa. This is similar to the dynamics of the uncoated 
bubble sonicated with its Pdfsh (Fig. 12a) [58]. P2 oscillations then grow 
in amplitude with pressure amplitude increase and oscillations become 
P4-2 through a PD at 624 kPa. Bubble continues with P4 oscillations 
with a P8 window within, which is created and annihilated through a 
bubbling bifurcation. The dynamics of the bubble with σ0 = 0.062 N/m 
resembles the case of the uncoated bubble sonicated with f = 2fr 
(Fig. 12c) [34]. P2 oscillations spread between 148 − 555 kPa. At 555 
kPa, P4-2 oscillations are generated via a PD and later undergo succes
sive PDs to chaotic oscillations at 638 kPa. 

The case for f = 1.2fr is shown in Fig. 17c–d. In both cases we witness 
the generation of the P2 oscillations, their disappearance and re- 
generation which is similar to the dynamics of the initially buckled 
and ruptured bubble in Fig. 14g–h. For bubbles with σ0 = 0.01 N/m 
(Fig. 17c) & σ0 = 0.062 N/m (Fig. 17d) P2 oscillations occur via a PD at 
Pa = 47 & 48 kPa respectively. With pressure amplitude increase P2 
oscillations transition to P1 (disappearance of 1/2 order SHs) at Pa =

140 & 269 kPa respectively. P2 oscillations are then re-appear at Pa =

418 & 545 kPa respectively. Dynamics of the coated bubbles in this 
pressure amplitude region is similar to the dynamics of the uncoated 
bubble sonicated with its Pdfsh (Fig. 12b). In case of σ0 = 0.01 N/m, 
further pressure amplitude increase results in a cascade of PDs to chaos. 
In case of the σ0 = 0.062 N/m further pressure amplitude increase re
sults in the appearance of P3 oscillations which later undergo PD to P6 
oscillations. 

The dynamic variation of the effective surface tension due to the lipid 
coating decreased the frequency of Pdfsh to frequencies close to reso
nance. Moreover, P3 oscillations are unexpectedly generated. Compared 
to the uncoated bubble, the pressure thresholds for P2 oscillations are 
smaller. Also, Rmax

R0 
are generally smaller than both the uncoated bubble 

and the bubbles with σ0 = 0.0 N/m & σ0 = 0.072 N/m. 
When f = 1.5fr (Fig. 17e–f), PD occurs at Pa = 16 & 21 kPa for σ0 =

0.01 N/m & σ0 = 0.062 N/m respectively and they stretch up to 
approximately 224 kPa where they transition to P1 oscillations via a SN 
bifurcation. Further pressure amplitude increase results in the genera
tion of P3 oscillations via another SN bifurcation at Pa = 834 kPa & Pa =

805 kPa respectively for σ0 = 0.01 N/m & σ0 = 0.062 N/m. The dy
namics of the bubble in this region is similar to the dynamics of the 
uncoated bubble sonicated with f = 2.8 − 3fr (Fig. 12e–f). 

For f = 1.8fr (Fig. 17g–h), P2 oscillations occur via a PD at Pa = 14 & 
18 kPa, respectively for σ0 = 0.01 N/m & σ0 = 0.062 N/m. At 30 kPa P2 
oscillations undergo a SN bifurcation to P2 oscillations of higher 
amplitude. At 255 kPa, P2 oscillations transition to P1 oscillations via 
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Fig. 19. Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2 μm and σ0 = 0.036 N/m as a function of pressure amplitude when sonicated with: a) 
f = 0.3fr , b) f = 0.5fr , c) f = 0.8fr , d) f = 0.9fr , e) f = fr & f) f = 1.2fr . 
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Fig. 20. Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2 μm and σ0 = 0.036 N/m as a function of pressure amplitude when: a) f = 1.5fr , b) 
f = 1.8fr , c) f = 2fr , d) f = 2.4fr , e) f = 2.8fr & f) f = 3fr . 
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another SN. The bubble oscillates with P1 for the rest of the studied 
pressure amplitude range. In this case the dynamic variation of the 
effective surface tension of the lipid coating enhances the generation of 
P2 oscillations at very low pressures. The coating lowers the pressure 
threshold for the Pdfsh; however, at higher pressures suppresses the 
nonlinear oscillations. 

For f = 2fr (Fig. 18a–b), PD is initiated at Pa = 17 kPa for both 
bubbles. A SN bifurcations transition the P2 oscillations to P2 oscilla
tions of higher amplitude at 26 kPa. P4 oscillations are generated and 
transition back to P2 oscillations through bubbling bifurcation. The P2 
oscillations undergo SN bifurcation to P1 oscillations at Pa = 268 kPa & 
230 kPa respectively for the bubbles with σ0 = 0.01 N/m & σ0 = 0.062 
N/m. Oscillations of the bubble stay at P1 for the rest of the pressure 
amplitude ranges that is studied here. Compared to the uncoated bubble 
in Fig. 12c the lipid coating enhances the P2 oscillations at low acoustic 
pressures; however, the P2 oscillations of the bubble is suppressed at 
higher pressures. 

When f = 2.2fr (Fig. 18c–d), P2 oscillations are generated through a 
PD at Pa = 17 kPa and then at Pa = 20 kPa undergo a SN bifurcation to 
P2 oscillations of higher amplitude. Oscillations undergo a cascade of 
PDs to P4 and finally chaos at 71 and 95 kPa for the bubbles with σ0 =

0.01 N/m & σ0 = 0.062 N/m respectively. For the bubble with σ0 =

0.01 N/m and through a cascade of reverse PDs starting at 175 kPa, 
bubble oscillations transition to a P2 regime, which later undergo a SN 
bifurcation to P1 at 274 kPa. For the bubble with σ0 = 0.062 N/m, the 
transition from chaos to P2 is via a SN bifurcation at 141 kPa. Oscilla
tions transition to P4 via a SN at 173 kPa followed by reverse PD to P2 
and SN to P1 at 236 kPa. P3 oscillations are generated via a SN bifur
cation for a small window of pressure amplitude for both bubbles. 

When f = 2.8fr (Fig. 18e–f), P2 oscillations are generated via SN 
bifurcations at Pa ≈ 20 kPa. Chaos sets in for a small pressure amplitude 
window of ≈ (39–51 kPa) & (42–59 kPa) for the bubbles with σ0 = 0.01 
N/m & σ0 = 0.062 N/m respectively. P3 oscillations emerge out of the 
chaotic window via a SN bifurcation and then transition to P2 oscilla
tions via another SN bifurcation at 179 kPa and 229 kPa for the bubbles 
with σ0 = 0.01 N/m & σ0 = 0.062 N/m, respectively. For the bubble 
with σ0 = 0.01 N/m, P3 oscillations are re-generated through SN 
bifurcation at 447 kPa and undergo a reverse period tripling at Pa =

530 kPa to P1 oscillations. For the bubble with σ0 = 0.062 N/m P3 os
cillations are generated at 334 kPa via a SN and then transition again to 
P1 oscillations via another SN at 416 kPa. The oscillations remain P1 for 
the rest of the studied pressure amplitude range. When compared to the 
uncoated bubble, the lipid coating enhanced the generation of P2 and P3 
oscillations at lower pressures. The coating also, enhanced the onset of 
chaos at very low excitation amplitudes and suppressed the chaotic os
cillations at higher pressures. 

Fig. 18g–h represent the case of f = 3fr. The dynamics at low pres
sures Pa < 200 kPa are similar to those in Fig. 18e–f. P2 oscillations are 
generated at low pressures through a SN which then undergo a cascade 
of PDs to chaotic oscillations. P3 oscillations then emerge out of the 
chaotic window through a SN at 49 and 55 kPa, respectively for bubbles 
with σ0 = 0.01 & σ0 = 0.062 N/m. For the bubble with σ0 = 0.01 N/m, 
the pressure amplitude increase results in P6 oscillations via a PD at 124 
kPa. At 144 kPa, P6 oscillations transition to P2 oscillations via a SN. P2 
transition to P6 via another SN at 164 kPa. At 178 kPa, P6 transition to 
P2 via another SN. At 213 kPa, P2 becomes P3 via a SN which is then 
followed by a SN from P3 to P2 and reverse PD to P1 for the rest of the 
studied pressure amplitude range. For the bubble with σ0 = 0.062 N/m 
within the pressure amplitude range of 140–376 kPa, there are inter
mittent transitions between P2 and P3 via SNs. At 401 kPa, P1 oscilla
tions give birth to a P4 oscillations which then transition to P3 via a SN 

at 411 kPa. P1 oscillations emerge out of the P3 window via a SN at 425 
kPa. Compared to the uncoated bubble, lipid coating enhances the P2, 
P3 and chaotic oscillations at very low acoustic pressures. Moreover, P4 
oscillations appear at 3fr. In case of the uncoated bubble and for the 
same initial conditions however, P4 is expected to appear at frequencies 
near 4fr [38,40]. 

Compared to the case of σ0 = 0 N/m & σ0 = 0.072 N/m, P2 and P3 
oscillations are not generated right at the 1 kPa driving pressure 
amplitude and need pressures above 10 kPa. Moreover, the bubbles 
generally have lower Rmax

R0
. 

3.6. Bifurcation structure of the coated bubble with σ0 = 0.036 N/m 

In this section the bifurcation structure of the bubble with σ0 =

0.036 N/m is presented. This surface tension is chosen as it is the mid 
value between the surface tension for buckling and rupture. For the 
bubble with σ0 = 0.036N/m, fr = f10kPa = 0.824f1kPa. Bifurcation 
structure of the bubble with σ0 = 0.036 N/m is shown in Figs. 19 and 12. 

Fig. 19a shows the case of sonication with f = 0.3fr. P1 oscillations 
undergo a SN at Pa = 44 kPa and the bubble oscillations amplitude in
creases abruptly (This is similar to the dynamics of the bubble sonicated 
with its Pdfr in Fig. 11c-d). Wall velocities are in phase (blue curve meets 
the red curve) with the driving acoustic pressure for a range of acoustic 
excitation pressures and with increasing pressure amplitude the two 
curves diverge. PD occurs at 371 kPa followed by a cascade of PDs 
leading to chaos at ≈ 595 kPa. Further pressure amplitude increase re
sults in the intermittent transition between chaos and periodic behavior. 
This behavior is similar to the dynamics of the uncoated bubble soni
cated with its pressure dependent resonance frequency (Pdfr) in 
Fig. 11a–d. The presence of the coating thus lowers the pressure 
threshold for the SN bifurcation. However, the pressure threshold for PD 
is higher and the bubble oscillation amplitude is generally smaller than 
the uncoated bubble. 

When f = 0.5fr (Fig. 19b) the bubble undergoes two bifurcations that 
leads to two abrupt increases in the bubble oscillation amplitude. The 
first is a SN which takes place at 34 kPa transitioning the P1 oscillations 
to a P1 with higher amplitude. The second one is an inflection point at 
460 kPa transitioning the P2 oscillations to P2 oscillations with slightly 
higher amplitude. Here, the system exhibits dynamics that are similar to 
two different regimes of the oscillations in the uncoated bubble. The low 
pressure amplitude transition is similar to the low pressure amplitude 
transition of the uncoated bubble sonicated with Pdfr (Fig. 11c–d). The 
second transition that occurs at a higher pressure amplitude resembles 
the dynamics of the bubble sonicated with its Pdfsh in Fig. 12b. When 
compared to the uncoated counterpart, for the coated bubble the first 
transition occurs at a lower pressure amplitude while the second tran
sition occurs at a higher pressure. 

When f = 0.6fr (Fig. 19c), we witness the same two pressure 
thresholds as the previous case. Two SN occur, one at Pa = 29 kPa and 
the second one at 327 kPa. The first SN transition P1 to a P1 oscillation of 
higher amplitude (Pdfr) while the second SN transition the P2 oscilla
tions to P2 oscillations of higher amplitude (Pdfsh). Further pressure 
amplitude increases leads to P4 with bubbles of P8 inside. Right after the 
bubble 4 small windows of chaos appear which transition to P4 and then 
again to chaos. 

When f = 0.7fr (Fig. 19d) two SN takes place; the first SN transitions 
a P1 oscillation to a P1 oscillation of higher amplitude at 25 kPa (Pdfr) 
and the second SN transition the P1 oscillation to P2 oscillations of 
higher amplitude at 277 kPa (Pdfsh). Pressure amplitude increase leads 
to P4 through a PD at ≈ 600 kPa and later chaos at 671 kPa. 

Looking at Fig. 19a–d, the dynamic variation of the surface tension of 
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the lipid coating significantly decreases the frequencies of pressure 
dependent resonance (Pdfr) & and pressure dependent SH resonance 
frequency (Pdfsh). As an instance, Pdfsh typically occurs for 1/5fr < f <
2fr for the uncoated bubble ([58] and Fig. 12a–b) while here Pdfsh 
occurred at frequencies as low as 0.5fr for the coated bubble with σ0 =

0.036 N/m. 
When f = fr (Fig. 19e), an unexpected behavior is observed. P1 os

cillations undergo a SN to P3 oscillations at 833 kPa. In case of the 
uncoated bubble (Fig. 12e–f) or bubbles with pure viscoelastic coating 
[38], this behavior only occurs for frequencies close to 3fr. Thus the lipid 
coating here, decreased the P3 resonance frequency by 200 %. The 
pressure threshold for P3 oscillations, however is higher for the coated 
bubble when compared to the uncoated counterpart. 

When f = 1.2fr (Fig. 19f), nonlinear oscillations are suppressed to 
only a P1 oscillation for the studied pressure amplitude range. 

For f = 1.5fr − 2.2fr (Fig. 20a–d), P3 oscillations are enhanced. 

Compared to the P3 oscillations in case of the uncoated bubble 
(Fig. 12e–f), P3 occurs at lower pressure thresholds. For instance at f =
2.2fr P3 is generated at 157 kPa. This is however, higher than the 
pressure threshold for P3 oscillations in case of the coated bubbles with 
σ0 = 0, 0.01,0.62 & 0.072 N/m. 

When f = 2.8fr (Fig. 20e), P3 is generated through a SN at 134 kPa 
and later transition to P1 via another SN at 269 kPa. P5 oscillations are 
generated at 373 kPa through a SN and transition to P1 at 433 kPa. P5 
oscillations re-appear again for a short pressure window through the 
same mechanism at 647 kPa. 

When f = 3fr (Fig. 20f), P3 oscillations start at 128 kPa and stretch 
up to 279 kPa with a short window of P1 oscillations within. P5 oscil
lations are generated at 351 and 592 kPa for two short pressure win
dows. Compared to the uncoated bubble sonicated with 3fr (Fig. 12f), 
the pressure threshold of P3 oscillations is lowered by about 276 %. 

Coating with σ0 = 0.036 N/m significantly reduced the frequency 

Fig. 21. R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2 μm with σ0 = 0.062 N/m when f = 1.2fr for: a & b-Pa =

400 kPa, c& d-Pa = 650 kPa. (Red circles correspond to the location of R(t) at each period). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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for P3 and P5 oscillations. Most interestingly, the coated bubble with 
σ0 = 0.036 N/m exhibits enhanced P3 oscillations over a very large 
frequency range of fr⩽f⩽3fr. 

3.7. Investigation of the mechanism of the disappearance (standstill) and 
regeneration of P2 

In subSection 3.2 we showed that the enhancement of P2 oscillations 
at lower pressures can be caused by the asymmetric variations of the 
effective surface tension due to buckling or rupture. Here, we look into 
the possible reasons of the disappearance of the P2 oscillations when 
increasing pressure. Fig. 21a shows the radial oscillations as a function 
of the driving periods of the coated bubble in Fig. 17d (R0 = 2μm and 
σ0 = 0.062 N/m) at Pa = 400 kPa. At this pressure amplitude the P2 
oscillation regime disappeared. Radial oscillations are P1, and the red 
circles return only one value. The corresponding σ(R) curve, depicts a 
rather symmetrical variations in the buckling and rupture, the bubble 
spends the same approximate time in the buckled stage as the ruptured 
stage. For 10 driving periods, the bubble buckles 10 times and ruptures 
10 times. 

As pressure amplitude increases, P2 is regenerated (Fig. 17d). At 650 
kPa the radial oscillations vs period curves have two maxima (Fig. 21)c 
and the red circles have 2 distinct values. σ(R) as a function of the 
driving periods (Fig. 21d) exhibits an asymmetrical behavior between 
the buckled and the ruptured state. The bubble spends a longer time 
duration at the ruptured stage than the buckled stage. As a result, the 
bubble buckles 5 times and ruptures 5 times within 10 driving periods. 
Thus oscillations become P2 again. 

4. Summary of the results and discussion 

4.1. Sonication with f < fr 

First the findings related to the sonications with frequencies smaller 
than resonance are presented. 

4.1.1. σ0 = 0,0.01,0.062 and 0.072 N/m 
1- SuH regimes are generated at lower excitation thresholds 

compared to the uncoated bubbles. The bubbles initially at the buckled 
or the ruptured stages exhibit SuH regime of oscillations at the lowest 
pressure threshold of 1 kPa. Thus applications of coated bubbles with 
initial surface tension close to 0 N/m or 0.072 N/m have the potential to 
increase the contrast in super harmonic imaging (e.g. [95]). Due to the 
lower threshold of the SuH generation, the amplitude of the generated 
harmonics in tissue will be smaller. Therefore, the contrast to tissue ratio 
may be higher. 

2- The sudden increase in the bubble oscillation amplitude (SN 
bifurcation or the inflection point in bifurcation diagrams) occurs at 
lower excitation amplitudes when compared to the uncoated bubble and 
coated bubbles with linear viscoelastic behavior [56]. The SN bifurca
tion is more pronounced in case of the bubbles with σ0 = 0.01 N/m and 
σ0 = 0.062 N/m. The wall velocity stays in phase with the driving sound 
field for a larger pressure amplitude range. The reason for the lower 
pressure threshold for the SN and lower frequencies of Pdfr is the fast 
decrease of the resonance frequency with increasing pressure. Overvelde 
et al. [68] has experimentally and numerically shown that for coated 
microbubbles undergoing buckling, the nonlinear resonance behavior is 
enhanced at pressures as low as 10 kPa. Helfield and Goertz [77] 
experimentally observed the enhanced nonlinear resonance behavior of 
the lipid coated microbubbles at pressures of 13–25 kPa. The SN bifur
cation can have applications in amplitude modulation techniques [96]. 

3- For the coated bubble with σ0 = 0 N/m, PD occurs at a higher 
pressure threshold compared to the uncoated bubble, and for other 
cases, PD occurs at lower pressure thresholds. 

4- For 0.6fr⩽f⩽0.7fr and for coated bubbles with σ0 = 0.01 & 0.062 
N/m, P2 oscillations (with resonant 3/2 order UHs) are generated within 
non-destructive regimes of oscillations Rmax/R0 < 2. For the uncoated 
bubble and coated bubbles with σ0 = 0 & 0.072 N/m, PD most likely 
results in bubble destruction. In [34,58] we have shown that in case of 
uncoated bubbles PD may be concomitant with bubble destruction when 
the bubble is sonicated with f⩽fr. The stabilizing effect of the coating 
with σ0 = 0.01 & 0.062 N/m can enhance the non-destructive PD for the 
frequencies below resonance. 

5- In case of coated bubbles with σ0 = 0.01 & 0.062N/m, Pdfsh can 
occur at frequencies as low as 0.6fr. In such cases two SN bifurcations are 
observed with increasing pressure. The first SN occurs at a lower pres
sure threshold and transfers a P1 oscillation to a P1 oscillation of higher 
amplitude. The second SN occurs at a higher pressure amplitude and 
transfers a P2 oscillation to a P2 oscillation of higher amplitude. In [58] 
we have shown that Pdfsh typically occurs at 1.5fr < f < 2fr and can lead 
to oversaturation of the 1/2 order SH component of the scattered signal. 
The enhanced nonlinear resonance behavior of the coating thus shifts 
the Pdfsh to frequencies below resonance. The occurrence of the two SNs 
may have potential applications in increasing the contrast in multi-pulse 
amplitude modulation techniques. 

4.1.2. Case of the coated bubble with σ0 = 0.036 N/m 
1- Compared to the uncoated bubble and coated bubbles with linear 

viscoelastic behavior (Pdfr is within 0.5fr < f < fr [56]), the frequency 
of Pdfr is much lower (as low as 0.3fr).2- Pdfsh can occur even at f =

0.5fr. In case of the uncoated bubble Pdfsh occurs at 1.5fr < f < 2fr 
[58].3- For 0.5fr⩽f ≤ 0.7fr and with increasing pressure, two SN occur; 
the first one transfers a P1 oscillation regime to a higher amplitude P1 
and the second one which is at a higher pressure transfers a P1 or a P2 
oscillation regime to a higher amplitude P2 regime. 

4.2. f⩾fr 

In this section findings of the sonications with frequencies above 
resonance are summarized. Such a frequency range is typically used in 
SH imaging of microbubbles in contrast enhanced ultrasound 
[20,68,78,96]. 

4.2.1. Cases of the coated bubbles wiht σ0 = 0, 0.01,0.062 and 0.072 N/ 
m 

1- For the coated bubbles with σ0 = 0 N/m & σ0 = 0.072 N/m 
sonicated with fr⩽f⩽1.5fr and for the ones with σ0 = 0.01 N/m & σ0 =

0.062 N/m sonicated with f = fr, the bifurcation structure is similar to 
the case of sonication with Pdfsh in case of the uncoated bubbles. P2 
oscillations undergo a SN from a P2 oscillation to a P2 oscillation of 
higher amplitude. The nonlinear behavior of the coating thus reduces 
the Pdfsh to frequencies below 1.5fr. Thus for the coated bubbles with 
σ0 = 0 N/m & σ0 = 0.072 N/m, sonication with fr⩽f⩽1.5fr may result in 
a stronger 1/2 order SH component of the scattered signal because of the 
over-saturation that takes place when f = Pdfsh. 

2- For the coated bubbles with σ0 = 0 N/m & σ0 = 0.072 N/m that 
are insonated with 1.8fr⩽f⩽2.2fr, with increasing pressure, P2 oscilla
tions are generated through a PD (at a pressure threshold of 1 kPa), 
disappear and then are regenerated at a higher pressure amplitude as a 
higher amplitude P2 or P3. The second P2 is similar to the dynamics of 
the uncoated bubble undergoing a SN to P2 when f = Pdfsh. The second 
P3 is similar to the dynamics of the uncoated bubble undergoing a SN to 
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P3 when f ≈ 3fr. In [73], the disappearance of SH oscillations is referred 
to as an “unexpected standstill” of SHs. This means that, in the case of a 
bubble able to generate a stable subharmonic oscillation, the sub
harmonic emission disappears if the acoustic pressure is raised above a 
second pressure threshold. The subharmonic standstill however, is a 
reversible [73]; that is, if the acoustic pressure amplitude is decreased 
again, the bubbles start generating subharmonics one more time[73]. 
Thus, disappearance is not due to the bubble destruction. Prior works on 
subharmonics performed on a population of microbubbles did not report 
this kind of behavior because it was probably ‘masked’ by the overall 
response of the several other bubbles within the same sample volume 
that experience different pressure amplitudes [73]. The standstill of 
subharmonic emission also was not explained by the numerical studies 
of the nonlinear models of the bubble dynamics. Here, we show that the 
disappearance of the SHs is due to the symmetric buckling and rupture 
of the shell at moderate pressures. At higher pressures, similar to the 
lower pressures the buckling and rupture of the shell becomes asym
metric. This manifests itself in the re-generation of P2 signals. Above the 
second pressure threshold, the bubble spends more time in the ruptured 
stage than the buckling stage. This exposes the bare gas to water for a 
longer duration and thus can explain the reduced stability of SH oscil
lations when they were re-generated [73]. 

In sensitive therapeutic applications like blood–brain barrier open
ing, the SH components of the scattered pressure by microbubbles are 
commonly used as a signature for quantifying the nonlinear oscillations 
of the bubble cloud and treatment efficacy [97,98]. Due to the strong 
interplay between stable and inertial cavitation regimes, understanding 
the origin and stability of P2 oscillation regimes is crucial. Thus, the 
information on the generation, disappearance, amplification and sta
bility of the P2 oscillations that is obtained here, provides a framework 
for the analysis of the optimization of SH oscillations in applications. 

3- For the coated bubbles with σ0 = 0.01 N/m & σ0 = 0.062 N/m 
sonicated with f = 1.5fr, with increasing pressure, P2 oscillations are 
generated through a PD and then disappear via a SN. Above a second 
pressure threshold, a P3 oscillation regime occurs via a SN from a P1 
regime. This is similar to the dynamics of the uncoated bubble under
going a SN to P3 when f ≈ 3fr. The pressure threshold for PD is smaller 
than the uncoated bubbles [40] and the coated bubbles with linear 
viscoelastic behavior [38]. 

4- For the coated bubbles with σ0 = 0.01 N/m & σ0 = 0.062 N/m 
sonicated with 1.8fr⩽f⩽2fr, with increasing pressure, P2 oscillations are 
generated through a PD and then are amplified via a SN. P2 oscillations 
are then transfer to a P1 regime via another SN. Bubble oscillations 
remain P1 for the rest of the pressure amplitude range studied in this 
paper. 

5- For the coated bubbles with σ0 = 0 N/m & σ0 = 0.072 N/m and 
for 2.8fr⩽f⩽3.1fr, P3 may occurs at very low pressure amplitudes (as low 
as 1 kPa). Chaos can emerge at pressures lower than 200 kPa. 

6- The lowest pressure threshold for the chaotic oscillations are for 
the coated bubbles with σ0 = 0.01 N/m & σ0 = 0.062 N/m when son
icated with 2.8fr⩽f⩽3fr which is followed by the emergence of P3 out of 
the chaotic window. To our best knowledge, such low pressure thresh
olds for chaotic oscillations has not been observed in a bubble oscillator. 
The pressure threshold for P3 is approximately 5 times smaller than the 
uncoated counterpart. 

Here we identified several different types of SN that occur with 
increasing pressure amplitude in the oscillations of the lipid coated 
bubbles. This information, can provide the fundamental framework for 
the optimization of amplitude modulation techniques and SH imaging 
procedures. Moreover, the enhanced P3 and higher order oscillations 
may find potential in mixing applications and drug delivery. 

In the cases analyzed in this paper, Rmax
R0 

was higher for the bubbles 
with a higher σ0 because of the expansion dominated behavior of the 
bubble. This can be one of the reasons for the lower pressure threshold of 
P2 and chaotic oscillations in case of the bubble in the ruptured state. 

4.2.2. Case of the coated bubble with σ0 = 0.036 N/m 
1- For 1.5fr⩽f⩽3fr with increasing pressure amplitude a P3 occurs via 

a SN through a P1 oscillation regime. The pressure threshold for P3 is 
about half of the uncoated counterpart. P3 disappears via a SN. A second 
or 3rd SN may occur with pressure increase that can lead to the regen
eration of P3 or the generation of P5 or P7 oscillations. Due to the wide 
range of the pressure amplitude and frequency of P3 behavior for the 
bubbles with σ0 = 0.036 N/m, engineering of the coatings with such 
initial surface tensions may find potential in higher order SH imaging 
with potential higher resolution and contrast. In [59] we have shown 
that the 2/3 or 3/4 order SHs are stronger than 1/2 order SHs and due to 
their close proximity to the transducer central frequency they may be 
detected with superior sensitivity. 

5. Limitations and future work 

The goal of this paper was to study the influence of the lipid coating 
on the nonlinear dynamics of the MBs. Thus for simplicity we only 
analyzed the radial oscillations of the bubble. Future work can be 
extended by analyzing the scattered pressure of the bubbles to find the 
regions of SH power enhancement. Bubble–bubble interaction should 
also be considered as in applications bubbles exist in poly-disperse 
clouds. The bifurcation structure of the interacting bubbles has been 
studied extensively in [99–105]. These studies have shown that the 
bubble–bubble interaction significantly influences the dynamics of each 
bubble. Effects of coupling, bubble size, and spatial arrangement have 
been studied in [102] and effects of boundary proximity on the dy
namics of a bubble cluster is investigated in [103]. We have shown in 
[105] that the bubble cluster may exhibit collective behavior dominated 
by the response of the larger bubbles. Future studies need to look into 
the effect of the interaction of lipid coated MBs and potential collective 
behavior of the lipid coated bubbles at lower excitation pressure 
amplitudes. 

This study was limited to the case of sonication with a single fre
quency acoustic excitation. Dynamics of MBs that are sonicated with 
dual-frequency acoustic excitation have been investigated in several 
studies [47,49,50,52,51,55,106–108]. Sonication with two frequency 
forcing can be used to suppress chaos [47,49,50] or enhance the 
nonlinearity of the system [47,49,50,52,51,55]. Dual frequency forcing 
may also be used to enhance the bubble expansion to achieve a higher 
chemical yield [106,107]. The dynamics of lipid coated MBs excited by 
multi-frequency acoustic excitations can be a subject of future studies. 
The enhanced non-linearity of such a system may find potential new 
applications and improvements in contrast enhanced imaging and 
therapy. 

In this study non-spherical oscillations of the MBs were also 
neglected. Pioneering work of Holt and Crum [109] investigated the 
subharmonic behavior of larger bubbles (≈ 100 − 200 μm in size) and 
have experimentally observed the shape oscillations concomitant with 
subharmonic oscillations. They showed that the appearance of shape 
oscillations could be phenomenologically mistaken for a simple period- 
doubling of the radial mode. Versluis et al. [110] through using high 
speed optical observations were able to identify shape oscillations of 
mode n = 2 to 6 in the behavior of single air bubbles with radii between 
10 μm and 45 μm. Their study [111] showed that the close to resonance 
bubbles were found to be most susceptible toward shape instabilities. In 
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case of coated MBs, non-spherical bubble oscillations were investigated 
in [111] through high speed optical observations. It was shown that non- 
spherical bubble oscillations are significantly present in medically 
relevant ranges of MB radii and applied acoustic pressures. Non- 
spherical oscillations develop preferentially at the resonance radius 
and may exist during SH oscillations [111]. Recently Klapcsik and 
Hegedüs[46] through GPU accelerated large parameter investigations 
and 2D bifurcation diagrams, have shown that non-spherical oscillations 
can affect the subharmonic threshold and nonlinear behavior of bubbles. 
Most recently Guédra et al. [112] through optical observations have 
shown that subharmonic oscillations can be triggered by energy transfer 
from surface to volume oscillations and thus can change the pressure 
threshold for SH emissions. Thus, for a more accurate modeling of the 
nonlinear behavior of lipid coated MBs, deeper theoretical modeling of 
MB coating, accounting for membrane shear and bending is required 
[111]. 

One of the limitations of the current study is neglecting the effects of 
lipid shedding and mass transfer. These effects may become important at 
higher pressures and they should be considered for accurate modeling. 
The lipid coating undergoes buckling and rupture when the bubble os
cillates. The lipid coating reseals quickly when the bubble contracts 
[113,114]. For a long enough pulse and depending on the applied 
pressure amplitude, the coating may shed some lipids while it undergoes 
buckling, rupture and reseal [115,116]. This leads to mass transfer and 
shrinkage of the bubble which reaches a stable size after a few cycles 
[114,115]. The incorporation of these effects can be the subject of future 
studies. 

In this work we studied the bifurcations structure of the bubble 
oscillator using the standard methods of bifurcation analysis. The 
buckling and rupture of the shell, however, makes the lipid coated 
bubble a non-smooth system [117–119]. Similar features of the bifur
cation structure of the lipid coated bubble may be seen in the behavior of 
the pressure relief valve model which is a non-smooth system. Future 
studies that focus on the nonlinear properties of the lipid coated bubble, 
can reveal more detailed information about the system behavior using 
the tools of non-smooth dynamics [118,119]. 

6. Conclusion 

In this work, the bifurcation structure of the lipid coated bubbles 

undergoing buckling and rupture was studied extensively. Our results 
further confirmed that the rapid variation of the effective surface tension 
and buckling and rupture of the coating enhances the generation of 
nonlinear behavior including higher order SHs, SuHs and chaos. We 
showed for the first time that P2 and P3 can occur at pressures as low as 
1 kPa (≈ 1% of the ambient pressure). Existence of chaos was confirmed 
at pressures as low as 10 kPa. The closer the initial surface tension of the 
bubble to the buckling stage or the ruptured stage, the lower the pres
sure threshold for the nonlinear behavior. We showed that rapid vari
ations of the surface tension on the bubble may not be enough for 
enhanced non-linearity. In case of asymmetrical variations of the surface 
tension between buckling and rupture, nonlinear behavior is enhanced. 
However, symmetrical behavior of the effective surface tension may 
suppress the non-linearity. 
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Appendix A. Comparison between the Marmottant model with no coating and the Keller-Miksis model 

The Marmottant model [62] in the absence of the coating reduces to: 

ρ
(

RR̈ +
3
2

Ṙ2
)

=

[

P0 +
2σ
R0

]

(
R
R0

)
− 3k
(

1 −
3k
c

Ṙ
)

− P0 −
2σ
R
−

4μṘ
R2 − Pa(t) (6)  

In this equation some of the terms of the Keller-Miksis (K-M) equation [81] are dropped. This is because K-M model is no longer valid when |Ṙ|c ≈ 1. 
[59]. The Marmottant model is in a popular form that is developed for sonoluminescence and ultrasound contrast agent (UCA) modeling [120,121]. 
The results of the Marmottant model were compared to the K-M uncoated bubble model to investigate the shell effects. However, as the forms of the K- 
M model and the Marmottant model in the absence of coating are not the same, the comparison may not seem justified. In this section we show that the 
K-M model in Eq. (3) and Eq. (A1) indeed predict the same overall behavior over the exposure parameter ranges that were studied in our paper. Thus 
the comparison between the models is justified. Figs. A.figurekk and A.figurekk show that the predictions of the bifurcation structure of R/R0 vs 
pressure of the Marmottant model with no shell (Eq. (A.1)) are in good agreement with the Keller-Miksis model (Eq. (3)) within the exposure 
parameter ranges that were studied in this work. It should be noted that the comparison between the coated bubble model and the free bubble model 
are qualitative. In other words, the uncoated bubble behavior was used as a reference to reveal the nonlinear effects induced by the presence of the 
shell. However, we see here that despite the difference in some terms of the two equations, the quantitative behavior of (R/R0) of the uncoated bubble 
as predicted by Eq. (A.1) and Eq. (3) are in agreement. The radial oscillation amplitude and the pressure threshold for the onset of nonlinear behavior 
(e.g. PD, chaos) are in agreement. However, although both models predict the same pressures for the onset and disappearance of chaos, when the 
oscillations are chaotic, the radial oscillation amplitudes are not always equal. For better visualizing the predictions of the two models at lower 
pressure amplitudes, the figure insets concentrate on the lower acoustic pressure regions PA⩽250 kPa. 
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Fig. A.figurekk. Comparison between the bifurcation structures of the Marmottant model with no shell (Eq. (A.1)) and Keller-Miksis model (Eq. (3)) for a C3F8 gas 
bubble with R0 = 2 μm for f⩽fr . Left column: Poincaré cross section method (2.3.1), Right column: Method of maxima (2.3.2). 

A.J. Sojahrood et al.                                                                                                                                                                                                                           



Ultrasonics Sonochemistry 72 (2021) 105405

31

Fig. A.figurekk. Comparison between the bifurcation structures of the Marmottant model with no shell (Eq. (A.1)) and Keller-Miksis model (Eq. (3)) for a C3F8 gas 
bubble with R0 = 2 μm for fr < f⩽3fr . Left column: Poincaré cross section method (2.3.1), Right column: Method of maxima (2.3.2). 
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Appendix B. Influence of χ and σrupture on the buckling and rupture radius 

Analysis in this paper showed that the nonlinear behavior of the lipid coated MBs is enhanced at very low pressures. This occurs due to the rapid 
variation of the effective surface tension when the bubble radius exceeds above the rupture radius or contracts below the buckling radius. Fig. B. 
figurekk.a shows that for a constant σ0 and σrupture as χ increases, Rr decreases and Rb increases (Rr and Rb converge to R0); thus, a lipid MB with a 
higher χ which is not initially at buckled or ruptured state exhibits nonlinear behavior at a lower pressure threshold. 

MBs with resistant shells that can withstand higher tensions before rupture (e.g. with σrupture > 0.1 N/m) has been observed by Marmottant et al. 
[62]. Fig. B.figurekk.b shows that Rr increases with increasing σrupture. For a lipid bubble with initial surface tension of more than 0.036 N/m, the 
pressure threshold for enhanced non-linearity will increase as σrupture increases. This is because Rr increases linearly with σrupture, thus higher pressure is 
needed to enhance the nonlinear oscillations. A detailed understanding of the influence of χ and σrupture over a wide pressure and frequency range can 
be a subject of future investigations. 

Fig. B.figurekk. Case of a C3F8 lipid coated bubble with R0 = 2 μm: a) variations of Rr and Rb as a function of χ when σ0 = 0.062 N/m and σrupture = 0.0725 N/m, b) 
Variations of Rr as a function of σrupture when χ = 3.5 N/m and σ0 = 0.01 N/m and 0.062 N/m. 
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Appendix C. Influence of ks on the pressure threshold of the onset of nonlinear oscillations 

Fig. C.figurekk shows the pressure threshold for the onset of nonlinear oscillations for a C3F8 lipid coated MB with χ = 3.5 N/m and σrupture =

0.072 N/m as a function of the shell viscosity ks and σ0. The frequency is 2fr. The pressure threshold is extracted from the radius vs pressure amplitude 
bifurcation diagrams for P2 or P3 oscillations. Increasing ks does not change the pressure threshold (Pa = 1 kPa) for nonlinear oscillations for the MBs 
initially at buckled or ruptured stage. For MBs which are not initially at buckled or ruptured stage, the pressure threshold increases with increasing ks. 
As an example for a MB with σ0 = 0.062 N/m, the pressure threshold increases from 16 kPa to 71 kPa when ks is increased from 1 ∗ 10− 9 to 8 ∗

10− 9 kg/s. Bubbles which are initially at a buckled or ruptured state start nonlinear oscillations at the lowest pressure threshold (PA = 1 kPa), 
regardless of the value of ks. 

Fig. C.figurekk. Pressure threshold for the onset of nonlinear oscillations (P2 or P3) as a function of ks and σ0 when f = 2fr for a C3F8 lipid coated bubble with χ =

3.5 N/m and σrupture = 0.072 N/m. The colors and the z-axis represent the pressure threshold for the onset of nonlinearity. 

A.J. Sojahrood et al.                                                                                                                                                                                                                           



Ultrasonics Sonochemistry 72 (2021) 105405

34

References 

[1] Werner Lauterborn, Thomas Kurz, Physics of bubble oscillations, Rep. Prog. Phys. 
73 (10) (2010), 106501. 

[2] U. Parlitz, V. Englisch, C. Scheffczyk, W. Lauterborn, Bifurcation structure of 
bubble oscillators, J. Acoust. Soc. Am. 88 (2) (1990) 1061–1077. 

[3] Werner Lauterborn, Joachim Holzfuss, Acoustic chaos, Int. J. Bifurcation Chaos 1 
(01) (1991) 13–26. 

[4] Emmanuel Maisonhaute, Cesar Prado, Paul C. White, Richard G. Compton, 
Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: 
shear stress in ultrasonic cleaning, Ultrason. Sonochem. 9 (6) (2002) 297–303. 

[5] Nor Saadah Yusof, Bandar Babgi Mohd, Yousef Alghamdi, Mecit Aksu, 
Jagannathan Madhavan, Muthupandian Ashokkumar, Physical and chemical 
effects of acoustic cavitation in selected ultrasonic cleaning applications, 
Ultrason. Sonochem. 29 (2016) 568–576. 

[6] Timothy J. Mason, Larysa Paniwnyk, J.P. Lorimer, The uses of ultrasound in food 
technology, Ultrason. Sonochem. 3 (3) (1996) S253–S260. 

[7] Kenneth S. Suslick, Sonochemistry, Science 247 (4949) (1990) 1439–1445. 
[8] Timothy J. Mason, Timothy J. Mason, Sonochemistry, vol. 2, Oxford University 

Press, New York, 1999. 
[9] Lawrence A. Crum, Timothy J. Mason, Jacques L. Reisse, Kenneth S. Suslick 

(Eds.), Sonochemistry and Sonoluminescence, vol. 524, Springer Science & 
Business Media, 2013. 

[10] Michael P. Brenner, Sascha Hilgenfeldt, Detlef Lohse, Single-bubble 
sonoluminescence, Rev. Mod. Phys. 74 (2) (2002) 425. 

[11] Robin H. Liu, Jianing Yang, Maciej Z. Pindera, Mahesh Athavale, 
Piotr Grodzinski, Bubble-induced acoustic micromixing, Lab Chip 2 (3) (2002) 
151–157. 

[12] James Collis, Richard Manasseh, Petar Liovic, Paul Tho, Andrew Ooi, 
Karolina Petkovic-Duran, Yonggang Zhu, Cavitation microstreaming and stress 
fields created by microbubbles, Ultrasonics 50 (2) (2010) 273–279. 

[13] Klazina Kooiman, Hendrik J. Vos, Michel Versluis, Nico de Jong, Acoustic 
behavior of microbubbles and implications for drug delivery, Adv. Drug Delivery 
Rev. 72 (2014) 28–48. 

[14] S. Roovers, T. Segers, G. Lajoinie, J. Deprez, M. Versluis, S.C. De Smedt, 
I. Lentacker, The role of ultrasound-driven microbubble dynamics in drug 
delivery: from microbubble fundamentals to clinical translation, Langmuir 
(2019). 

[15] T. Mainprize, N. Lipsman, Y. Huang, Y. Meng, A. Bethune, S. Ironside, C. Heyn, 
R. Alkins, M. Trudeau, A. Sahgal, J. Perry, Blood-brain barrier opening in primary 
brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety 
and feasibility study, Sci. Rep. 9 (1) (2019) 321. 

[16] D. McMahon, C. Poon, K. Hynynen, Evaluating the safety profile of focused 
ultrasound and microbubble-mediated treatments to increase blood-brain barrier 
permeability, Expert Opin. Drug Delivery 16 (2) (2019) 129–142. 

[17] J.B. Liu, D.A. Merton, F. Forsberg, B.B. Goldberg, Contrast-enhanced ultrasound 
imaging, in: Diagnostic Ultrasound, CRC Press, 2019, pp. 51–74. 

[18] Kibo Nam, Ji-Bin Liu, John R. Eisenbrey, Maria Stanczak, Priscilla Machado, 
Jingzhi Li, Zhaojun Li, Ying Wei, Flemming Forsberg, Three-dimensional 
subharmonic aided pressure estimation for assessing arterial plaques in a rabbit 
model, J. Ultrasound Med. 38 (7) (2019) 1865–1873. 

[19] K.J. Haworth, T.D. Mast, K. Radhakrishnan, M.T. Burgess, J.A. Kopechek, S. 
L. Huang, D.D. McPherson, C.K. Holland, Passive imaging with pulsed ultrasound 
insonations, J. Acoust. Soc. Am. 132 (1) (2012) 544–553. 

[20] D.E. Goertz, M.E. Frijlink, D. Tempel, V. Bhagwandas, A. Gisolf, R. Krams, N. de 
Jong, A.F. van der Steen, Subharmonic contrast intravascular ultrasound for vasa 
vasorum imaging, Ultrasound Med. Biol. 33 (12) (2007) 1859–1872. 

[21] R. Esche, Untersuchung der Schwingungskavitation in Flussigkeiten 
(Investigation of acoustic cavitation in liquids), Acustica 2 (1952) AB208–18. 

[22] L. Bohn, Schalldruckverlauf und Spektrum bei der Schwingungskavitation 
(Pressure and spectra in acoustic cavitation), Acustica 7 (1957) 201–216. 

[23] R. Holt, D. Felipe Glynn, Anthony A. Gaitan, Atchley, and Joachim Holzfuss. 
Chaotic sonoluminescence, Phys. Rev. Lett. 72 (9) (1994) 1376. 

[24] J.S. Dam, M.T. Levinsen, M. Skogstad, Period-doubling bifurcations from 
breaking the spherical symmetry in sonoluminescence: experimental verification, 
Phys. Rev. Lett. 89 (8) (2002), 084303. 

[25] W. Lauterborn, T. Kurz, R. Mettin, C.D. Ohl, Experimental and theoretical bubble 
dynamics, Adv. Chem. Phys. 110 (1999) 295–380. 

[26] W. Lauterborn, E. Cramer, On the dynamics of acoustic cavitation noise spectra, 
Acustica 49 (1981) 280–287. 

[27] E. Cramer, W. Lauterborn, Acoustic cavitation noise spectra, Appl. Sci. Res. 38 
(1982) 209–214. 

[28] W. Lauterborn, Acoustic chaos, Phys. Today 39 (1986). S-4–S-5. 
[29] W. Lauterborn, E. Schmitz, A. Judt, Experimental approach to a complex acoustic 

system, Int. J. Bifurcation Chaos 3 (1993) 635–642. 
[30] W. Lauterborn, Numerical investigation of nonlinear oscillations of gas bubbles in 

liquids, J. Acoust. Soc. Am. 59 (2) (1976) 283–293. 
[31] A. Prosperetti, Nonlinear oscillations of gas bubbles in liquids: steady-state 

solutions, J. Acoust. Soc. Am. 56 (3) (1974) 878–885. 
[32] W. Lauterborn, A. Koch, Holographic observation of period-doubled and chaotic 

bubble oscillations in acoustic cavitation, Phys. Rev. A 35 (4) (1987) 1974. 
[33] C.D. Ohl, T. Kurz, R. Geisler, O. Lindau, W. Lauterborn, Bubble dynamics, shock 

waves and sonoluminescence, Philos. Trans. Roy. Soc. Lond. Ser. A Math. Phys. 
Eng. Sci. 357 (1751) (1999) 269–294. 

[34] A.J. Sojahrood, R. Earl, M.C. Kolios, R. Karshafian, Investigation of the 1/2 order 
subharmonic emissions of the period-2 oscillations of an ultrasonically excited 
bubble, Phys. Lett. A (2020) 126446. 

[35] S. Behnia, A.J. Sojahrood, W. Soltanpoor, L. Sarkhosh, Towards classification of 
the bifurcation structure of a spherical cavitation bubble, Ultrasonics 49 (8) 
(2009) 605–610. 

[36] R. Varga, F. Hegedüs, Classification of the bifurcation structure of a periodically 
driven gas bubble, Nonlinear Dyn. 86 (2) (2016) 1239–1248. 

[37] A.J. Sojahrood, Classification of the nonlinear dynamics of ultrasonically excited 
bubbles and their effect on the acoustical properties of the medium: theory, 
experiment and numerical simulations, Phd thesis, Ryerson University, 2020. 

[38] A.J. Sojahrood, M.C. Kolios, Classification of the nonlinear dynamics and 
bifurcation structure of ultrasound contrast agents excited at higher multiples of 
their resonance frequency, Phys. Lett. A 376 (33) (2012) 2222–2229. 

[39] F. Hegedüs, Stable bubble oscillations beyond Blake’s critical threshold, 
Ultrasonics 54 (4) (2014) 1113–1121. 

[40] R. Varga, K. Klapcsik, F. Hegedüs, Route to shrimps: dissipation driven formation 
of shrimp-shaped domains, Chaos Solitons Fract. 130 (2020), 109424. 

[41] A.J. Sojahrood, R. Karshafian, M.C. Kolios, Detection and characterization of 
higher order nonlinearities in the oscillations of definity at higher frequencies and 
very low acoustic pressures, in: 2012 IEEE International Ultrasonics Symposium, 
IEEE, 2012, pp. 1193–1196. 

[42] A.J. Sojahrood, R. Karshafian, M.C. Kolios, Numerical and experimental 
classification of the oscillations of single isolated microbubbles: occurrence of 
higher order subharmonics, in: 2012 IEEE International Ultrasonics Symposium, 
IEEE, 2012, pp. 402–405. 

[43] A. Jafari Sojahrood, R. Karshafian, C. Kolios, M. June, Bifurcation structure of the 
ultrasonically excited microbubbles undergoing buckling and rupture, in: 
Proceedings of Meetings on Acoustics ICA2013 No. 1, 19, ASA, 2013, p. 075097. 

[44] F. Hegedüs, Topological analysis of the periodic structures in a harmonically 
driven bubble oscillator near Blake’s critical threshold: infinite sequence of two- 
sided Farey ordering trees, Phys. Lett. A 380 (9–10) (2016) 1012–1022. 

[45] F. Hegedüs, K. Klapcsik, The effect of high viscosity on the collapse-like chaotic 
and regular periodic oscillations of a harmonically excited gas bubble, Ultrason. 
Sonochem. 27 (2015) 153–164. 

[46] K. Klapcsik, F. Hegedüs, Study of non-spherical bubble oscillations under acoustic 
irradiation in viscous liquid, Ultrason. Sonochem. 54 (2019) 256–273. 

[47] S. Behnia, A.J. Sojahrood, W. Soltanpoor, O. Jahanbakhsh, Suppressing chaotic 
oscillations of a spherical cavitation bubble through applying a periodic 
perturbation, Ultrason. Sonochem. 16 (4) (2009) 502–505. 

[48] K. Klapcsik, R. Varga, F. Hegedüs, Bi-parametric topology of subharmonics of an 
asymmetric bubble oscillator at high dissipation rate, Nonlinear Dyn. 94 (4) 
(2018) 2373–2389. 

[49] F. Hegedüs, W. Lauterborn, U. Parlitz, R. Mettin, Non-feedback technique to 
directly control multistability in nonlinear oscillators by dual-frequency driving, 
Nonlinear Dyn. 94 (1) (2018) 273–293. 

[50] F. Hegedüs, C. Kalmár, Dynamic stabilization of an asymmetric nonlinear bubble 
oscillator, Nonlinear Dyn. 94 (1) (2018) 307–324. 

[51] Y. Zhang, Chaotic oscillations of gas bubbles under dual-frequency acoustic 
excitation, Ultrason. Sonochem. 40 (2018) 151–157. 

[52] Y. Zhang, S. Li, Combination and simultaneous resonances of gas bubbles 
oscillating in liquids under dual-frequency acoustic excitation, Ultrason. 
Sonochem. 35 (2017) 431–439. 

[53] Y. Zhang, X. Du, H. Xian, Y. Wu, Instability of interfaces of gas bubbles in liquids 
under acoustic excitation with dual frequency, Ultrason. Sonochem. 23 (2015) 
16–20. 

[54] Y. Zhang, S. Li, The secondary Bjerknes force between two gas bubbles under 
dual-frequency acoustic excitation, Ultrason. Sonochem. 29 (2016) 129–145. 

[55] Y. Zhang, S. Li, Acoustical scattering cross section of gas bubbles under dual- 
frequency acoustic excitation, Ultrason. Sonochem. 26 (2015) 437–444. 

[56] A.J. Sojahrood, O. Falou, R. Earl, R. Karshafian, M.C. Kolios, Influence of the 
pressure-dependent resonance frequency on the bifurcation structure and 
backscattered pressure of ultrasound contrast agents: a numerical investigation, 
Nonlinear Dyn. 80 (1–2) (2015) 889–904. 

[57] A.J. Sojahrood, D. Wegierak, H. Haghi, R. Karshfian, M.C. Kolios, A simple 
method to analyze the super-harmonic and ultra-harmonic behavior of the 
acoustically excited bubble oscillator, Ultrason. Sonochem. 54 (2019) 99–109. 

[58] A.J. Sojahrood, R. Earl, Q. Li, T.M. Porter, M.C. Kolios, R. Karshafian, Nonlinear 
dynamics of acoustic bubbles excited by their pressure dependent subharmonic 
resonance frequency: oversaturation and enhancement of the subharmonic signal, 
2019. arXiv preprint arXiv:1909.05071. 

[59] M. Versluis, E. Stride, G. Lajoinie, B. Dollet, T. Segers, Ultrasound contrast agent 
modeling: a review, Ultrasound Med. Biol. 46 (9) (2020) 2117–2144. 

[60] P.P. Kamaev, J.D. Hutcheson, M.L. Wilson, M.R. Prausnitz, Quantification of 
optison bubble size and lifetime during sonication dominant role of secondary 
cavitation bubbles causing acoustic bioeffects, J. Acoust. Soc. Am. 115 (4) (2004) 
1818–1825. 

[61] P.V. Chitnis, P. Lee, J. Mamou, J.S. Allen, M. Böhmer, J.A. Ketterling, Rupture 
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