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Inferring high-resolution human mixing patterns
for disease modeling
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Mathematical and computational modeling approaches are increasingly used as quantitative

tools in the analysis and forecasting of infectious disease epidemics. The growing need for

realism in addressing complex public health questions is, however, calling for accurate

models of the human contact patterns that govern the disease transmission processes. Here

we present a data-driven approach to generate effective population-level contact matrices by

using highly detailed macro (census) and micro (survey) data on key socio-demographic

features. We produce age-stratified contact matrices for 35 countries, including 277 sub-

national administratvie regions of 8 of those countries, covering approximately 3.5 billion

people and reflecting the high degree of cultural and societal diversity of the focus countries.

We use the derived contact matrices to model the spread of airborne infectious diseases and

show that sub-national heterogeneities in human mixing patterns have a marked impact on

epidemic indicators such as the reproduction number and overall attack rate of epidemics of

the same etiology. The contact patterns derived here are made publicly available as a

modeling tool to study the impact of socio-economic differences and demographic hetero-

geneities across populations on the epidemiology of infectious diseases.
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Mathematical and computational models of infectious
disease transmission are increasingly used to provide
scenario analysis and forecasts during epidemic out-

breaks and quantitative answers to complex public health ques-
tions such as devising the effectiveness of control strategies
(vaccination, school closure, etc.) during health threat emergen-
cies1. Modeling approaches have thus moved away from the
classic homogeneous and stylized framework2,3, progressively
incorporating heterogeneities that depend on between- and
within-country population variability, disease timescale, trans-
mission settings, as well as specific pathogen characteristics. For
instance, geographically structured models allow evaluation of
spatially heterogeneous interventions in both animal and human
diseases4,5, while individual-based models lay down the possibi-
lity of simulating all micro-details of the transmission process and
tracking in time and space each individual of the simulated
population6–8. When data-driven, these approaches have high-
lighted the importance of the social, demographic, and economic
characteristics of the population in determining the actual mesh
of contacts underlying disease spreading among individuals. For
this reason, a broad range of methodologies have been used to
study human-mixing patterns, including surveys9–12, contact
diaries13–19, wearable sensors20,21, analysis of time-use data22,
development of synthetic populations23–25, and mixed approa-
ches for instance integrating diary-based contact data with time-
use data26,27 or combining contact data with modeling
techniques26,28,29. However, each methodology has different
limitations and assumptions because contact patterns among
individuals vary according to the geographical scale (from census
blocks to the national level), the disease under consideration, and
the detailed socio-economic and demographic characteristics of
the population.

Here, we present a data-driven approach to generate effective
descriptions of complex contact patterns that can be used to
inform infectious disease modeling approaches, including the
widely adopted compartmental modeling framework. We make
use of highly detailed macro (census) and micro (survey) data
from publicly available sources on key socio-demographic fea-
tures (e.g., age structure, household composition and members’
age gaps, employment rates, school structure) to construct syn-
thetic populations of interacting agents, each one representing a
hypothetical individual in the real population. The proposed
method relies on both macro- and micro-level data for multiple
socioeconomic characteristics and can be adapted to different
geographical contexts and diseases; something that is not possible
in a “one-model-fits-all” approach.

We provide synthetic contact matrices for nations around the
world with substantially large and diverse populations. Specifi-
cally, we report contact patterns at the subnational level in the
following countries: Australia, Canada, China, India, Israel,
Japan, Russia, South Africa, and the United States of America.
These populations account for 277 subnational administrative
regions (such as states, provinces, prefectures, territories, etc.
depending on the considered country), cover ~38% of the
world’s surface area, and account for ~3.5 billion people of the
world’s 7.6 billion population. The resulting synthetic popula-
tions are used to generate age-stratified contact matrices for the
most common social settings, in which individuals spend their
time interacting with each other (i.e., households, schools,
workplaces, and the general community). The resulting contact
matrices capture differences at the subnational level that reflect
the high degree of cultural and societal diversity of the focus
countries. This approach allows us to provide a mesoscopic
description of the human contact patterns that can be used in
the mathematical and computational analysis of infectious dis-
ease spread (see Fig. 1).

To illustrate the importance of considering national and sub-
national heterogeneities in the analysis of infectious disease epi-
demiology, we construct the contact matrix relevant for airborne
infectious diseases by calibrating the combination of setting-
specific (household, workplace, school) contact matrices using as
ground truth seven diary-based contact matrices (six European
countries14 and Russia18). The resulting matrices are validated
against out-of-sample contact data collected in France30, Japan31,
and China32. These contact matrices are then used in the mod-
eling of influenza transmission patterns at the national and
subnational levels. The influenza modeling simulations, although
considering identical disease etiology, highlights considerable
heterogeneities in reproduction number and attack rates across
regions of the world included in this study, reflecting differences
in key demographic properties such as average age and student
population.

As a service to the community, a database containing the
inferred setting-specific matrices as well as the overall contact
matrices for all locations (and countries) is available on the
dedicated online repository: https://github.com/mobs-lab/mixing-
patterns. Python codes to work with the contact matrices and
examples of how to use them in age-structured compartmental
models are available on the same website as well. This presented
work can be easily generalized to other countries and settings, and
arm the community with a general framework that can be used to
make inference on important epidemiological parameters in the
modeling of infectious diseases.

Results
We use a data-driven computational approach to infer the contact
networks in the social settings where people interact and spend
most of their time. In particular, we focus on four social settings
(household, school, workplace, and the general community),
which are particularly relevant for influenza transmission7,33. To
reconstruct the synthetic population in each context we use a
wide variety of national and subnational micro-level, census,
and demographic data that provide the separate characteristics of
the population, and the association of multiple characteristics.
Micro-level data drawn from socio-demographic surveys are
especially useful as no assumptions on the rules of disaggregation
are required (the data are already on the required level of
disaggregation).

Contacts between individuals in the real-world populations are
inferred by analysis of the generated data-driven synthetic net-
works by measuring the frequency of links between individuals
(living, going to school, or working together) in the synthetic
contact networks of the different social settings. Then we com-
pare summary statistics derived from the generated synthetic
population for each geographical area to those reported in official
(macro) statistics (e.g., census data). Examples of the summary
statistics used in the approach are the age structure of the
population, distributions of household size, type, number of
children by household size, and so on, depending on the sum-
mary statistics available from official sources. The generated data
is compared to the distributions of summary statistics by using
the goodness-of-fit tests at the desired level of significance (gen-
erally 5%). We use a non-parametric bootstrap procedure to test
the uncertainty level of our sampling. This procedure is iterated
until a satisfactory fit is reached. In the case of inadequate
microdata (e.g., sub-optimal sample size), we use the microdata to
extrapolate rules on the age gaps between household members
conditioned on the age of the household head, household size,
and the relation between the members (e.g., age gap between
spouses, age gap between siblings). Note that the same arguments
are extended to other settings (e.g., schools, workplaces, hospitals)
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and can be extended to further stratifications relevant for other
diseases (e.g., easy access to health care facilities). An illustration
of the matrices construction workflow is reported in Fig. 1, while
the full technical description is reported in “Methods” and Sup-
plementary Information.

Setting-specific contact matrices. We report here the results for
populations of 277 subnational administrative regions of Aus-
tralia, Canada, China, India, Israel, Japan, Russia, South Africa,
and the United States of America, characterizing contact patterns
for about 3.5 billion individuals. We also include data at the
national level for 26 European countries23. The inferred age-
specific contact matrices reveal strong patterns, of which many
are common to the diverse locations under study. Figure 2 shows
the age-mixing patterns Fk

ij defined as the per capita frequency of
contact of an individual of age i with an individual of age j in
setting k.

Starting with the household setting in Fig. 2a, we observe that
contacts between individuals can largely be characterized as that
between couples living together, and parents and their children in
the same household14,23. The increased frequency of contact
between adults of similar ages along the main diagonal of the
household contact matrix represents couples of similar ages living
together, while the bands of high frequency above and below the
main diagonal indicate contact between parents and children.
While most locations share these overall features, the contact
matrices show different age-mixing patterns. For instance, in
China (Fig. 2a), the lower frequency of contact between children
within households is the reflection of the country’s so-called
“One-child policy”. The policy, enacted in 1979 up to 2016, has
resulted in over a generation of many Chinese youths growing up
without siblings, and hence having less contact on average with
other children in this setting. This is a stark contrast with the
United States and India (Fig. 2a), where the presence of multiple
children born to a family results in an increased frequency of
contact between this age group in the household matrix. The
presence of multigenerational families in countries like India is
also evident from the increased frequency of contact between all
age groups, notably between the elderly (60 years and older) and
young children. The same feature was observed in ref. 19 for
Zimbabwe. Even within the same country, contact patterns may

be markedly different. Figure 2a shows the age-mixing patterns
within households for two different provinces of China: Beijing
and Guizhou. While the household contact patterns in Beijing
show a clear signal of the “One-child policy”, Guizhou shows the
presence of multigenerational families, as well as an increased
presence of multiple children living in the same household. This
can be traced back to the fact that the Guizhou Province is
characterized by a large frequency of minority groups and the
“One-child policy” was less strictly applied for minorities.

Figure 2b, c shows the inferred contact matrices in the school
and workplace settings for China, the United States, and India. In
both settings, the age-mixing patterns vary strongly, reflecting
differences in the educational systems, and economic conditions
unique to each location. For all locations in our study, the school
setting consistently exhibits the highest frequencies of contact
between children and young adults attending school together.
Interaction with older adults in this setting reflects the contact
students have with instructors and other staff members in school.
The variability of age-mixing patterns between children in India
(Fig. 2b) also reflects the many different kinds of schools that
children can attend throughout the country and the different age
groups found in those schools. In the workplace environment,
most interaction takes place between individuals in the range of
20–65 years of age, with the age range depending on local
retirement, employments regulations, and culture. For instance,
in many parts of the world it is common for teenagers to be fully
or partially employed (see the work contact matrix for the US—
Fig. 2c); in India, census records for employment list even
children among the population of workers.

Statistical validation of the contact matrices against
summary statistics of a large set of socio-demographic
indicators has been performed to validate our results (see
Supplementary Information).

Human-mixing patterns for influenza transmission. The con-
tact matrices obtained in each setting acquire epidemiological
relevance when combined together to generate the descriptions of
human-mixing patterns relevant to the spreading of a specific
disease. Here, we define the matrix of effective contacts relevant
to influenza transmission based on the relative contribution of
the household, school, and workplace. Here, by “effective”, it is

Fig. 1 Modeling framework. Schematic representation of the workflow for modeling human-mixing patterns and infection transmission dynamics.
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indicated a contact that can lead to the disease transmission. In
addition to these three social settings, we consider also the con-
tribution of less structured casual encounters in the population34,
by considering a community contact matrix that assumes indi-
viduals as potentially fully mixed23. To combine the different
matrices, we propose a weighted linear combination of the
derived matrices for the four considered social settings, and
compute the overall matrix of contacts between individuals of age
i and individuals of age j, M (whose elements are denoted as Mij),
as a weighted linear combination of setting-specific contact
matrices:

Mij ¼
X
k

ωkF
k
ij ð1Þ

where the element Mij represents the average number of contacts
with individuals of age j for an individual of age i per day, and
each ωk ≥ 0 is indicating the number of contacts in each setting k.

Generally, the ωk are unknown disease-specific weights
accounting for the relative importance of the different social
settings in the transmission of a specific infectious disease. In the
case of airborne infectious diseases, we leverage on diary-based
survey contact matrices reported in14,18 for Finland, Germany,
Italy, Luxembourg, The Netherlands, the United Kingdom, and
the Tomsk Oblast of Russia. For European countries, we relied on
data and the setting-specific contact matrices developed in
Fumanelli et al.23 that covers 26 countries. Unfortunately, Poland,
and Belgium, which are included in the POLYMOD study14 used
to calibrate the overall contact matrix are not included in ref. 23.

We perform a multiple linear regression analysis to find the
values of ωk such that the resultingMij best fits the empirical data.
Note that the empirical matrices derived in refs. 14,18 describe the
average number of contacts of age j for an individual of age i, and
in “Methods” we show how ωk is related to an average number of
contacts 〈c〉 per individual. The regression yields 4.11 contacts
(standard error, SE 0.41) in the household setting, 11.41 contacts
(SE 0.27) in schools, 8.07 contacts (SE 0.52) in workplaces, and
2.79 contacts (SE 0.48) for the general community setting. It is
worth remarking that the estimated weight for household
contacts is larger than the average household size. This likely
reflects the definition of contacts at home (rather than with
household members) used in the POLYMOD study14 that has
been used to calibrate the weights. The rationale for using the
POLYMOD and the Russian studies14,18 in estimating the weights
used to assemble the setting-specific synthetic matrices lies in the
extensive validation of those contact patterns in epidemiological
studies of a set of airborne infectious diseases, including
influenza29,35–39.

Our approach provides overall best matching ωk and that, in
principle, some of the differences in the social behavior of specific
countries may not be captured by this approach. For this reason,
as a validation of this calibration method, in Fig. 3a we report the
correlation between the resulting synthetic matrices for France,
Japan, and the Shanghai Province of China and the available
empirical matrices for these additional locations30–32. We find
significant (P value < 0.001) Pearson correlations of 0.92, 0.9, and
0.8 for France, Japan, and Shanghai Province, respectively.

Fig. 2 Age-mixing patterns by setting. Each heatmap represents the average frequency of contact between an individual of a given age (x axis) and all of
their possible contacts (y axis). a Matrices of household contacts by age at the national level for China, the United States, and India. The six smaller panels
in the center and on the left show household contact matrices at the subnational level in two provinces of China (Beijing, Guizhou), two locations of the
United States (the state of New York and the District of Columbia), and two states of India (Maharashtra, Meghalaya). b Matrices of school contacts by
age at the national level (from top to bottom: China, the United States, India). c Matrices of work contacts by age at the national level (from top to bottom:
China, the United States, India).
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Moreover, we use the Canberra distance as a measure of the
similarity between two contact matrices23 (see “Methods” for the
definition of the Canberra distance). We estimate the distance
between the seven survey-based matrices used in the calibration
phase and their respective synthetic matrices to be 0.21 on
average (range: 0.17–0.28). (Note that the resulting Canberra
distance is normalized by the square of the number of elements of
the contact matrix to account for the different number of age
groups considered by the different diary-based contact surveys).
When considering the three locations used as out-of-sample
validation, we estimate a slightly larger average distance of 0.29
(range: 0.21–0.37), suggesting the adequacy of the employed
methodology. Finally, Fig. 3b shows a visual comparison between
the synthetic and survey matrices, which highlights that the
synthetic contact matrices are able to capture the specific features
of each location such as contact patterns at school and the relative
intensity of the main diagonals.

Figure 4a shows the synthetic overall contact matrices for
China, the United States, and India. The contact matrices for all
locations share many similarities: bands of increased contact
along the main and off diagonals reflect the familiar household
contact patterns, increased contact between adults age 20 and ~65

years old account for the interactions between the population’s
workforce, and the dominant contact patterns in the lower left of
the contact matrices reflect the high number of interactions
between school-aged individuals. Depending on the age structure
of the population, the intensity of interactions occurring in the
school setting can vary; however, this feature consistently
dominates the contact matrix for all locations in our study.

To quantify the similarity between the overall contact matrices
in different locations, we use a hierarchical clustering algorithm
based on the Canberra distance to identify clusters of locations
(dis)similar to each other23. We find that locations tend to cluster
together by country (Fig. 5a), indicating that overall the contact
patterns within a single country are more similar to each other
than to the patterns observed in other countries. Strikingly,
though not surprisingly, locations within developed countries
such as Australia, Canada, and the United States are similar to
each other and are clustered together, while at the same time
locations throughout India, South Africa, and the North Caucasus
region of Russia also cluster together, indicating a similarity in
patterns between locations in the developing and transition
world. Interestingly, a few territories of Canada, Russia, and India
are outliers, indicating that the contact patterns in these locations

Fig. 3 Comparison to out-of-sample survey matrices. a Density plots showing the correlation of survey-based contact matrices for three out-of-sample
locations (France, Japan, and the Shanghai Province of China) and their respective synthetic contact matrices (all normalized to sum to one). The points
represent the actual values of the survey and synthetic contact matrices. The linear correlation between the elements of each survey matrix and the
corresponding elements of the synthetic matrix is reported in terms of the Pearson correlation coefficient, whose values are reported in each plot.
b Heatmaps representing the normalized survey matrices and the normalized overall synthetic matrices for France, Japan, and the Shanghai Province
of China.
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Fig. 4 Overall contact matrices. Each heatmap represents the overall average number of contacts relevant for airborne infectious disease transmission by
age at the national level for China, the United States, and India.

Fig. 5 Clustering of contact matrices. a Clustered matrix of the Canberra distance between subnational contact matrices and associated dendrogram using
hierarchical clustering to organize subnational locations. Lighter colors indicate locations more similar to each other (distance closer to 0). b World map of
the subnational level where colors represent the Canberra distance between each subnational location and the US state of New York (used as a reference
point). The gray color means that no data is available. Note that the country of Israel is treated at the national level, rather than the subnational level, due to
both its relatively small population and area, and the resolution of data available for reconstruction.
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are different from what is observed in all other locations
(including their respective countries). A more detailed discussion
is reported in Supplementary Information. If we consider the US
state of New York as a reference and compute the distance from
all other locations to it, a geographical pattern clearly emerges
(Fig. 5b). Indeed, the contact patterns in most states of the US,
and the urbanized areas of Canada and Australia appear to be
very closely related to the one inferred for New York. In contrast,
most of India, South Africa, and of the territories in Canada,
Russia, and Australia have contact patterns noticeably different
from those obtained for the state of New York.

Epidemiological relevance. To investigate the effect of the
computed contact matrices on infection transmission dynamics,
we develop an age-structured SIR model to describe influenza
transmission dynamics in the sites considered. The SIR model
describes the spread of influenza in terms of the transition of
individuals between different epidemiological compartments.
Susceptible individuals (i.e., those at risk of acquiring the
infection—S) can become infectious (i.e., capable to transmit the
infection—I) after coming into contact with infectious
individuals. Subsequently, infectious individuals recover from the
infection and become removed (R) after a certain amount of time
(the infectious period). In an age-structured implementation of
the model, individuals are now identified also by their age, and
the contact matrix is introduced to describe the number of con-
tacts between susceptible individuals of age i and all of their
possible infectious contacts of age j2,13 (see “Methods” for
details). More specifically, we considered a transmission model
with identical disease parameters across geographical locations
considered in the study. The contact matrices are thus the only
factor driving the difference in dynamics and attack rate (total
number of infected individuals) of the simulated epidemic.

Compared to the case of homogeneous mixing, where all
individuals are assumed to be in contact with each other in equal
proportions, the inclusion of the contact matrices in the epidemic
model consistently yields a lower overall attack rate for all
locations (Fig. 6a). This difference is also reflected in the strong
variability of the basic reproduction number R0, representing the
number of cases generated by a typical index case in a fully
susceptible population, which depends on the spectral radius of
the matrix M as well as population structure (see Supplementary
Information). To provide further validation of the adequacy of
the matrices in characterizing the specific dynamics of influenza
transmission in the Supplementary Information, we report the

simulations of the age-structured SIR model calibrated on real
data from the H1N1 influenza pandemic in multiple locations.
The model adequately reproduces the age-specific seroprevalence
profiles in Israel, Italy, Japan, UK, and USA40–44.

To understand the underlying factors of the observed
heterogeneities across geographical locations, we use a linear
regression model to compare the attack rates and various socio-
demographic features of each location (see Supplementary
Information). We identified two socio-demographic features that
correlate strongly with the attack rate: the average age of the
population (Fig. 6b) and the fraction of the population in the
educational system including instructors (Fig. 6c). Indeed, if we
examine the attack rates by age and setting (see Supplementary
Information), we observe that the greatest proportion of
infections occur as a result of contact due to the school setting,
and that attack rates, in general, are highest for school-aged
individuals. Going further, an inspection of the incidence profile
by age (see Supplementary Information) also clearly shows that
individuals with high contact frequencies with others in the
school setting are infected earlier in higher proportions. These
results mirror well-known influenza spreading trends/patterns
observed in the real world14,23. The observed results are robust
(although with quantitative differences) to changes in transmis-
sibility patterns and susceptibility to infection by age (see Supple-
mentary Information). Taken together, our results suggest that
developing countries with younger populations, and thus more
school-aged individuals, are likely to experience higher overall
attack rates when compared to older, developed countries.

We can also investigate how the attack rate and R0 for each
location would differ if we only had knowledge of the contact
patterns at the national level. In this scenario, we use the country-
level influenza transmission contact matrices in each location
(note that each location is still characterized by its own specific
age structure) and compare the results with those obtained by
using the location-specific contact matrices everything else kept
identical for the disease transmission model (Fig. 7a–c). By using
the country-level matrix, we observe a much lower variability
than by using location-specific mixing patterns. Moreover,
location-specific attack rates and R0 show a nonlinear relation
with the results obtained using country-level contact patterns.
Interestingly, we can observe clear geographical trends in the
percent difference in attack rate using location-specific contact
patterns in comparison to the corresponding country-level ones.
For instance in much of the western area of China where most of
the nation’s ethnic minorities live, using the average matrix would
lead to underestimating the final impact of an epidemic, while we

Fig. 6 Epidemic impact. a Scatter plot of the attack rate and the reproduction number R0 from an age-structured SIR model using the contact matrix for
each subnational location. European countries are included. The black line shows the results of the classic homogeneous mixing SIR model (no age groups).
b Scatter plot of attack rates and the average age in each location. The black line represents the best-fitting linear model demonstrating a negative linear
correlation between attack rates and the average age of the population. c Scatter plot of attack rates and percentage of the population attending
educational institutions in each location. The black line represents the best-fitting linear model.
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would overestimate it in the more traditionally urbanized/
industrialized areas in the north-east of the country, such as
Beijing and Shanghai (Fig. 7a).

Discussion
We have presented a general framework for the synthetic gen-
eration of age-stratified mixing patterns in key social settings (the
household, school, workplace) for the transmission of airborne
infectious diseases. The contact patterns we derived are not
directly measured via survey or other direct methods (e.g.,
wearable sensors). Rather, we infer these age-based relationships
between individuals by measuring them in synthetic populations
developed using a novel approach that combines macro- and
microdata available from public sources. While this is a limitation
as, in general, a direct measure is preferred with respect to a
derived one, this approach allows us to: (i) be flexible in the
definition of effective contacts and thus to adapt our methodology
to the study of different infectious diseases which require alter-
native definitions of “effective contact for transmission”; and
(ii) focus on broad arrays of countries for which a direct measure
is not available, especially at the subnational scale.

The use of age-mixing patterns in age-structured epidemic
models provides insight into the epidemiology and dynamics of
infectious diseases both within and between different countries
around the world, as we have shown for the case of influenza. Our
approach allows the integration of contact patterns that vary
according to the geographical scale, the disease under con-
sideration, and the detailed socioeconomic and demographic
characteristics of the population. The developed method can be
adapted to different geographic scales, conditional on the pre-
sence of sufficient data on age-specific intra-household, school,
and work interdependencies. However, it is important to remark
that, even if data availability allows the development of micro-

level (e.g., zip-code, census block) synthetic populations, focusing
on the geographic units smaller than commuting distances would
break down the representativeness of age-mixing patterns to
model the spread of an epidemic.

The use of data-driven heterogeneous mixing patterns, espe-
cially at the subnational level, opens up the door to potential
applications in the more realistic modeling of the worldwide
circulation of pathogens with epidemic/pandemic potential. The
developed contact matrices also allow the study of the impact on
the epidemiology of infectious diseases of socioeconomic dis-
parities and demographic peculiarities (e.g., one-child policy).
Eventually, by making all of the derived mixing patterns (in the
form of readily usable contact matrices by age) publicly available,
the presented results may benefit the research community actively
working on the development of infectious disease forecasting
approaches and mathematical models in support of the public
health decision-making processes.

Methods
Development of the synthetic populations. To construct synthetic populations
in different countries, we made use of a wide array of data sources (see Supple-
mentary Information). These data provide distributions of key socio-demographic
characteristics, such as the age structure, household size, age of the head of the
household, age gaps between household members, household composition,
employment rates, the educational system, and enrollment rates, etc. Distributions
such as these are typically available either as macro-level data from census data-
bases and other governmental sources, or as micro-level data coming from surveys
conducted on a sample of the population. Census databases routinely provide
information at a broader scope such as the age structure of a population, or the
fertility rates; however, they often lack more detailed information related to the
household composition and age relationships between household members. For
this, we rely on micro-level surveys which collect the data at the household and
individual level and ask participants for information in regards to their health,
household condition and composition, economic conditions, and more. The kind
of data available also varies by country and even at the subnational level, thus
necessitating the development of adaptive algorithms that can take in the available
data and accommodate for variability in data organization to produce a faithful

Fig. 7 Subnational heterogeneity. a The black dots represent the estimated attack rates in each province of China by using the country-level contact matrix
and the location-specific age structure of the population. Colored dots represent the estimated attack rates in each location by using both the location-
specific contact matrix and the age structure of the population. The colored lines connect the two estimated values of attack rate for each location. The
transmission rate is set such that R0= 1.5 when using the country-level matrix. Each map shows the percentage variation of the attack rate using the
location-specific contact matrix with respect to using the national contact matrix as a proxy for the subnational contact patterns (i.e., (ARc−ARl)/ARc,
where ARc is the attack rate estimated by using the country-level contact matrix, and ARl is that estimated by using the location-specific matrix). Colors
toward Astra in the color scale indicate an overestimation of the attack rate in the location when using the country-level contact matrix as a proxy for the
subnational contact patterns. Conversely, colors towards grape in the color scale indicate an underestimation of the attack rate in the location when using
the country-level matrix as a proxy for the subnational contact patterns. b Same as a, but for the USA. c Same as a, but for India.
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reconstruction of each population. With this in mind, the procedure implemented
can be summarized as follows.

The first step in the reconstruction of a real-world population is the generation
of households. In this process, we use two types of multinomial sampling. The first
is based on the probability distribution MðyÞ of an independent socio-
demographic characteristic y. For instance, such characteristic y can be the
household size or composition, depending on the data available. The second type of
multinomial sampling is based on the probability Mðxjy1 ¼ i1; y2 ¼ i2; :::; yn ¼
inÞ of characteristic x conditional on the value i of a previously determined
variable(s) y. In this case, x and y are assumed (when supported by available data)
to have bivariate or multivariate joint distributions. Typically, the larger the
number of joint distributions incorporated, the more precise the reconstruction of
the real-world population. The precision of such a reconstruction is, however, often
limited by the scope of the data (such as the survey sample size for each
characteristic y) and its availability. For example, of the multinomial joint
distributions used here, one is the distribution of the age of the head of the
household by the size of the household and the household composition (whether a
couple, a single parent with children, siblings, multigenerational families, etc.). The
bivariate joint distributions incorporated is considerably long and includes (but is
not limited to) distributions of the age of household members by the age of the
head of the household, the age gap between couples living together by the age of
one in the pair, the mother’s age at childbirth by the age of the child, the number of
household members by their relation to the age of the household head (such as a
spouse, parent, child, grandchild, sibling, in-law, etc.) by the age of the household
head and the household composition. These joint distributions were either found in
the macro data or estimated from the micro survey data. Characteristics of the
resulting synthetic households are compared to the distributions of the summary
statistics available from the macro-level data using a goodness-of-fit test at the
desired level of significance (generally 5%).

A similar procedure is used to assign those individuals to their respective
schools and workplaces based on enrollment and employment records. These
records detail the enrollment and employment rates by age, institutional sizes, and
their age structures, as well as the student-to-teacher ratios in the case of schools. A
more detailed explanation of the construction of the synthetic population can be
found in Supplementary Information together with the results of the comparison
between the synthetic and actual population statistics.

Construction of age-based contact matrices. We use synthetic contact networks
to infer average age-based contact patterns within each social setting. For each
location, these age-based contact patterns are encoded in a contact matrix Fk,
whose elements Fk

ij describes the average frequency of contact between a given
individual of age i and individuals of age j in setting k. We focus on 4 social
settings: the households (H), schools (S), workplaces (W), and the general com-
munity (C). Specifically, here we adopt the frequency-dependent (mass action)
transmission model, with the implicit assumption that an increased population
density has no effect on the per capita contact rate between individuals45. This
choice of modeling mechanism was already proved to represent a good approx-
imation for the description of the transmission patterns of several infectious dis-
eases2. Moreover, it allows us to readily compare epidemiological parameters
between social settings and locations with disparate population density, and thus
makes for an appropriate framework when modeling the transmission dynamics of
heterogeneous populations around the world. The calculation of the contact
matrices can be described as follows.

First, we compute the relative abundance of contacts between individuals of age

i and individuals of age j in each configuration s of the setting k, ΓkðsÞij .

ΓkðsÞij ¼ ϕkðsÞi ðϕkðsÞj � δijÞ
νkðsÞ � 1

; ð2Þ

where ϕkðsÞi is the number of individuals of age i in the configuration s (i.e., a
specific household, school, or workplace) of setting k; δij is the Kronecker delta
function, which we use to omit the individual i from their own set of contacts; νk(s)

is the number of individuals (of all ages) in instance s of setting k. Note that to

compute ΓkðsÞij , we assume homogeneous mixing within each configuration of the
setting, i.e., each individual can be in contact with other individuals, and as a result

the matrix ΓkðsÞij has the expected symmetric property ΓkðsÞij ¼ ΓkðsÞji .
Second, we compute the per capita probability of contact of an individual of age

i with an individual of age j in setting k as Fk
ij .

Fk
ij ¼

X
fs:νkðsÞ>1g

ΓkðsÞij =Ni; ð3Þ

where Ni is the total number of individuals of age i. Note that matrix Fk (i.e., the
matrix of elements Fk

ij) is not symmetric.
Third, we combine the setting-specific contact matrices by age Fk to derive a

matrix of the overall contacts by age M. We propose a weighted linear combination
of the derived matrices in the four focus settings, calibrated to match the
empirically estimated contact matrices from two contact diary survey studies in
seven locations throughout Western Europe and Russia14,18. We perform a
multiple linear regression to calibrate the weights of the synthetic setting contact

matrices such that their linear combination matches the overall contact matrix for
all seven locations coming from the survey studies (see Supplementary Information
for details and for a comparison between the empirical and synthetic contact
matrices).

Following this approach, we are also able to evaluate the uncertainty of point
estimates of the contact matrices. While the absolute level of uncertainty results to
be negligible if compared to the differences between the age groups, if synthetic
individuals are sampled from the synthetic population, the level of introduced
uncertainty becomes comparable with the one for diary-based contact studies
(see Supplementary Information).

The average number of contacts. The average number of contacts 〈c〉 can be
computed as

hci ¼ 1
N

X
i

Ni

X
j

Mij ð4Þ

where N= ∑iNi is the total number of individuals in the population.
Therefore,

hci ¼ 1
N

X
i

Ni

X
j

X
k

ωkF
k
ij

¼ 1
N

X
i

Ni

X
j

X
k

ωk

X
s

ΓkðsÞij =Ni

¼ 1
N
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X
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X
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X
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NiΓ
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¼ 1
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X
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ΓkðsÞij =N

¼
X
k

ωkZk=N;

ð5Þ

where Zk is the number of individuals having at least one contact in setting k. Note

that in the calculation, we used the symmetric property of matrix ΓkðsÞij . This
expression provides a relation between the parameters ωk and the overall per capita
contact of relevance in epidemiological studies.

Canberra distance. To make side-by-side comparisons of the inferred contact
matrices by age, we use the Canberra distance23. Specifically, each matrix is treated
as a vector on which the Canberra distance is defined as

dðx; yÞCanberra ¼
X
i

jxi�yi j
jxi jþjyi j for xi; yi ≠ 0

1 for xi; yi ¼ 0

(
ð6Þ

This yields a distance value of 0 for two locations with identical contact matrices,
and increasingly larger distance values for two locations with increasingly different
contact matrices.

Age-structured disease transmission model. For each location l, the transmis-
sion dynamics of influenza are modeled through an age-structured SIR model,
where the mixing patterns are defined by the contact matrix previously introduced,
Mij.

The model is defined by the following set of equations:

_Si ¼ �λiSi
_Ii ¼ λiSi � γIi
_Ri ¼ γIi;

ð7Þ

where Si is the number of susceptible individuals of age i, Ii is the number of
infected individuals of age i, Ri is the number of recovered or removed individuals
of age i; γ−1 is the infectious periods (which corresponds to the generation time in
the simple SIR model46,47), which is set to 2.6 days48; and λi represents the force of
infection to which an individual of age i is exposed to other infected individuals
and expressed as

λi ¼ β
X
j

Mij

Ij
Nj

; ð8Þ

where β is the transmissibility of the infection, Ni is the total number of individuals
of age i, and Mij measures the average number of contacts for an individual of age i
with all of their contacts of age j.

The basic reproduction number R0, representing the number of cases generated
by a typical index case in a fully susceptible population, can be defined for this
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model as

R0 ¼
β

γ
ρðMÞ; ð9Þ

where ρ(M) is the dominant eigenvalue of the matrix M49.
To build the synthetics populations, we use publicly available databases listed in

Table 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
A database containing the inferred setting-specific matrices as well as the contact
matrices for influenza transmission for all locations (and countries) is publicly available
on the dedicated online repository: https://github.com/mobs-lab/mixing-patterns50.
Python and R routines to work with the contact matrices and examples of how to use
them in age-structured compartmental models are also available.

Code availability
The code can be publicly accessed at the dedicated online repository https://github.com/
mobs-lab/mixing-patterns50.
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