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Abstract 

In this work, cobalt phosphide nanoparticles (Co2P NPs) were prepared by simple and mild hydrothermal method 
without the use of harmful phosphorous source. The morphological structure and surface component of Co2P were 
characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy measure-
ments. Considering the excellent electrocatalytic reduction activity and good electrical conductivity of transition-
metal phosphide, we fabricated Co2P NPs on indium tin oxide (ITO) substrate (Co2P/ITO) for H2O2 detection. The 
Co2P/ITO transducer displayed a rapid amperometric response less than 5 s, a broader response range from 0.001 to 
10.0 mM and a low detection limit of 0.65 μM. In addition, the non-enzymatic Co2P/ITO sensor showed outstanding 
selectivity, reproducibility, repeatability and stability, all of which qualified the Co2P/ITO electrode for quite a reliable 
and promising biosensor for H2O2 sensing.
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Introduction
Hydrogen peroxide (H2O2) is a representative reactive 
oxygen species in living organisms, and it plays a criti-
cal role in normal physiologic function [1]. The concen-
tration of H2O2 in living cells is related closely with the 
cell physiological balance [2]. Numerous studies have also 
been reported that cancer, Alzheimer’s diseases, Parkin-
son’s diseases and some severe diseases may be caused 
by abnormal concentration of H2O2 [3–5]. Developing 
accurate, sensitive, rapid and selective methods to detect 
the concentration of H2O2, a normal oxidative stress 
biomarker, will be undoubtedly beneficial to the early 

diagnosis. Up to now, a host of analytical methods such 
as spectroscopy [6], colorimetry [7], fluorescence [8, 9] 
and electrochemical methods [10–12] have been applied 
in H2O2 determination. Electrochemical method, espe-
cially amperometric test is gradually becoming one of the 
most simple and effective detection methods for H2O2 
biological analysis among diverse sensing methods due to 
its advantages such as high sensitivity, outstanding selec-
tivity and low cost.

Enzymatic electrochemical sensors have been proved 
to be effective instruments for detecting H2O2. However, 
the large-scale practical application of enzyme-based 
sensors is limited by complicated immobilization, envi-
ronmental instability and low reproducibility. Therefore, 
developing non-enzymatic electrochemical H2O2 sensors 
is highly indispensable.

In recent years, a growing number of sensors based 
on noble metal [13–15], non-noble metal and their 
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corresponding compounds [16–19] or carbon materials 
[20, 21] have been used for electrochemical H2O2 detec-
tion. As electrochemical active materials for fabricating 
non-enzymatic biosensors, transition metal compounds 
have been received increasing interests. Transition-metal 
phosphides (TMPs) are a class of newly developed mate-
rials with excellent electrocatalytic activity, good electri-
cal conductivity and a plenty of outstanding properties. 
Thus, they have been extensively studied for applications 
in water splitting [22, 23], hydrodesulfurization [24], and 
supercapacitor electrodes [25]. Recent research indicates 
that CoP, Ni2P and Cu3P [26–28] can also be used as effi-
cient electrocatalyst for non-enzymatic H2O2 detection.
However, the number of researches about the application 
of TMPs in bioanalysis is still limited nowadays. Besides, 
the use of triphenylphosphine [29, 30], white phospho-
rous [31, 32] or other environmental hazardous phospho-
rous source [33] can increase the operational risk in the 
preparation of TMPs. Therefore, some research work for 
developing green method in TMP preparation is worth 
being supplemented in this area.

In this work, cobalt phosphide nanoparticles (Co2P 
NPs) were prepared by one-step hydrothermal method 
utilizing cobalt acetate and red phosphorous as raw 
materials. Herein, we fabricated Co2P NPs on indium 
tin oxide (ITO) substrate by drop-casting method for 
H2O2 detection. Co2P displayed excellent electrocatalytic 
activity toward H2O2 reduction. Moreover, it revealed 
favorable selectivity, excellent reproducibility and good 
stability, which therefore exhibited its potential applica-
tion as a sensitive platform for H2O2 detection.

Experimental Section
Reagents and Materials
All reagents were analytical grade and used with-
out further purification. Cobalt (II) acetate tetrahy-
drate (Co(Ac)2·4H2O), cobalt chloride hexahydrate 
(CoCl2·6H2O), D-(+)-glucose, L-Glycine (L-Gly), ascor-
bic acid (AA), uric acid (UA), urea, NaCl, KCl, NaH2PO4, 
Na2HPO4, hydrogen peroxide (30% H2O2), ethanol and 
acetone were purchased from Sinopharm Chemical Rea-
gent Co., Ltd. China. D-(–)-fructose, L-arginine (L-Arg), 
L-lysine (L-Lys), dopamine (DA), acetaminophen 
(APAP), amino trimethylene phosphonic acid (ATMP, 
50 wt%) were purchased from Aladdin Ltd. Commer-
cial red phosphorous (98.5%, 100 mesh) were purchased 
from Energy Chemical Technology (Shanghai) Co., Ltd. 
Nafion PFSA polymer dispersion (5%) were purchased 
from Beijing Honghaitian technology Co., Ltd. Deion-
ized water was used in all the experiments. The indium 
tin oxide (ITO) glass (10 × 20 × 1.1 mm with an ITO film 
of 185 ± 2 nm and a sheet resistance of 6.6 ± 0.1 Ω) was 

supplied from Shenzhen South Xiangcheng Technology 
Co., Ltd.

Synthesis of Co2P Nanoparticles
Commercial red phosphorous (2  g) was dispersed in 
15  mL H2O under sonification and hydrothermally 
treated at 200 °C for 12 h in a 50 mL Teflon-lined stain-
less autoclave to clear oxide layers [34]. Then, the hydro-
thermal treated red phosphorous was dried in a vacuum 
oven. After finishing the pretreatment of red phospho-
rous, 1  mmol Co(Ac)2·4H2O was dissolved in 30  mL 
distilled water to obtain an aqueous solution. Then, the 
hydrothermal treated red phosphorous was added into 
the solution under ultrasonication for 15  min with the 
molar ratio of Co/P 1/10. The prepared suspension was 
rapidly poured into a 50 mL Teflon-lined autoclave. Then, 
the autoclave was placed in an electronic oven and hydro-
thermally treated at 160, 200, 240  °C for 12  h, respec-
tively. Then, the product was collected by centrifugation 
and washed three times with distilled water and ethanol, 
respectively. Finally, Co2P NPs were dried at 60 °C for 3 h 
in air.

Synthesis of Co(PO3)2
The preparation method of Co(PO3)2 was referred to the 
previous report [35]. 0.1 M CoCl2·6H2O methanol solu-
tion was prepared firstly. Then, 2 mL ATMP (50 wt%) was 
added dropwise into 20  mL the above purple solution 
and stirred for 30  min. The insoluble cobalt-metaphos-
phate coordination polymer formed in the solution sub-
sequently. The obtained pink powder was further heated 
to 900 °C under Ar flow with a heating rate of 5 °C·min−1 
and then held for 2 h. After cooling down to room tem-
perature, the black product was collected and reheated at 
650  °C for 4  h in air to remove the carbonized organic 
ligand. Finally, the light-purple powder of Co(PO3)2 was 
obtained.

Fabrication of Co2P/ITO Electrode
Firstly, the ITO glass (1 cm × 2 cm) was cleaned in ace-
tone, ethanol and deionized water for 10  min, respec-
tively, by sonication. After that, the treated ITO was 
dried under nitrogen sweeping. For the modification 
of the electrode, 5  mg of the Co2P NPs was dispersed 
in 1 mL deionized water to form 5 mg mL−1 Co2P sus-
pension. Then, 5 μL 5% Nafion solution was added into 
the suspension and the mixture was ultrasonicated for 
15 min to obtain uniform ink-like suspension. The Co2P/
ITO electrode was prepared by drop-casting 100 μL of 
Co2P suspension on the ITO surface, and dried in air as 
working electrode. The schematic preparation process of 
Co2P/ITO electrode is shown in Scheme 1.
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Characterizations
The X-ray diffraction (XRD) data were analyzed by a D8 
ADVANCE diffractometer with Cu Kα radiation. The 
transmission electron microscopy (TEM) measurement 
was conducted using a Tecnai G2 F20 with energy dis-
persed spectrum detector. X-ray photoelectron spec-
troscopy (XPS) spectra were measured on a Thermo 
ESCALAB 250XI spectrometer.

Electrochemical Measurements
Voltammetry measurements were accomplished by CHI 
660E electrochemical workstation in a three-electrode 
system, employing Co2P/ITO electrode as working elec-
trode, a platinum foil (1 cm × 1 cm) as counter electrode 
and Ag/AgCl with 3  M KCl solution as reference elec-
trode to study the electrochemical activities of the syn-
thesized samples for H2O2 detection. Phosphate buffer 
saline (PBS; 0.1 M, pH 7.4) was used as the electrolyte to 
simulate the physiological medium in human body. The 
sensing performances of Co2P/ITO electrode toward 
H2O2 detection were investigated by cyclic voltammetry 
(CV) and amperometry (I-t). All the detection experi-
ments were performed under 100  rpm stirring at room 
temperature. Electrochemical impedance tests were per-
formed on VersaSTAT 3F electrochemical workstation 
and ferricyanide solution was used as the electrolyte for 
impedance measurement.

Results and Discussion
Characterization of Co2P NPs
The crystal structure of Co2P NPs was confirmed by XRD 
measurement. Figure 1a shows the XRD patterns of Co2P 
samples prepared at 160, 200 and 240  °C for 12  h. The 
Co2P sample prepared at 200 °C shows diffraction peaks 
at around 40.7°, 40.9°, 52.0° and 56.2° which correspond 
to the characteristic diffraction planes at (121), (201), 
(002) and (320) for the orthorhombic phase of Co2P 

(JCPDS no. 32-0306). When temperature varied from 160 
to 200  °C, the intensities of diffraction peaks increased 
and the peaks became narrower and sharper, indicat-
ing that the products had a higher crystallinity at 200 °C. 
However, when temperature reached 240 °C, some impu-
rities were formed and the diffraction peaks at 29.7° was 
attributed to the diffraction plane at (-222) of Co(PO3)2 
(JCPDS no. 27-1120). The influence of synthetic time on 
the preparation of Co2P under 200 °C is shown in Addi-
tional file  1: Fig. S1. When the time duration was con-
trolled within 12 h, the obtained Co2P NPs displayed the 
lowest value of full width at half maximum of (121) peak, 
suggesting better crystallinity. Besides, none of impuri-
ties existed in the sample when the reaction time varied 
from 6 to 24  h. According to the Scherrer formula, the 
calculated grain size of Co2P NPs prepared at 200 °C for 
12 h was 14.2 nm.

The morphology of Co2P NPs was assessed by TEM 
measurements. As shown in Fig.  1b, the product pre-
pared at 200  °C  is composed of irregular nanoparticles 
with the diameter around 10–20  nm and two lattice 
fringes can be clearly seen in the high-resolution TEM 
(HRTEM) image (inset in Fig. 1b). The distance between 
the neighboring planes is 0.22 nm, corresponding to the 
(121) facets of Co2P, which further confirms that the for-
mation of TMP is Co2P.

The XPS technique was employed in analyzing the 
chemical compositions on the surface of the Co2P. Addi-
tional file  1: Fig. S2 shows the XPS survey spectrum of 
Co2P. Co, P and O elements are detected in the sample, 
confirming the existence of Co2P and some oxidized 
products. Energy-dispersive X-ray spectroscopy (EDX) 
spectra of Co2P (Additional file  1: Fig. S3) further con-
firms the co-existence of three elements (Co, P, O) in the 
sample. The high-resolution XPS spectra of Co 2p and P 
2p are shown in Fig.  1c, d, respectively. In Co 2p spec-
trum, the peaks at 781.1 and 797.6 eV can be ascribed to 

Scheme 1.  Schematic preparation of Co2P/ITO electrode and H2O2 sensing
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the binding energies (BEs) of Co2+ 2p3/2 and Co2+ 2p1/2, 
respectively [26, 36]. The peaks at 786.0 and 803.1  eV 
are two apparent shake-up satellite peaks. The Co 2p 
BE of 778.2 eV shifts positively from that of metallic Co 
(777.9 eV), which suggests that Co in Co2P has a partial 
positive charge (δ+) with a small value (0 < δ < 2) [37]. On 
the contrary, the P 2p BE of 129.4  eV shifts negatively 
from that of elemental P (130.2  eV) so that the P has a 
partial negative charge (δ−) in Co2P. The changes of BE in 
Co and P element compared with their elementary sub-
stance, respectively, reveal that the transfer direction of 
electron density in Co2P is from Co to P [38]. Superficial 
oxidation of Co2P generates a few of oxidized P species in 
the sample. Therefore, the peaks at 133.2 eV in high BE 
range are assigned to the oxides [39].

Electrochemical Detection of H2O2 at Co2P/ITO Electrode
To investigate the electrocatalytic activity of Co2P NPs 
in H2O2 reduction, we designed a non-enzymatic H2O2 
electrode by drop-casting Co2P NPs suspension on a bare 
ITO surface. Figure 2a shows the CV curves of bare ITO 
and Co2P/ITO in 0.1 M PBS at pH 7.4 with and without 
5.0  mM H2O2, respectively. The dash lines indicate that 

the response of bare ITO to H2O2 reduction is negligible. 
However, the Co2P/ITO electrode exhibits a remarkable 
reduction peak at − 0.5 V in the presence of H2O2, which 
demonstrates the prominent electrocatalytic activity of 
Co2P NPs toward H2O2 reduction. Figure  2b presents 
the CV curves of Co2P/ITO at different scan rates (from 
30 to 100 mV s−1) with 2.5 mM H2O2. When increasing 
the scan rate, the reduction peak current increased and 
the peak potential shifted to the more negative potential 
side, indicating the reduction in H2O2 on Co2P/ITO was 
an irreversible reaction. The corresponding calibration 
curve (inset, Fig. 2b) shows that the reduction peak cur-
rent densities increase linearly proportional to the scan 
rate, suggesting that the electrochemical reduction of 
H2O2 on the surface of Co2P/ITO electrode is a surface-
controlled process [40].

Figure 2c, d show the amperometric response and the 
calibration curve of Co2P/ITO electrode upon the suc-
cessive addition of H2O2 into the 0.1 M PBS at − 0.5 V 
with stirring. The Co2P/ITO electrode exhibited quick 
response to the addition of H2O2 and achieved the 
steady-state current within 5  s. The calibration curve in 
Fig. 2d shows that the transducer displays a multi-linear 

Fig. 1  a XRD patterns of Co2P NPs prepared at different temperatures for 12 h. b Transmission electron microscopic image and high-resolution 
transmission electron microscopic image (inset) of Co2P NPs. XPS spectra of Co2P in the c Co 2p region and d P 2p region
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range of H2O2 concentration from 0.001 to 1.0 mM, 1.0–
5.0 mM and 5.0–10.0 mM. The sensitivity of the sensor 
alters with the increasing concentration of H2O2, due to 
the change of electrocatalytic reduction kinetics of H2O2 
on the electrode surface. According to previous reports, 
the rate-determining step of H2O2 reduction is domi-
nated by H2O2 adsorption at low concentration, whereas 
the activation of H2O2 is the major determinant at high 
concentration. In the middle region, the reduction kinet-
ics of H2O2 is controlled by adsorption and activation at 
the same time [10]. A multitude of analysts will adsorb on 
the surface of Co2P and cover the active sites in the high 
concentration, which lead to the decrease in sensitivity 
[41].

The comparison on H2O2 sensing performances of 
the prepared Co2P sample at various reaction tem-
perature and time is shown in Additional file 1: Fig. S4, 
S5 and Table  S1, indicating that the Co2P sample pre-
pared at 200 °C for 12 h displays the best H2O2 sensing 
performances. When reaction temperature raised to 
240 °C, the formed Co(PO3)2 in Co2P could be regarded 
as impurity. To further clarify the influence of Co(PO3)2 

on H2O2 detection, the electrochemical properties of 
Co(PO3)2 were investigated. As shown in Additional 
file 1: Fig. S6, Co(PO3)2 displays negligible electrochem-
ical response toward H2O2 and its conductivity is infe-
rior to Co2P, which declines the current signal of Co2P/
ITO in amperometric test. Therefore, the higher purity 
and better crystallinity of Co2P sample may contribute 
to the improvement of sensing performances. Thus, we 
choose the Co2P sample prepared at 200  °C and 12  h 
as the best H2O2 sensing material. The calibration I–t 
curve also presents a good linear relationship in the 
concentration of 1.0–50 μM, the physiological range of 
H2O2 concentration in biosystem (Fig. S7) [28], which 
could be helpful to improve the possibility of practi-
cal applications of this sensor. In addition, the limit of 
detection (LOD) of the H2O2 sensor can be calculated 
to be 0.65 μM at a signal-to-noise ratio of 3. Compared 
with the previously reported H2O2 sensor, the compre-
hensive electrochemical performances of our Co2P/
ITO transducer are superior to those with favorable 
sensitivity, linear range and LOD, as shown in Table 1.

Fig. 2  a CV curves of bare ITO and Co2P/ITO electrode in 0.1 M PBS with and without 5.0 mM H2O2 at a scan rate of 100 mV s−1. b CV curves 
of Co2P/ITO electrode in 2.5 mM H2O2 at scan rates from 30 to 100 mV s−1. Inset: The corresponding plot of current versus the scan rate. c 
Amperometric responses of Co2P/ITO electrode with successive addition of H2O2 in 0.1 M PBS. d The calibration curve of steady current versus the 
concentration of H2O2
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After detecting 1.0  mM H2O2 repeatedly for 35 times 
(Fig.  3a, b), the XPS spectra in Co 2p and P 2p region 
of Co2P are analyzed to further investigate the sensing 
mechanism. There is no significant change in the position 
of the peaks in P 2p region before and after H2O2 detec-
tion. However, the peaks at 778.2 and 793.0 eV in Co 2p 
spectrum disappeared after multiple measurements. As 
the peak at 778.2 eV indicates the existence of reduced Co 
species in Co2P sample [37], the disappearance of these 
two peaks demonstrates that the reduced Co species 
with low valence in Co2P may be oxidized by H2O2 dur-
ing the detection process, especially with high concentra-
tion of H2O2. The remnant peaks in Co 2p region (782.1 
and 798.3 eV) are attributed to Co2+ 2p3/2 and Co2+ 2p1/2, 
respectively, suggesting the exclusive existence of Co(II) 
species in Co2P after multiple measurements. According 
to previous reports about the utilization of cobalt-based 
electrocatalyst in H2O2 detection, Co2+ species are dem-
onstrated as the catalytic active sites for H2O2 reduction 
[46–48]. Generally, the electrochemical reduction in 

H2O2 goes through two steps in PBS [49, 50], as shown 
below.

In the first step, H2O2 obtains an electron to form 
adsorbed OH− (OHad). When the intermediate OHad 
obtains an additional electron, the final reduction prod-
uct of H2O2, H2O, is generated. As the redox potential of 
H2O2/H2O is higher than Co3+/Co2+, the Co(II) species 
in Co2P can be oxidized to Co(III) in the electron transfer 
process and H2O2 is reduced to H2O irreversibly. Dur-
ing the amperometric test, the applied bias is −  0.5  V 
versus Ag/AgCl (equals to 0.14  V vs. NHE), which is 
lower than the standard redox potential of Co3+/Co2+. 
As a result, the oxidized Co(III) can be reduced to Co(II) 

(1)H2O2 + e
−
→ OHad + OH

−

(2)OHad + e
−
→ OH

−

(3)2OH
−
+ 2H

+
→ 2H2O

Table 1  Sensing performances on comparison of Co2P/ITO with other cobalt-based non-enzymatic H2O2 sensors

Materials Linear range Sensitivity (μA 
mM−1 cm−2)

Detection limit (μM) References

Co3O4–rGO 15–675 μM 1140 2.4 [42]

Co3O4 nanowire/N-carbon foam 0.01–1.4 mM 230 1.4 [16]

Co3O4/MWCNTs 0.02–0.43 mM 1000 2.46 [43]

Co3O4/rGO 1–18.5 mM – 0.5 [44]

CoS 0.005–14.82 mM 459 1.5 [45]

CoP NWs 0.001–12 mM – 0.48 [26]

Hb/CoP-CC (carbon cloth) 2.0–2670 μM 56.2 0.67 [40]

Co2P/ITO 0.0001–1.0 mM 668.6 0.65 This work

1.0–5.0 mM 339.0

5.0–10.0 mM 102.3

Fig. 3  The comparison of XPS spectra in a Co 2p region and b P 2p region of Co2P before and after detection
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and theses catalytic active sites of Co(II) are regenerated 
again. Therefore, it can be concluded that the catalytic 
cycle of Co (II) species takes place during electrochemi-
cal detection of H2O2 and the reduced Co species 
with low valence are oxidized by H2O2 after repetitive 
measurements.

Selectivity, Stability, Reproducibility and Repeatability 
of Co2P/ITO Electrode
Anti-interference performance is another important 
property of biosensor. High purity nitrogen was utilized 
to avoid the influence by dissolved oxygen in solution 
because oxygen could be reduced at similar potential 
which was applied in amperometric test [51]. Comparing 
the CV curves of Co2P/ITO in 0.1 M PBS with or without 
nitrogen purging, the reduction potential and the current 
response of 2.5  mM H2O2 are similar, as shown in Fig. 
S8, which therefore suggests that the interference of dis-
solved oxygen can be neglected. Selectivity of Co2P/ITO 
was also tested with common substances and other small 
molecules in body fluid, such as some inorganic salts, 
saccharides, amino acids and reductive biomolecules. 

As shown in Fig.  4a, the current response after adding 
the above interferents can be neglected compared with 
the response of 1.0 mM H2O2. As both two O atoms of 
H2O2 could be bonded with one or two Co atoms [52], 
the H2O2 molecule would chemically adsorb on Co(II) 
species in Co2P specifically. In addition, the interfer-
ence from indiscriminate oxidation of some reductive 
compounds in real biological samples at high potential 
can be also reduced significantly at lower bias potential 
[53]. Therefore, the favorable selectivity of Co2P toward 
H2O2 mainly benefits from the Co(II) species as specific 
adsorption sites and the applied negative bias potential 
during sensing process.

Moreover, the stability, reproducibility and repeat-
ability of the Co2P/ITO transducer were also evaluated. 
The reduction peak currents of ten successive scanning 
CV curves in 50 μM H2O2 is shown in Fig. 4b. After ten 
cycles, the peak current of the electrode only fell by 2.7%. 
In addition, the sensor remained about 98.2% of its initial 
current response after being stored in air for one month 
(Fig. S9), demonstrating ideal detecting stability and out-
standing long-term durability. The electrode-to-electrode 

Fig. 4  a Amperometric responses of Co2P/ITO electrode with the addition of 1 mM H2O2 and other interfering species (10 mM NaCl, KCl, Glu, Fru, 
urea, L-Gly, L-Arg, L-Lys, AA; 1 mM DA, UA; 0.5 mM APAP) in 0.1 M PBS. b The cathodic peak currents of ten successive scanning CV curves in 50 μM 
H2O2. c Reproducibility of six Co2P/ITO electrodes for detecting 1.0 mM H2O2. d Repeatability of Co2P/ITO electrode for detecting 1.0 mM H2O2 eight 
times
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reproducibility is investigated by calculating the relative 
standard deviation (RSD) of H2O2 current responses. 
To eliminate the potential error from electrode fabrica-
tion as far as possible, the steady current density in the 
presence of H2O2 is subtracted by the initial background 
signal of individual electrode and the obtained differ-
ence value is regarded as the electrochemical response of 
each electrode. Six Co2P/ITO electrodes were fabricated 
under the same conditions for controlled experiments 
and the RSD of current responses was 1.24%, as shown 
in Fig. 4c, indicating the relatively excellent reproducibil-
ity of Co2P/ITO. Meanwhile, repeatability was measured 
in one electrode by detecting 1.0 mM H2O2 eight times, 
and the RSD of 1.14% was achieved (Fig. 4d). The above 
results illustrate the satisfactory stability, reproducibility 
and repeatability of the electrode for non-enzymatic elec-
trochemical detection of H2O2.

Conclusion
In summary, Co2P NPs were successfully synthesized by 
hydrothermal method. Furthermore, the Co2P NPs pre-
pared at 200 °C for 12 h have been proved as an efficient 
catalyst toward electrochemical reduction of H2O2 in 
pH 7.4 PBS. As a non-enzymatic H2O2 sensor, the Co2P/
ITO electrode displayed a rapid amperometric response 
less than 5  s, a broader response range from 0.001 to 
10.0 mM and a low detection limit of 0.65 μM, as well as 
satisfactory selectivity, reproducibility and stability. This 
work aims to broaden the research about the application 
of transition metal phosphide in electrochemical detec-
tion of small biomolecules and our Co2P/ITO sensor 
could be designed as a new non-enzymatic platform for 
H2O2 detection.
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1.0–5.0 mM, (c) 5.0–10.0 mM. Fig. S6. Comparison of electrochemical 
properties between Co2P and Co(PO3)2. (a) LSV curves of Co2P and 
Co(PO3)2 modified electrode in 0.1 M PBS with and without 2.5 mM H2O2 
at a scan rate of 100 mV s−1. (b) Nyquist plots of bare ITO, Co2P/ITO and 
Co(PO3)2/ITO electrode (electrolyte: 5.0 mM K3[Fe(CN)6]/ K4[Fe(CN)6] and 
0.1 M KCl; bias: open circuit potential, amplitude: 5 mV, frequency range: 
100 kHz ~ 0.01 Hz). Fig. S7. The linear relationship between current 
density and concentration of H2O2 in the physiological range. Fig. S8. CVs 
for Co2P/ITO electrode in 0.1 M PBS with or without N2 purging at a scan 
rate of 100 mV s−1. Fig. S9. CV responses at a scan rate of 100 mV s−1 in 
0.1 M PBS containing 0.1 mM H2O2 of a Co2P/ITO electrode before and 

after being stored in air for one month. Table S1. The comparison on H2O2 
sensing performance of the bare ITO electrode and the prepared Co2P 
sample at various reaction temperature.
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