Skip to main content
. 2021 Jan 12;11:800. doi: 10.1038/s41598-020-79435-3

Table 4.

Comparing multivariate logistic regression analysis for predicting 72-h mortality.

Exp Var β SE (β) z P value VIF Odds ratio 95%CI n (with all Exp Vars) AIC
Reference model
0  − 4.586 0.7820 428 505.5
1 Age 0.022 0.0075 2.906 0.0037 1.020 1.022 1.007–1.037
2 AST 0.114 0.0229 4.965 0.0000 1.020 1.120 1.071–1.172
Prediction model
0  − 19.98 3.6070 303 269.7
1 ALP 0.290 0.0601 4.824 0.0000 1.078 1.337 1.188–1.504
2 CK 0.348 0.0796 4.365 0.0000 1.112 1.416 1.211–1.655
3 Na 1.766 0.5617 3.145 0.0017 1.119 5.850 1.946–17.59
4 K 1.568 0.4755 3.298 0.0010 1.522 4.796 1.889–12.18
5 P 0.474 0.1145 4.145 0.0000 1.399 1.607 1.284–2.011
P = 1/ [1 + exp (− 19.98 + 0.290(ALP0.2) + 0.348log (CK) + 1.766(Na0.2) + 1.568(K0.2) + 0.474(P0.8))]

n, number; Exp Var, explanatory variable; SE, standard error; z, z value; VIF, variance inflation factor; CI, confidence interval; AIC, Akaike's information criterion; exp, exponential function; log, logarithm, Sn, sensitivity; Sp, specificity; AST, aspartate transaminase; ALP, alkaline phosphatase; Na, sodium; K, potassium; and P, phosphorus. P-values were calculated using the chi-square test.