Table 1.
Features | Model | P | R | F1 |
---|---|---|---|---|
Emb + count | LR | 0.228 | 0.794 | 0.352 |
RF | 0.350 | 0.564 | 0.426 | |
SVM | 0.202 | 0.836 | 0.326 | |
Emb | LR | 0.168 | 0.806 | 0.28 |
RF | 0.328 | 0.542 | 0.404 | |
SVM | 0.166 | 0.84 | 0.278 | |
TF-IDF + count | LR | 0.290 | 0.724 | 0.412 |
RF | 0.324 | 0.694 | 0.438 | |
SVM | 0.274 | 0.766 | 0.404 | |
TF-IDF | LR | 0.272 | 0.786 | 0.404 |
RF | 0.326 | 0.644 | 0.432 | |
SVM | 0.270 | 0.758 | 0.398 |
P precision, R recall, F1 F1-score for different classification algorithms: LR logistic regression, RF random forests, SVM support vector machines.