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Universal principles underlying 
segmental structures in parrot song 
and human speech
Dan C. Mann1,2*, W. Tecumseh Fitch2, Hsiao‑Wei Tu3 & Marisa Hoeschele2,4

Despite the diversity of human languages, certain linguistic patterns are remarkably consistent across 
human populations. While syntactic universals receive more attention, there is stronger evidence 
for universal patterns in the inventory and organization of segments: units that are separated by 
rapid acoustic transitions which are used to build syllables, words, and phrases. Crucially, if an 
alien researcher investigated spoken human language how we analyze non-human communication 
systems, many of the phonological regularities would be overlooked, as the majority of analyses in 
non-humans treat breath groups, or “syllables” (units divided by silent inhalations), as the smallest 
unit. Here, we introduce a novel segment-based analysis that reveals patterns in the acoustic output 
of budgerigars, a vocal learning parrot species, that match universal phonological patterns well-
documented in humans. We show that song in four independent budgerigar populations is comprised 
of consonant- and vowel-like segments. Furthermore, the organization of segments within syllables 
is not random. As in spoken human language, segments at the start of a vocalization are more 
likely to be consonant-like and segments at the end are more likely to be longer, quieter, and lower 
in fundamental frequency. These results provide a new foundation for empirical investigation of 
language-like abilities in other species.

One of the fundamental challenges in understanding animal vocal communication is delineating the units of 
production. These units are the basis for any study of vocal behavior as they underpin the critical data relevant 
to understanding within- and across-species variation, the mechanisms of vocal production, and functionality. 
In non-human vocal communication systems, units are typically defined relative to silences within the signal, 
with the most basic unit being uninterrupted sound1. While delineating by silence is useful, this approach may 
overlook important information, particularly when comparing a system to human language. In humans, a speaker 
can utter a long, complex phrase with no intervening silence, as in the phrase “the zealous sailors sail all seven 
seas and all four oceans”, seen in Fig. 1a. During speech, humans rapidly and actively modify tissue in both the 
vocal tract (e.g., tongue) and larynx (e.g., cricothyroid cartilages). Rapid shifts in one or more acoustic parameters 
result, and these shifts often mark perceptually discrete boundaries between units known as segments.

While the domain of syntax often receives the most attention when comparing human and non-human 
communication systems, research into segments and their organization (phonetics, phonology, phonotactics) 
is arguably the area of linguistics where our knowledge of cross-population uniformity and variability, and their 
underlying mechanisms, is most advanced. For instance, extensive cross-linguistic typological research has 
revealed that, in spite of the great diversity of languages, all spoken languages have two broad classes of segments: 
plosives, transient bursts of energy (e.g., p, d, k), and vowels, periodic signals with clear harmonic structure that 
are typically made with little to no vocal tract obstruction (e.g., i, u, a)2–5. In spite of cross-population similari-
ties in low-level units, humans can achieve high degrees of diversity in sound systems because of the ability to 
combine and rearrange a limited set of units to create a functionally infinite set of larger units (like syllables, 
words, and phrases). The ability to generate novel units from low level elements had been cited as a trait that 
separates humans from other animals: animal repertoires were finite and static while human language needed a 
generative system to create a vast inventory of symbolic labels6,7.

However, there is ample evidence that species of parrots, songbirds, and whales can create novel songs by 
combining and rearranging breath groups or “syllables”8,9. The precise evolutionary function of these genera-
tive systems and whether the ability holds for multiple levels, as it does in humans, however, is unclear. Because 
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humans are the only species for which there is evidence of generativity below the level of the breath group and 
are also the only species where there is evidence of using vocal signals to convey complex symbolic meaning, 
a connection between the two phenomena seems logical10. But because we lack the data for segments in non-
humans, this connection is presumptive. Non-generative segment systems seem to exist in non-vocal learners like 
banded mongooses11. Furthermore, some species of songbirds, like the grey catbird, have vast syllable repertoires, 
suggestive of a generative system for syllable creation12. In addition, the physiological gestures that zebra finches 
use to produce song do not correspond to the silent intervals surrounding syllables, suggesting that the finches 
need to combine multiple motor movements to produce one syllable13. These motor movements could mark 
segment boundaries or they could be similar to the articulatory gestures that build segments in spoken human 
language where there is a complex, learned relationship between physical gestures and the perceptual segment 
categories (phonological alternations, historical and synchronic, often affect segments classes that share motor 
gestures). In other words, the zebra finch gesture data13 and the data we will show here are akin to the parallel 
tracks of phonetics and phonology, respectively. Understanding segments in non-humans is essential for our 
understanding the relationship between complex acoustic communication and meaning as well as the evolution 
of vocal learning and language.

One species that has great potential for segmental analysis is the budgerigar, a small parrot native to the arid 
regions of Australia. In their socially learned song (often called “warble”), “exact repeated renditions” of complex 
syllables are incredibly rare14. Budgerigars are a fascinating model species because they can mimic human speech 
and they have perceptual traits once considered unique to humans. They can distinguish human words based on 
stress patterns (puVO vs. PUvo) and they can categorize human segments by using linguistic cues rather than 
individual speaker cues (e.g., a is treated the same when spoken by people of difference age, sex, size, etc.)15,16. 
They also have song that is learned, complex, and highly variable within and across different populations, much 
like human speech. However, more attention has been given to their human speech perception abilities than 
their complex song.

Only a few studies have analyzed budgerigar song, likely due to the lack of stereotypy. The few studies which 
have analyzed budgerigar song have found broad syllable categories, some of which are simple and highly 
stereotyped—such as “alarm call-like” and “click” syllables—while others are complex and non-stereotyped—
“contact call-like” and “compound” syllables 14,17. From a visual inspection, complex song syllables seem to be 
composed of subunits which are potentially more invariant and stereotyped (see Fig. 1). These subunits have not 
been analyzed in budgerigar song, likely due to the difficulty in dividing the acoustic stream by something other 

Figure 1.   Complex vocalizations of the human and the budgerigar. In human language, silence is not a 
reliable cue for word, syllable, or segment boundaries. For instance, the complex and novel phrase “the zealous 
sailors sail all seven seas and all four oceans” can be spoken without any intervening silence, as shown in the 
spectrogram (A). Budgerigar song seems to share this property. Budgerigar song is comprised of complex (B: 
syllables 3 and 5) and simple (B: syllables 1, 2, 4, 6, 7) syllable types. The complex syllables (C), however, seem 
to be composed of segments which are similar to the simple syllables. We created the image using R and the 
packages cowplot, ggplot2, ggpubr, seewave, and viridis19–23.
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than silence. Manual segmentation can be subject to human biases and can be functionally impossible with a 
large amount of data. To help overcome these issues, we designed an algorithm in Praat18 which automatically 
divides song syllables into segments.

If segments are a unit of production in budgerigar song which can be used to build larger units, we expect to 
find certain patterns. We predict that segments should cluster better and show less variation across individuals 
and populations when compared to syllables. Based on research in spoken human languages, we also expect to 
find biases in how segments are organized. Specifically, we expect segments at syllable edges to be lower in funda-
mental frequency, longer, less periodic, and quieter than the same segments produced in the middle of syllables.

Results
To have a starting point for the algorithm, we used the vast array of knowledge of the species where we know 
most about segments: humans. The human data also permits the ability to directly compare budgerigar vocali-
zations to human speech. We created the algorithm using a broad sample of human speech that spanned the 
diversity of both language and sex differences in vocalization. This was done to create an effective species-level 
segmentation algorithm in humans. Because silence is not the only acoustic cue to segment boundaries in human 
speech, the algorithm uses rapid transitions in fundamental frequency, amplitude, and/or spectral dispersion 
(Wiener entropy) to mark segment boundaries. Only after validating the algorithm on humans did we apply the 
algorithm to budgerigars (see “Methods”).

We applied the algorithm to song from 14 budgerigars from 4 independent populations. To validate whether 
segments are a unit of production in budgerigar song, we clustered segments and syllables and assessed cluster 
discreteness by calculating silhouette widths—a measure for how well data points fit within their cluster com-
pared to how well they would fit in the next nearest cluster (see “Methods”)—for various cluster sizes. We found 
that segments produced much more discrete clusters when compared to complex syllables (see Fig. 2). As a 
second validation method, we tested how reliable the acoustic cues present in segments and complex syllables 
were at predicting individual or group identity. In a particulate system, basic units are more discrete and invari-
ant than the units that they build. To illustrate, a human phrase, like the one in Fig. 1, may have been produced 
only a handful of times throughout history and is immediately recognizable as English. However, the segments 
within the phrase are far more stereotyped and widespread; coronal nasals, like the sound [n] in oceans (Fig. 2: 
[oʷʃnz̥]), are present in over 3/4ths of all spoken human languages and broad segment classes, like vowels, 
nasals, or plosives are even more widespread5,24. If syllables are the most basic unit, information extracted from 
segments and syllables would be redundant. We found that budgerigar syllables are more reliable than segments 
at predicting group (66–48%) and individual identity (38–25%). Because both of these results suggest that seg-
ments are more discrete and invariant than syllables, our segmentation algorithm was able to accurately divide 
budgerigar syllables into segments. This suggests that segments in budgerigars may be similar to those of humans 
in that they are more likely to occur across populations than larger units.

As shown in previous research, budgerigars can rearrange and combine syllables to create a vast repertoire of 
song types. Because segments can also be combined and rearranged within syllables, our data show that a non-
human can generate novel acoustic signals at multiple levels. Furthermore, the broad segment classes that came 
out of our hierarchical clustering suggest parallels between budgerigar segments and human language segments. 
Using the functions eclust() and fviz_silhouette() from the R package factoextra27, we found that a cluster size of 
2 produced the most distinct clustering (as measured by silhouette widths; Fig. 2). These two clusters differ in 
length, intensity, and the presence or absence of a clear fundamental frequency (Fig. 3). This division in budg-
erigar segments parallels the consonant–vowel dichotomy in spoken human languages. Budgerigars segments 
are divided into segments with a clear fundamental frequency and harmonic structure, “vowels”, and segments 
where the acoustic signal is noisy or chaotic and there is no discernable fundamental frequency, “consonants”.

In practically every spoken language, speakers contrast periodic signals with clear harmonic structure 
(modally voiced vowels) and bursts or noisy segments lacking in a clear F0 (voiceless plosives and fricatives, or 
“obstruents”)2,24. Technically, human vowels can be unvoiced (e.g., whispered vowels lack an F0) and consonant 
sub-classes vary considerable (including some consonant classes, like glides, that are very vowel-like in their 
acoustic qualities); but, voiced vowels and voiceless plosives/fricatives are the most common segment classes 
and very few, if any, spoken languages exist that do not contrast these sound classes.

In spite of human flexibility in segment recombination, segment organization across languages is not sym-
metrical. In fact, similar organizational patterns have been found at phrase boundaries across a wide range of 
historically unrelated languages28. For instance, languages which permit syllable-initial sound sequences like 
[ka] greatly outnumber those which permit a reversal of those sounds, e.g., [ak] (related to the consonant–vowel 
(CV) preference and the Margin Hierarchy)29–33. If our segmentation algorithm was successful and budgerigars 
have organizational biases, we should see differences at syllable edges.

We divided the budgerigar vocal segments into three categories based on their relative position in the syllable: 
initial, medial, and final. We then assessed if all fourteen individuals across all four populations shared similar 
edge preferences in four acoustic parameters: fundamental frequency, periodicity, duration, and intensity. In 
humans, segments at the end of an utterance are longer, lower in fundamental frequency, lower in amplitude, 
and often have reduced periodicity. In initial positions, periodic signals are less common. Medial segments are 
often associated with loud, periodic signals. If segments in budgerigars are similar to human vocal segments, 
we expect to find similar patterns. That is, we expect syllable-medial segments to have higher proportions of 
periodic segments and syllable-initial segments should be the most aperiodic; we also expect that final segments 
will have lower amplitude, lower fundamental frequency, and longer duration compared to medial segments.

Not only did we find similarities across all four populations of budgerigars (Fig. 4) these patterns were con-
sistent with segment organization biases in human language. In humans, segments at the end of a breath group 
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tend to be longer in duration and lower in fundamental frequency and intensity34,35, while initial segments are 
less periodic than medial and final segments28.

While positional dependent differences at the level of the segment have not been described in any other spe-
cies, there is evidence that some of these patterns are somewhat common at higher levels of analysis. Songbird 
syllables are on average longer at the end of a song bout than song medial syllables36. Also, F0 tends to decrease 
at the end of a song. In two-note black-capped chickadees calls, the second “note” (equivalent to a breath group 
or syllable) is lower in intensity, especially for subordinate males37.

Because these patterns are found across several species, the underlying mechanisms are likely to be based in 
general sound production or perception phenomena. For instance, the mechanisms underlying lower F0 and 
amplitude in final position seem to be directly related38. Air volume decreases throughout the production of vocal 
units, particularly longer and more complex units like utterances, songs, or phrases. A decrease in air volume 
will lead to a decrease in amplitude, all else being equal39. This decrease in air volume will also affect subglottal 
pressure, which is one of the determining factors of the rate of vocal fold vibration40,41. Final lengthening may 
be the result of gradually slowing articulators in preparation for the end of a vocalization42,43. Humans and 
songbirds rapidly adjust their articulators during vocal production and abrupt termination of these movements 
may be more difficult than a gradual relaxation of articulators36,43. Because budgerigar segments are produced 
within a single breath, unlike the songbird units, the data presented here are even stronger evidence in support 
of widespread bio-mechanic mechanisms.

We also found a pattern that has not been described at any level in non-humans until now: the CV preference, 
the preference for consonants to precede vowels in syllable-initial positions. In humans, the underlying mecha-
nism for this pattern is not largely agreed upon. Language and human specific-hypotheses for the CV preference 
have been proposed (e.g., Universal Grammar33). While we cannot rule out a coincidental relationship without 

Figure 2.   Segmentation and segment validation.  (A), an example of an output of our segmentation algorithm 
on human speech, in this case, an English vocal breath group, “four oceans”. (B), an example the segmentation 
algorithm applied to budgerigar song. We scaled the algorithm to the different species by making the algorithm 
dependent on a minimum fundamental frequency setting. For each cluster size of human speech (C), silhouette 
widths were higher for segments than for syllables ( ̄x = 0.42–0.25). For the budgerigar units, we included simple 
syllables and random snippets of syllables that were equally long as the segments as controls (D). Silhouette 
width scores for segments were statistically different from complex syllables ( ̄x = 0.32–0.13, V = 105, p < 0.001) 
and the random snippets ( ̄x = 0.32–0.22, V = 105, p < 0.001). We created the image using Praat, R, and the R 
packages ggplot2 and magick18,19,25,26.
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further research, the similarity between budgerigars and humans suggests that species-specific explanations are 
not warranted and that we should consider (one or more) widespread cognitive, functional, perceptual, or bio-
mechanical mechanisms. For instance, one possibility is the maximization of contrastive units4,44. When taking 
the capabilities of the human vocal tract and ear into consideration, aperiodic bursts (the only consonant class 
that may be universal in spoken languages2) and periodic signals (with harmonic stacks) are the sound classes 
that are the most distinct from each other. By using sounds from these two classes, humans can maximize the 
amount of auditory space and minimize confusion for the listener. Furthermore, a burst followed by a periodic 
signal seems to be better than the reverse pattern at preserving the acoustic cues of both segments45,46.

For budgerigars, bursts and periodic signals likely occupy opposite ends of the budgerigar articulatory-
acoustic space, as well. Presumably, whatever acoustic cues are relevant to the budgerigar system should be 
preserved with a burst-periodic pattern as well. Though it is less clear why budgerigars would need to maximize 
perceptual distinctiveness, particularly since there is no evidence for a large symbolic inventory as in human 
language. The function of song is not completely understood, though it is clearly relevant in courtship47–49. If 
females prefer more diverse signals, the males may use a burst-periodic pattern to maximize the chance that their 
diverse repertoire is noticed. However, the evidence for repertoire size being the result of sexual selection is less 
robust than once believed50. Specifically in budgerigars, Tobin, Medina-García, Kohn, and Wright51 found that 
female-directed song is actually more stereotyped than male-directed song with respect to phrase “syntax”. The 
social environment that budgerigars typically sing in also does not seem conducive to the preservation of the ape-
riodic bursts. Multiple individuals sing at the same time in close proximity to each other; in the wild thousands of 
budgerigars could be in one area at the same time52. Aperiodic sounds, when compared to periodic sounds, are 
less robust in noisy environments; in human speech, cues to bursts can even be masked by surrounding speech 

Figure 3.   Budgerigar vowels and consonants. (A) A hierarchical clustering of budgerigar segments reveals two 
clear clusters of segments. (B) Using the clustering, we found that one cluster is comprised of periodic, vowel-
like units while the other is made up of aperiodic, consonant-like units. The former is, on average, longer, louder, 
and more periodic than the latter. We created the image using R and the packages factoextra and ggplot219,25,27.
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sounds46. That being said, the onset of the breath group is the most optimal position to minimize masking from 
ambient noise and their own periodic signals, which is consistent with our data.

Another (non-mutually exclusive) possibility is that budgerigars and humans share sound production 
mechanisms which lead to phrase initial bursts. In numerous languages, reduced periodicity and/or periodic 
bursts occur, even when speakers and listeners don’t perceive the sound (e.g., glottal stop insertion28,53–57). This 
is particularly true at the beginning of a phrase and with emphasis28,54. For instance, English speakers will often 
produce a glottal stop before the vowel in a word like apple or issue, though most listeners don’t recognize that it 
is present54. In humans, unless other measures are taken, vocalizations will naturally begin with a brief interval 
of aperiodicity56,58. The budgerigar and human patterns could be the result of the difficulty in initiating voicing 
directly from non-phonation. With a closed vocal tract the pressure variation above and below the vibrating 
tissues is not sufficiently different for phonation; once the closure is released and the appropriate pressure dif-
ferential can be reached then voicing can begin58.

Figure 4.   Edge effects in budgerigar song. (A) Canonical syllable with aperiodic burst onset, long and low final 
segment, and a rise-and-fall intensity contour. All groups shared similar positional biases. For all individuals, 
mean F0 measurements were lower for segments in syllable-final position when compared to medial segments 
(mean of individual means: n = 14, Medial: x̄ = 2522 Hz, s =  ± 181 Hz ~ Final: 2069 ± 165); final segments 
were, on average, longer in duration than medial segments (n = 14, Medial: x̄ = 6.5 ms, s = 0.84 ms ~ Final: 
12, ± 4.84); intensity was lowest in initial position (Initial: x̄ = 46.7 dB s = 3.71 dB ~ Medial: 56.4 ± 4.03 ~ Final: 
52.8 ± 4.46); and periodicity was lowest in initial position with slightly more than a third of segments having 
periodic vibration (n = 14; x̄ = 34.3%, s = 10.5% ~ Medial: 74%, ± 4.9 ~ Final: 54.9%, ± 10.5%). For all four acoustic 
measurements, a mixed-effect model with position as a fixed effect performed better than a model without 
position (F0: X2 = 2353.4, df = 2, p < 0.001; duration: X2 = 3209.6, df = 2, p < 0.001; intensity: X2 = 22,186, df = 2, 
p < 0.001; periodicity: X2 = 10,158, df = 2, p < 0.001). (B) The prevalence of aperiodicity in syllable-initial positions 
and periodicity in syllable-medial positions suggests that budgerigars share the human segment organizational 
preference (C) for aperiodic onsets followed by periodic signals. We created the figure using R and the packages 
cowplot, ggpubr, seewave and viridis20–23.
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It is premature to assume that budgerigars and humans are the only species who would share the CV pref-
erence. While this pattern hasn’t been described as widespread or systematic for any other species, published 
descriptions or spectrograms suggest that at least some populations of species may have somewhat similar 
tendencies11,59. Without a segmental approach, like the one presented here, this pattern is likely to go unno-
ticed. Furthermore, comparative research should help us understand whether the CV preference in humans and 
budgerigars (and potentially other species) emerges from common functional, perceptual, or bio-mechanical 
pressures or is only superficially related and the result of wholly distinct processes.

Our data are consistent with research in zebra finches which has found evidence of “gestures” within 
syllables13. Research on the neurobiology of birdsong had found no clear relationship between the firing of 
neurons in the HVC—an area of the songbird brain that shows large amounts of activity during singing—and 
syllable boundaries, leading some to suggest that HVC neurons fired at regular intervals60. Amador and col-
leagues, however, found that neural firing matched with articulatory gestures, defined as shifts in air sac pressure 
or syringeal labia tension13. Our results show that we can recover some of these gestures by using less invasive 
spectrographic data. The relationship between gestures and segments, however, is unclear. In humans, segments 
are built from multiple articulatory gestures in both the sound source and filter. The vocal apparatuses in song-
birds and parrots are distinct from each other and from the human vocal apparatus; still, there is ample evidence 
that species of songbirds and species of parrots modify their acoustic signal by actively controlling articulators in 
the sound source and vocal tract61. Taken together, our results support the idea that syllables are not necessarily 
the basic unit of vocalization in non-human species. Rather, we propose that there are structural similarities with 
spoken human language where articulatory gestures (shown in zebra finches) compose segments (shown here), 
which, in turn, combine to build syllables, words, and phrases (the usual level of analysis in animal vocalizations).

To date, there is no evidence that budgerigar song has the referential aspects of human language, as such, it 
is an enticing model for a “bare phonology” and may even be able inform on more difficult questions related to 
human language evolution62. Studdert-Kennedy7 and Jackendoff63 have argued that the ability to combine and 
rearrange discrete units may have been an important step in the evolution of language by allowing humans to 
apply a label to practically any object, event, idea, or proposition. They argue that holistic phrases quickly lose 
their perceptual distinctness as the inventory grows. However, if song does not have the referential aspects of 
human language, the pressure to create novel labels may not be a requirement for the development of particulate 
segment system.

Budgerigar song is sung mostly by males and, in part, during courtship47. The similarities in segmental sys-
tems of humans and budgerigars are also consistent with Darwin’s “musical protolanguage” hypothesis of human 
language evolution, which proposes that speech and vocal imitation first developed to support courtship displays 
similar to the song of many whales and temperate zone songbirds62,64,65.

In summary, despite major differences in physiology, habitat, phylogeny, and function, budgerigars and 
humans independently evolved segmental structure. The presence of similar acoustic units, and similar regu-
larities over these units, in these two species provides a comparative opportunity to assess the pressures which 
give rise to complex acoustic communication. Furthermore, claims about what aspects of human language non-
humans possess often rely on comparisons between very different types of analyses. Segmental analyses provide 
a novel and promising basis to further investigate whether human linguistic phenomena like natural classes, 
coarticulation effects, and phonological rules also exist in animal systems66.

Methods
Data collection: budgerigar song.  We segmented and analyzed the vocalizations of a total of fourteen 
budgerigars, thirteen males and one female, from four independent populations (groups A, B, C, and D). Indi-
viduals from groups A and B were recorded in their aviaries (Group A: 2.5 × 2 × 2 m; Group B: 2 × 1 × 2 m) in the 
Department of Cognitive Biology at the University of Vienna. The aviaries are located in separate, non-adjacent 
rooms at the university. Group B shares a room with another aviary with which it has acoustic, but not visual or 
physical, contact (no individuals were recorded from this other group). The rooms of both A and B are lined with 
acoustic foam padding (Basotect 30 Plain) to reduce echo and outside noise. The colony from which group A was 
recorded has a total of 12 budgerigars, six of which are male. The colony of group B has six individuals with three 
males. We were able to record seven individuals from group A and one from group B.

Group C is comprised of two pet budgerigars who were recorded at a home in Arkansas, USA. They were 
recorded in a metal wire cage (70 × 60 × 50 cm) lined with the same acoustic foam as with groups A and B.

We habituated groups A, B, and C to the presence of a human with recording equipment in their social envi-
ronment and then opportunistically recorded individuals so that we could record song that is as close to their 
naturalistic performance as possible. These groups were recorded with an H4N Zoom recorder and a Sennheiser 
directional shotgun microphone at a sampling rate of 44.1 kHz. We mounted a GoPro Hero 4 to the top of the 
shotgun microphone. We recorded video (30 frames/sec) during the recording sessions in order to precisely 
identify the vocalizing individual.

The final four individuals (Group D) were recorded at the Laboratory of Comparative Psychoacoustics at the 
University of Maryland. The recordings of three of the individuals in group D were from archival recordings 
presented in Tu67, Tu et al.17, and Tu and Dooling68. The final individual from Group D was recorded ten years 
later. All individuals were recorded under the same conditions; recording details can be found in Tu67, Tu et al.17, 
and Tu and Dooling68.

Data collection: spoken human language.  Because no data currently exist for budgerigar segments, 
we used human speech to guide research into budgerigar song. We used vocalizations from five historically 
unrelated languages: Chickasaw, Georgian, English, Vietnamese, and !Xóõ. We chose these languages based on a 
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combination of language relatedness, access to audio files with phrases, good signal-to-noise ratio, and speaker 
sex (Female: Chickasaw, Georgian & English; Male: !Xóõ, English, & Vietnamese). All these factors serve to 
increase the diversity of acoustic signals, which is important because we were interested in studying segments 
in human speech at the species level, rather than at the language level. For example, males have, on average, a 
lower fundamental frequency than females, !Xóõ has one of the largest segment inventories across all languages, 
Vietnamese and Chickasaw use F0 to differentiate words, and Georgian uses complex sound sequences. These 
factors also help to prevent overfitting a segmentation model to a specific language, language family, sex, or 
individual. With the exception of one English speaker, the files were collected from the UCLA Phonetics Lab 
Archive69. In the archive, each sound file is accompanied by recording details and transcripts. Most of the sound 
files have speakers uttering short words, so we specifically looked through the transcripts for those that had 
longer utterances.

In linguistics, “syllable” refers to an organizational unit of segments rather than a vocalization separate by 
silence as is common in animal communication. To be explicit, for the segmentation of human vocalization, we 
used vocalizations separated by silence, the breath group.

We used three English speakers. The first two were taken from the Vietnamese and Georgian sound files. 
In these files, English speakers often prompted phrases or described what was occurring in the recordings. The 
English speaker in the Georgian file was a native English-speaking female. In the Vietnamese file, the speaker 
was male and a non-native speaker, likely of Vietnamese, though the recording notes did not make the native 
speaker’s linguistic background explicit. The final English speaker was the first author, a native speaker of Ameri-
can English. Those utterances were recorded in a semi-anechoic room at the University of Vienna using an H4N 
Zoom recorder at a sampling rate of 44.1 kHz. As a further validation, we used recordings from the Arabic Speech 
Corpus70, a corpus of spoken Arabic that includes broad phonetic transcriptions of the speech.

Data collection: ethics.  All procedures performed in animals were conducted in accordance with local 
animal protection and housing laws and were approved by the ethical board of the behavioral research group 
in the faculty of Life Sciences at the University of Vienna (groups A, B, and C) or the Animal Care and Use 
Committee of the University of Maryland, College Park (group D). For the recording of the human subject, we 
obtained informed consent for publication of any identifying recordings in an online open-access publication. 
The procedures were approved by the University of Vienna Ethics Committee. The other recordings were col-
lected from two publicly available databases, UCLA Phonetics Lab Archive69 and the Arabic Speech Corpus70.

Data preparation: syllable extraction from budgerigar song.  From the recordings of the budg-
erigars we extracted bouts of song using a custom Praat script. The script used Praat’s Annotate: To Textgrid 
(silences) function to label sections of the recording as potential song bouts. We used − 45 dB for the amplitude 
threshold and one second duration for the threshold for silence, meaning that if amplitude was less than 45 dB 
down from the peak amplitude for longer than one second, the section was labeled as silence. The rest was 
labeled as a vocalization. Vocalizations that were longer than 2.5 s were labeled as song. We manually coded 
those sections by individual and quality. To code individual, we cross-checked with the recording notes and 
video files. For quality, we excluded bouts where two or more individuals were vocalizing simultaneously, and 
we could not determine which vocalizations belonged to which individual. In some cases, we were able to extract 
sections of one individual vocalizing from these longer, multi-vocalization bouts.

We ran each song through another custom Praat script that divided the songs into syllables. The script used a 
pass Hann band filter (Minimum frequency: 1 kHz, Maximum frequency: 15 kHz, Smoothing: 100 Hz) to exclude 
any noise outside of the typical budgerigar song range. It then created an intensity envelope by calculating the 
root-mean-square (RMS) of the sound pressure (window duration: 25 ms; time step: 5 ms). The algorithm 
identified syllables by checking for intervals where sound pressure RMS dipped below 1/6th of the song sound 
pressure RMS for longer than 10 ms.

Our algorithm labeled syllables based on the Tu et al.17 classification. We collapsed the compound and 
contact call-like syllables into a single “complex syllable” category. These complex syllables were extracted for 
segmentation.

Segmentation algorithm: developing a method of automatic breath group/syllable segmen‑
tation.  For automatic syllable segmentation, the algorithm took multiple measurements at regular intervals 
throughout the vocalization for amplitude, fundamental frequency, and Wiener entropy. We made the algo-
rithm easily scalable between humans and budgerigars by making measurement windows and sampling inter-
vals dependent on a species minimum fundamental frequency. Minimum human F0 was set at 50 Hz and budg-
erigar F0 was set at 400 Hz, roughly the bottom F0 range for each species. For each acoustic measurement, the 
algorithm calculated the percent change between the acoustic measurement and the subsequent measurement. 
A percent change greater than a predetermined value marked a segment boundary. (The specific magnitudes are 
discussed below.) A second pass searched for smaller magnitude changes that are correlated between intensity 
and either F0 or Wiener entropy. That is, a smaller scale change in amplitude may mark a segment boundary if 
within the same time window, a small change in F0 or Wiener entropy is also present. The size of the window is 
determined by dividing 0.5 s by the minimum species F0. We didn’t include correlations between F0 and Wiener 
entropy because a change in F0 is necessarily correlated with a change in Wiener entropy. Finally, to prevent 
the insertion of multiple boundaries associated with the same change, we added a buffer. The buffer is the same 
duration as the window size for correlations between acoustic changes, e.g., in a human vocalization, a boundary 
cannot be inserted within 10 ms of another boundary (0.5 s/50 Hz).
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Segmentation algorithm: human breath group test.  We first tested the algorithm on human speech, 
a communication system where we can evaluate the output. While technology related to speech parsing has 
become advanced and highly accurate, these algorithms and models use pre-segmented or labeled training sets, 
data that is unavailable and unknowable (at this point) for budgerigars. That being said, because human speech 
and budgerigar vocal behavior makes use of similar acoustic principles (e.g., pulmonic expiration, myo-elastic 
dynamic theory, source-filter theory, etc.), a segmentation algorithm that can approximate true segment bound-
aries in humans is useful for detecting potential boundaries in the acoustic signal of budgerigars61,71.

However, even human speech presents difficulties. Boundaries can be unclear and speech can be highly 
variable. The physical realization of a perceptual unit is not completely identical each time it is produced, fur-
thermore, the physical form may vary considerably depending on context. Spoken languages also vary in the 
acoustic features which mark meaningful boundaries. These features may still be present in a language even if 
they don’t use them to mark meaning. For instance, a speaker may switch from regular phonation to slightly 
irregular phonation during the production of a vowel. English speakers do this, though often do not recognize it. 
A speaker of Jalapa Mazatec, where phonation types distinguish meaning, would recognize the shift as a change 
in vowel type, however72. When analyzing human speech, researchers often must make choices about which 
acoustic features to ignore as many may be irrelevant to their research question or language of interest. These 
decisions are greatly aided by an understanding of what is perceptually relevant to the speakers.

Because we don’t yet have a basis for perceptual segments in budgerigars, we decided to segment the human 
signal without relying on potential phonological representation, therefore, we did a narrow phonetic transcrip-
tion and segmentation using the conventions laid out in Keating, et al.73 for each human language phrase. To 
avoid overfitting a model to one language and to prioritize generalizability (relative to accuracy), we built the 
algorithm using transitions in only three acoustic features: fundamental frequency (F0), amplitude, and Wiener 
entropy. These three acoustic features were used because they can also be measured in budgerigar vocalizations. 
We then removed transitions that are based primarily on formant transitions (e.g., vowel-vowel, approximant-
vowels). Formant transitions are useful for most human languages, but because of the short vocal tract and high 
fundamental frequency, formants are not likely to be a robust cue in budgerigar vocal behavior.

After optimizing the input settings, we set large transition values of 6 dB per frame for amplitude, 190 Hz per 
frame for F0, and 150 per frame for Wiener entropy. For smaller, correlated transitions the values were 2 dB per 
frame for amplitude, 7 Hz per frame for F0, and 90 per frame for Wiener entropy.

We assessed the accuracy of the segmentation by using the package rPraat74 to read Praat TextGrid files into 
R19. The TextGrid files contain time stamps of the “true” manual segmentation with the automatic segmentation. 
Each file was divided into frames of 25 ms which we used to check the presence or absence of both manual and 
automatic segment boundaries. We used the R package InformationValue75 to calculate the accuracy, sensitivity, 
and specificity of the automatic segmentation. For the initial data set, the test on fully segmented speech resulted 
in an accuracy rate of 79% (sensitivity = 50%, specificity = 89%). For non-format transition (e.g., obstruent-vowel 
sequences), the algorithm achieved an accuracy rate of 86% (sensitivity = 70%, specificity = 90%). To ensure our 
results were not only valid for our initial data set, we tested speech samples on a novel data set. We gathered a 
random sample of 5 wav files, with phonetic transcriptions, from the Arabic Speech Corpus70. As with our own 
transcription, we removed boundaries based on formant transitions. With the novel dataset the algorithm scored 
73% (sensitivity = 44%, specificity = 83%) for the full segmentation and 81% (sensitivity = 64%, specificity = 84%) 
for non-formant transitions. We don’t expect to be highly accurate with human speech (or budgerigars, neces-
sarily), but our scores are somewhat comparable to other methods76,77 We used the same input values to the 
algorithm for budgerigar syllables.

Segmentation validation: clustering of human vocal units.  We performed a cluster analysis on 
human language data so that we would have a clearer idea of what to expect from the results of the budgerigar 
song segmentation. We used the same recordings described earlier.

We took fifteen random vocalizations from each of the seven speakers. As in the previous case, we manually 
segmented the vocalizations based on the guidelines in Keating et al.73, though in this case we did not remove 
boundaries defined by formant changes. We then broadly labeled each segment for manner (vowel, glide, approxi-
mate, nasal, fricative, affricate, stop, and click), place of articulation (labial, coronal, palatal, velar, glottal, high/
mid/low, front/central/ back), and whether the segment was voiced or voiceless, nasalized, glottalized, a rhotic, 
a lateral, a tap, or a trill.

We ran the vocal breath groups and segments through a Praat script which extracted acoustic parameters. 
We chose only a few parameters that could be relevant at both the segmental and breath group level: duration, 
intensity, mean fundamental frequency, standard deviation of fundamental frequency, F1, F2, center of gravity, 
and spectral standard deviation. We took a subset of the segments, sampling equally from individual and segment 
manner, so that the number of segments would equal the number of breath groups, 105. We scaled the acoustic 
parameters and clustered the units using the function eclust(hc_method = “ward.D2”, hc_metric = “spearman”) 
in the R package factoextra27. Using the factoextra function, fviz_silhouette(), we ran silhouette analyses and 
calculated the average silhouette score for cluster sizes from two to eight. In a silhouette analysis, each unit is 
placed in a cluster and gets a silhouette value based on the distance to other units within its cluster and to other 
units in the next nearest cluster. Silhouette values range from − 1 to 1. Negative values mean the unit was likely 
misclassified, numbers closer to 1 suggest that the unit is in a tight and non-overlapping cluster, and a value close 
to 0 suggests the unit lies between two clusters78,79. For each cluster size, we obtained an average silhouette value. 
Units that are more basic would be expected to repeat and therefore cluster together more clearly which should 
lead to higher silhouette values. Units with subunits should show more acoustic overlap as they may have some 
subunits in common leading to lower silhouette values.
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Segmentation validation: clustering of budgerigar vocal units.  For each budgerigar segment and 
syllable, we measured and extracted 21 acoustic variables (Table 1, Supplemental material).

For budgerigar song, we randomly selected a subset of segments (n = 840) and a subset of syllables (n = 840), 
sampling equally from each individual (60 was the minimum number of complex syllables collected from indi-
vidual budgerigars). To help us assess if the success of the algorithm, we included simple syllables (n = 840) and 
random snippets extracted from complex syllables (n = 840). We included the random snippets to ensure better 
clustering of segments was not simply an artefact of shorter units. The random snippets were not truly random 
but were dependent on the “real” durations of segments. Using the start and end times of the segments stored 
in Praat TextGrids, we extracted segment durations from each complex syllable. We then randomized the order 
of the durations (Praat Table object function Randomize rows) and reinserted new segment boundaries based 
on the rearranged durations. While there is the possibility of the new boundaries aligning with actual divisions, 
particularly with short segments, the random boundaries are not dependent on acoustic transitions. As such, 
if they perform as well or better than our algorithm’s segmentation, then we can assume the algorithm failed in 
detecting segments.

For each unit, we used the measurements listed in Table 1 in the Supplemental material as input for the 
clustering.

As with the human data, we scaled the data for each acoustic parameter and performed a hierarchical cluster-
ing using the function eclust(hc_method = “ward.D2”, hc_metric = “spearman”) in the R package factoextra27. Using 
the factoextra function, fviz_silhouette(), we ran silhouette analyses for a range of cluster sizes. The minimum 
cluster size was 2 clusters and the maximum was 15.

We compared the mean silhouette widths for complex syllables, segments, and random snippits. Because a k 
of 2 had the highest silhouette widths for the segments, we ran summary statistics on the two clusters for a few 
acoustic variables (periodicity, intensity, duration, and Wiener entropy).

Segmentation validations: using vocal units to predict population.  We implemented a supervised 
random forest classification algorithm80,81 to assess the possibility that the acoustic cues in segments and sylla-
bles could be used by budgerigars to determine group or individual identity. We used the function randomfor-
est() from the randomForest package and used the acoustic measurements listed in Table 1 in the Supplemental 
material. We trained four random forest models; the models varied in the type of acoustic input data (syllables 
vs. segments) and in the classification output (group vs. individual identity). Because some groups and individu-
als had more samples than others, we took a random subset of the data for each model. For the model classifying 
individuals using segment data, we used 500 segments from each individual. For the model classifying groups 
using segment data, we used 500 segments from each group. Because we had a much smaller number of syllables 
in the dataset, we took a sample size based on the group or individual with the smallest number of samples. 
For the model classifying individuals using syllable data, we took a random sample of 60 syllables from each 
individual. For the final model, group classification from syllable data, we took a random sample of 384 syllables 
from each group. We set the number of trees to create in the algorithm at 500 and we used three predictors at 
each node split.

To assess whether the algorithms performed above chance at classification, we used an exact binomial test, 
binom.test() in R, for each of the models. We corrected for multiple testing by using p.adjust(method = “Holm”) 
in R.

Segmentation validation: syllable edge effects.  To evaluate the effect of segment position on the 
acoustic signal, we divided the segments into three categories based on their relative position in the syllable: 
initial, medial, and final. We defined initial segments as the first segment of a syllable, final as the last, and the 
medial group included everything in between. We evaluated four acoustic measurements: mean fundamental 
frequency, duration, and intensity, and periodicity.

We used mixed effect models to assess whether segment position has an effect on the acoustic output. Mixed 
effect models, particularly generalized linear mixed models, allow for more flexibility and accuracy when ana-
lyzing non-normal data like ours which vary in samples per position, samples per individual, and number of 
individuals per group82. We used the lme483 package in R with segment position and population as fixed effects. 
We included population as a covariate to better assess if the segment patterns occur independent of group. 
We included individual identity as a random effect. We used the anova() function in R’s base stats package to 
compare the model with a null model that excludes the fixed effect of segment position. We also compared the 
full model with a model in which the covariate group was removed. We used the vif() function in car84 to check 
for collinearity.

Visual assessment of the residuals for periodicity, mean fundamental frequency, and duration were all non-
normal, so we used lme4′s glmer() function to fit a generalized linear mixed model (F0: Gaussian distribution 
with “log” link; Duration: an inverse Gaussian distribution with “identity” link; Periodicity: binomial distribution 
with “logit” link.) For intensity, the residuals were normal and homoscedastic, so we fitted a linear mixed model.

Ethical compliance.  All procedures performed in animals were conducted in accordance with local animal 
protection and housing laws and were approved by the ethical board of the behavioral research group in the 
faculty of Life Sciences at the University of Vienna (Approval Numbers 2015-005; 2018-019) or the Animal Care 
and Use Committee of the University of Maryland, College Park. Data collected from human subjects were taken 
from publicly available databases or were approved by the University of Vienna Ethics Committee (Approval 
Number 00063) and were conducted in line with the Declaration of Helsinki (1964).
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