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A deep learning framework 
combined with word embedding 
to identify DNA replication origins
Feng Wu, Runtao Yang*, Chengjin Zhang & Lina Zhang

The DNA replication influences the inheritance of genetic information in the DNA life cycle. As the 
distribution of replication origins (ORIs) is the major determinant to precisely regulate the replication 
process, the correct identification of ORIs is significant in giving an insightful understanding of DNA 
replication mechanisms and the regulatory mechanisms of genetic expressions. For eukaryotes 
in particular, multiple ORIs exist in each of their gene sequences to complete the replication in a 
reasonable period of time. To simplify the identification process of eukaryote’s ORIs, most of existing 
methods are developed by traditional machine learning algorithms, and target to the gene sequences 
with a fixed length. Consequently, the identification results are not satisfying, i.e. there is still great 
room for improvement. To break through the limitations in previous studies, this paper develops 
sequence segmentation methods, and employs the word embedding technique, ‘Word2vec’, to 
convert gene sequences into word vectors, thereby grasping the inner correlations of gene sequences 
with different lengths. Then, a deep learning framework to perform the ORI identification task is 
constructed by a convolutional neural network with an embedding layer. On the basis of the analysis 
of similarity reduction dimensionality diagram, Word2vec can effectively transform the inner 
relationship among words into numerical feature. For four species in this study, the best models are 
obtained with the overall accuracy of 0.975, 0.765, 0.885, 0.967, the Matthew’s correlation coefficient 
of 0.940, 0.530, 0.771, 0.934, and the AUC​ of 0.975, 0.800, 0.888, 0.981, which indicate that the 
proposed predictor has a stable ability and provide a high confidence coefficient to classify both of 
ORIs and non-ORIs. Compared with state-of-the-art methods, the proposed predictor can achieve ORI 
identification with significant improvement. It is therefore reasonable to anticipate that the proposed 
method will make a useful high throughput tool for genome analysis.

Since the theory of DNA replication was proposed, the bioscience has been undergoing profound changes, which 
greatly motivates various studies based on the DNA replication, including cell growth and cell division. As a 
rigorous biological process starting at ‘ORI’ (origin of replication), DNA replication can generate two identical 
daughter strands by unwinding the parental template strands with the semiconservative replication strategy1–4. 
To keep normal cell functions and inherit a complete set of genomic information, DNA replication is activated 
only once per cell cycle5. It is worth noticing that the DNA replication is closely related to the transmission 
of genetic information6. For instance, previous study indicated that DNA replication frequently occurs in the 
downstream of gene sequences and less likely around transcription initiation sites7. Therefore, it is essential to 
understand the role and mechanism of DNA replication. In this regard, the accurate identification of ORIs will 
provide insights into the potential biological roles of DNA replication in the spatial and temporal regulation of 
the gene transcription and gene expression.

A series of biological technologies have been developed to precisely identify ORIs. Chromatin Immuno-
precipitation (ChIP)8 is to fix the protein-DNA complex in a living cell state, and randomly cut it into small 
chromatin fragments, then precipitate the complex by immunological methods to enrich the DNA fragments 
bound by the target protein. The information of protein-DNA interaction is obtained by purification and detec-
tion of the target fragment. With the development of modern sequencing technology, ORIs can also be obtained 
by sequencing the immunoprecipitated complex, called ChIP-seq9. Above all, CHIP is adopted to specifically 
enrich the DNA fragments bound by the target protein. Then, the enriched DNA fragments are subjected to 
high-throughput sequencing. Finally, millions of sequence tags are accurately located on the genome to obtain 
DNA segment information among which interacts with histones, transcription factors.
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Drawing on the aforementioned sequencing technology, many ORI related theories and principles have been 
developed, which greatly facilitate the genome research of various species. In different species, ORIs have both 
common structural features and certain differences. For instance, some original features of ORIs in Arabidopsis 
thaliana are shared with animal cells, and it also has characteristics typically existed in plant cells10. The ORIs 
in mouse and drosophila genome contain abundant ‘AT’ in α-strand or ‘TA’ in its complementary strand11. 
Besides, the ORIs in S. cerevisiae is formed by 3 domains named domain A, domain B and domain C12. Each 
of the three domains has its special motif and function as elaborated in13,14. In the S. cerevisiae genome, there 
are over 12,000 conserved sequences where only 400 contain ORIs15. In fact, the replication mechanism of S. 
cerevisiae is investigated most extensively and deeply, and the first recognized eukaryotic ORI sequence is from 
S. cerevisiae16. Generally, there are some striking differences in prokaryotes and eukaryotes in terms of DNA rep-
lication. Prokaryotes have a single circular DNA molecule17, with only one ORI due to their simple cell structure 
and the relatively small number of genomic bases compared with eukaryotes. To complete the complex DNA 
replication of the entire genome in a fast and efficient way, the large number of DNA bases and the restriction of 
dinucleotides incorporation in eukaryotes allow simultaneous replication from multiple ORIs18. For instance, 
about 30,000 ORIs are activated during cell division in mice.

In the post-genome era, the emergence of a large number of genomic sequences has highlighted the defects 
of experimental methods on time-consuming and cost. Against this background, computational methods to 
efficiently predict the ORIs are urgently needed. For bacteria, there are many sophisticated methods that can 
accurately identify their ORIs. ‘ORI-finder’ is an online system based on the analysis of nucleotide composition 
asymmetry using Z-curve method, the distribution of DnaA boxes and the occurrence of genes frequently close 
to ORIs19. On the basis of the ‘ORI-finder’, the analysis of the distribution of the origin recognition boxes (ORB) 
elements identified by the Find Individual Motif Occurrences (FIMO) software is incorporated to compose a 
more effective online predictor called ‘ORI-finder 2’20. In addition, Shah et al. suggested a correlation based 
approach which directly considers the spatial positioning of a specific base in genomic region to achieve excellent 
identification results in lower organisms21. However, for eukaryotes, with multiple ORIs, it is difficult to achieve 
a satisfactory and accurate identification of ORIs.

In the past few years, several desired identification results have been obtained to identify ORIs of eukaryotes. 
Wang et al.22 adopted Z-curve theory to convert the DNA sequence to a geometrical curve, and proposed a 
windowless approach to calculate and segment the AT-rich region along the DNA sequence, which achieved a 
stable identification result of ORIs. Chen et al.23 conducted the analysis of two structural characteristics, namely, 
DNA bendability and cleavage intensity around ORIs in the Saccharomyces cerevisiae genome, then developed 
a support vector machine (SVM) based model for ORI prediction, which achieved a satisfying accuracy of 
85.86% under the jackknife cross validation. With the development of bioinformatics and NLP, increasing atten-
tion has been paid to use sequence information to realize the identification of ORIs. By extending the pseudo 
amino acid composition (PseAAC)24 from protein into the realm of DNA, Li et al. employed the pseudo k-tuple 
nucleotide composition (PseKNC) to encode gene sequences which can reflect the intrinsic correlation between 
local/global features and the ORIs. The SVM was utilized to operate the prediction and the accuracy of ORIs 
predicted in the S. cerevisiae genome with the proposed model called ‘iORI-PseKNC’ reached to 83.72%25. Dao 
et al. aimed to enhance the prediction capability in recognizing yeast ORIs. 90 physicochemical properties were 
incorporated into PseKNC to characterize the DNA sequences. Meanwhile, F-score26 and mRMR27 were utilized 
to optimize features. Then a SVM based model called ‘iORI-PseKNC2.0’ was developed to perform classification 
with an accuracy of 87.79%28. Xiao et al. successfully incorporated dinucleotide location-specific propensity into 
PseKNC and used Random Forest29 classifier to form a predictor called ‘iROS-gPseKNC’, which has a pretty high 
accuracy of 98.03% and other indexes are also close to 100%30. Zhang et al. demonstrated that the integration of 
dinucleotide physicochemical properties with the pseudo nucleotide composition is an effective way to improve 
the prediction performance of human ORIs, and the Random Forest classifier was used to form the predictor, 
called ‘iOri-Human’31. The latest method proposed by Do et al.32 is a hybrid identification system incorporating 
fusion features extracted by FastText33 and PseKNC with XGBoost34, which achieved an accuracy of 89.51% in 
Saccharomyces cerevisiae.

The commonality among the aforementioned predictors is that they aimed to identify ORIs of one species and 
could only be used to identify tiny parts (250 or 300 dp) of the replication origins. To overcome the limitation, 
some methods were proposed to identify ORIs of yeast species. A recent method, ‘iRO-3wPseKNC’, incorporated 
the ‘GC asymmetry bias’ into the ORIs prediction as the feature by three-window-based PseKNC. It is worthy 
to mention that iRO-3wPseKNC based on Random Forest performs well in four yeast species, and even gets the 
accuracy of 96.5% in Schizosaccharomyces pombe35. In addition, it is the first predictor which can identify ORIs 
sequences with unfixed length. On the basis of the ‘iRO-3wPseKNC’, to reflect the uneven distribution of G and 
C, Liu et al. proposed a predictor called ‘iRO-PseGCC’ by capturing the GC asymmetry bias and incorporating 
the GC Skew into the concept of PseKNC36.

All the aforementioned predictors have their own advantages and significantly enhance the development 
of ORIs identification, but they still have some limitations. Firstly, previous methods only took the local DNA 
sequence information into account and ignored the global DNA sequence information to capture long-range 
interactions that are close in the three-dimensional space, but far from each other in their sequence positions. 
Secondly, the performance of previous methods relys heavily on the hand-crafted features, which may be limited 
by the lack of experience and domain knowledge. To take full advantage of the rapid expansion of gene sequences, 
a more robust, automatic framework to extract sequence-dependent features is desired. Thirdly, previous meth-
ods are developed by traditional machine learning37 methods, i.e., shallow models for supervised learning, such 
as SVM and Random Forest. In addition, feature extraction and classification are considered as two processes, 
which may limit the prediction performance.
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Deep learning has received extensive attention in the boom of artificial intelligence as a cutting-edge machine 
learning method. It generally refers to a collection of deep neural network algorithms that has multiple hidden 
layers which can learn hierarchical representations and detect complex patterns by digging deep features from 
datasets. Amongst a set of deep neural networks, convolutional neural network (CNN) is extensively employed 
in both academia and industry. Traditional CNNs are not suitable to address sequences identification tasks. 
Therefore, CNNs with some special architectures are gradually popular to be employed to perform classifica-
tion tasks in bioinformatics38,39. Inspired by the excellent performance of deep learning in image processing40,41, 
natural language processing42,43 and many other fields44,45, a deep learning framework is constructed in this study 
by a CNN with an embedding layer to automatically learn a suitable representation of the raw data, discover 
high-level features, and improve ORI identification performance over traditional models.

It is worth noticing that bioinformatics and natural language processing (NLP) greatly promote and benefit 
from each other. Similar to the complex grammatical and semantic structure in natural languages, nucleotide 
composition and sequence structure determine the motif and function of gene sequences46. At present, it is 
popular to consider nucleotides as ‘words’ which are sometimes ambiguous in biological sequences (DNA, RNA, 
proteins), unlike the regular concept of ‘words’ in natural languages. For instance, Le et al. spliced the word 
vector of 10-gram as the representation of a DNA sequence and input into 1D-CNN to detect promoters47. Do 
et al. adopted Fasttext to train the word vectors of 3-gram, and constructed a DNN framework with the input 
of the pre-trained word vectors48. Word embedding technology is a general term for language models and rep-
resentation learning technologies in the field of natural language processing. Conceptually, it refers to allowing 
machines to learn distributed representations of words by embedding a high-dimensional space with the number 
of all words in a low-dimensional continuous vector space. Before the advent of word embedding technology, 
one-hot representation is a traditional method, but one-hot is too sparse to reflect the interrelationship between 
words. In addition, the principal component analysis (PCA)49 and the T-distributed neighborhood embedding 
algorithm (T-SNE)50 can be adopted to further reduce the dimension of the distributed representation in the 
word embedding space, thereby realizing the visualization of word embedding and word meaning induction. 
In view of this, word embedding technology is utilized in this paper to realize the distribution representation.

As shown in Fig. 1, the proposed method is organized into the following four main steps, i.e. benchmark data-
set construction, sequence segmentation, feature vector construction and deep learning framework construction. 
Specifically, the genomic locations of replication origins and corresponding gene sequences of four yeast species 
are derived from the database. To avoid data imbalance and reduce homologous bias, the benchmark datasets of 
four species are obtained after removing high homologous samples and short samples. Subsequently, by a sliding 
window with 3 bases and a step of 1, each DNA sequence in the benchmark dataset is scanned across from the 
left to the right to generate a series of trinucleotides. Similarly, by a sliding window with 3 bases and a step of 
3, one sequence could be divided into three new sequences with the same label that are adopted to rebuild the 
feature vectors. Then, ‘Word2vec’ in the field of NLP is employed to map trinucleotides from an original space to 
a new multidimensional space. Finally, a deep learning framework is constructed by a CNN with an embedding 
layer to identify ORIs, and the proposed method is compared with the existing methods on the same dataset by 
the 10-fold cross validation.

Results and disccusion
Analysis of feature spaces.  To analyze the general sequence-based characteristics of ORIs and non-ORIs, 
visualizing feature vectors are needed to investigate whether feature vectors constructed by the Word2vec can 
depict the inner properties of DNA sequences. It is worth noting that the feature vectors of the same word 
trained by Word2vec are quite not invariant for different iterations, due to the differences on the vector initializa-
tion and the back propagation of network parameters.

As shown in Fig. 2, a 2-dimensional feature space in the dataset S1 can be obtained by applying the t-distrib-
uted stochastic neighbor embedding (t-SNE) algorithm to the original feature vectors based on Continuous-
TSSS. According to the coordinates of the same trinucleotides in Fig. 2, the uncertainty of feature vectors can be 
compared. For example, the coordinates of AAA in Fig. 2a is ( −0.97197 , 2.4612787), in Fig. 2b is ( −3.412198 , 
−3.4761875 ), and in Fig. 2c is (1.6702927, 2.9938223).

The feature vectors are significant to construct the ORI predictor, and the inner relationships among trinu-
cleotides are of the worthiest to focus. It can be clearly seen that the feature vectors are divided into four regions 
in which trinucleotides have the same second nucleotide. In each region, it is obviously shown that the distance 
between two trinucleotides with different last nucleotide is very close, which is in line with the results of sequence 
segmentation. For example, TTA, TTC, TTG and TTT are respectively located in the left region of Fig. 2a, the 
lower region of Fig. 2b and the right region of Fig. 2c.

On the basis of different sequence segmentation methods, the relative locations of words in feature spaces 
are reasonably different. Nonetheless, feature vectors trained by Word2vec based on Skip-TSSS can indicate the 
inner relationships of sequences. As shown in Fig. 3, it is intuitive that trinucleotides marked in each sub-figure 
are located close to each other but with quite different coordinates. For example, GAG, GGA, GAA are close to 
each other in Fig. 3a, but the distance between GGA and GAA are shorter than that between GGA and GAG. In 
the other sub figures, similar conclusions can be obtained.

The analysis above intuitively proves that the feature vectors constructed in this paper can effectively char-
acterize the inner relationship among trinucleotides in ORIs. Subsequent experiments can further demonstrate 
that the method of constructing feature vectors plays an essential role in identifying ORIs from non-ORIs.
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Performance analysis of different models with Continuous‑TSSS.  To compare the performance 
of the proposed predictor under different modes, Table 1 lists identification results of each species based on 
Continuous-TSSS.

As can be seen from Table 1, if the training mode is set as the default mode, the Accs achieved by the proposed 
predictor in the dataset S1 , S2 , S3 and S4 are 0.920, 0.728, 0.885 and 0.956, respectively. Except the Acc, the values 
of other measure indexes are satisfactory. Astonishing values in AUC​ are obtained, which are 0.921, 0.719, 0.888 

Figure 1.   The overall workflow of the proposed method.
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and 0.967. The study also have achieved outstanding scores in Sn and Sp, which are 0.917, 0.758, 0.858, 0.954 
and 0.923, 0.698, 0.9121, 0.958 respectively. Besides, the MCC was reached 0.840, 0.457, 0.771, 0.911, which 
reflects the high confidence of the proposed predictor derived by comprehensively considering the identification 
ability of positive and negative samples. These results indicate that the proposed predictor is completely feasible 
and reliable to identify ORIs. Critically, the identification results in the dataset S2 do not meet the expectation.

Figure 2.   The 2-dimensional feature space generated by the t-SNE algorithm in dataset S1 using Continuous-
TSSS. (a) The first training result. (b) The second training result. (c) The third training result.

Figure 3.   The 2-dimensional feature space generated by the t-SNE algorithm in the dataset S1 Using Skip-TSSS. 
(a) The first training result. (b) The second training result. (c) The third training result.

Table 1.   The identification results of the proposed method based on different modes with Continuous-TSSS.

Dataset Training mode Acc Sp Sn MCC AUC​

S. cerevisiae ( S1)

Default mode 0.920 0.923 0.917 0.840 0.921

Embedding training mode 0.927 0.917 0.938 0.955 0.965

Two channel mode 0.938 0.944 0.932 0.876 0.961

S. pombe ( S2)

Default mode 0.728 0.698 0.758 0.457 0.719

Embedding training mode 0.719 0.727 0.711 0.439 0.721

Two channel mode 0.754 0.721 0.787 0.510 0.770

K. lactis ( S3)

Default mode 0.885 0.912 0.858 0.771 0.888

Embedding training mode 0.882 0.905 0.858 0.764 0.906

Two channel mode 0.777 0.838 0.716 0.558 0.788

P. pastoris ( S4)

Default mode 0.956 0.958 0.954 0.911 0.967

Embedding training mode 0.962 0.974 0.951 0.925 0.973

Two channel mode 0.967 0.974 0.960 0.934 0.981
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What we expect is that the identification results with the other two modes should be better than those with 
the default mode. It is noticing that the overall identification results do not change much. If the training mode is 
set as ‘embedding training’ in the dataset S3 , each index changes from 0.728, 0.698, 0.758, 0.457, 0.719 to 0.719, 
0.727, 0.711, 0.439, 0.721 respectively. In the dataset S1 , S2 and S4 , there are slight improvements for each measure 
index. To summarize, the performance of the embedding training mode changes to some extent. It is possible 
that the feature vectors constructed in the dataset S3 can reasonably characterize the ORIs. Therefore, the effects 
of feature vectors representation will be reduced when embedding layer is updated. Nonetheless, in the dataset 
S1 , S2 , S4 , the update of the embedding layer can make the effects of feature vector representation better, which 
provides a better performance of the proposed predictor in distinguishing ORIs from non-ORIs. If the train-
ing model is set as ‘Two Channel’, the values of measure indexes are greatly improved by comparing Acc, MCC 
and AUC​, except in the dataset S3 . This is probably because the proposed model can obtain more appropriate 
inner features by updating embedding channel-2, meanwhile remaining the original features with unchanged 
embedding channel-1.

The ROC curves of different modes for each dataset are displayed in Fig. 4. It can be obviously seen that the 
proposed predictor performs pretty well and the AUC​ value of each ROC curves based on each training mode in 
the same dataset is different with each other, which can provide an intuitive comparison to find the best model 
to identify ORIs. The reasons for the excellent performance of the proposed predictor can be concluded as fol-
lows. Firstly, the deep relationships within trinucleotides and the biological significance of each trinucleotide 
are dug by Word2vec. Furthermore, the order information of trinucleotides is clearly reflected in the embedding 
layer, which enriches the features of ORIs. Finally, the deep network architecture is designed to conduct in-depth 
mining of sequence features, and an appropriate size of the convolution kernel is obtained by combining with 
the sequence segmentation method.

Figure 4.   ROC curves obtained by using different training modes in each dataset based on Continuous-TSSS. 
(a) ROC curves of S1 . (b) ROC curves of S2 . (c) ROC curves of S3 . (d) ROC curves of S4.
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Performance analysis of different models with Skip‑TSSS.  In order to further investigate the ability 
of the proposed predictor, Table 2 lists the details of ORI identification results based on different modes.

As shown in Table 2, the proposed predictor performs well in each dataset no matter what the training mode 
is. In the dataset S1 , the identification results are improved from 0.938, 0.944, 0.932, 0.876, 0.961 (the best in 
Table 1) to 0.972, 0.962, 0.981, 0.944, 0.972 (the best in Table 2). For the dataset S2 , we gain a new best model 
based on the two channel mode, and achieve desired improvements by comprehensively considering indexes. 
Specifically, the Acc, MCC and AUC​ is improved from 0.754 to 0.765, 0.510 to 0.530, and 0.770 to 0.800 respec-
tively. Meanwhile considering Sp and Sn together, the new model based on two channel mode performs a better 
stability. Nonetheless, in the dataset S3 and S4 , the Skip-TSSS is not working as expected. Although the ORI 
identification results fluctuate up and down in other datasets, the overall performance of the proposed predictor 
is not out of our acceptable range. It can be concluded that the Skip-TSSS can significantly improve the accuracy 
of classifying ORIs from non-ORIs.

In addition to the listed values of each measure index, the corresponding graph of ROC is obtained as shown 
in Fig. 5, where each parameter is the same as that in Fig. 4. In general, the proposed model used in each dataset 
based on three training modes performs well, which indicates that the performance of the model can be improved 
to some extent by selecting the best training mode.

Prediction performance under the independent dataset test.  In order to validate the generaliza-
tion ability of the proposed method, 90% of the positive and negative samples are randomly selected as the train-
ing set and the remaining 10% as the independent test set. After the predictor is completely trained using the 
training set, the independent testing is performed using the independent test set. The independent dataset test 
is conducted 20 times and the corresponding performance measure indexes are averaged to avoid overfitting. 
Experimental results show that the prediction performance on the independent dataset as given in Table 3 is 
comparable to that on the training dataset as given in Tables 1 and 2 of the manuscript, indicating the robustness 
and the excellent generalization ability of the proposed method.

Comparison with the existing methods.  In recent years, a series of machine learning-based methods 
have been proposed to identify ORIs for different species. To improve the effects of extracted features, Dao 
et al. employed two feature selection methods to develop an ORI predictor called ‘iORI-PseKNC2.0’28. Based on 
XGBoosting and Fasttext, Do et al. developed an ORI predicter for Saccharomyces cerevisiae32. By incorporating 
the ‘GC asymmetry bias’ into the ORI identification, Liu et al. developed a predictor called ‘iRO-3wPseKNC’ 
for four yeast species35. For further improving the prediction performance of iRO-3wPseKNC, they proposed a 
method called ‘iRO-PseKGCC’ to capture the ‘GC asymmetry bias’ of the gene sequences by considering both 
the GC skew and the sequence order effects of k-kuple GC composition36. To evaluate the performance of the 
proposed method more objectively, we chose the latest predictors mentioned above to make a better comparison 
with our method on the same benchmark datasets for corresponding four yeast species.

As listed in Table 4, the Acc achieved by several predictors in the dataset S1 are less than 0.9, while our 
approach obtains an Acc of 0.975. Meanwhile, the Sp of 0.966 and Sn of 0.983 are also far better than those of 
the other methods. Moreover, a high score of MCC, 0.940, reflects a high confidence coefficient of prediction 
results. Similar to the dataset S1 , our method performs fairly well in the dataset S4 . Specifically, the Acc, Sp, Sn 
and AUC​ of the proposed predictor are more than 0.2 higher than those of the latest predictors. Especially, the 
AUC​ value can reach a level extremely close to 1. In the dataset S3 , though the AUC​ of the proposed predictor is 
0.888, a little lower than that of iRO-3wPseKNC, our method shows a better performance in Acc, Sp, Sn, MCC 
with 0.885, 0.912, 0.858, 0.771, which can prove that our predictor can realize a stable identification of ORIs 
and non-ORIs with a high confidence coefficient. In the dataset S2 , the ORI identification results achieved by 
our method are not ideal, inferior to those achieved by iRO-3wPseKNC, which are exactly what needs to be 
addressed in the follow-up study.

Table 2.   The identification results of the proposed method based on different modes with Skip-TSSS.

Dataset Training mode Acc Sp Sn MCC AUC​

S. cerevisiae ( S1)

Default mode 0.969 0.962 0.976 0.939 0.990

Embedding training mode 0.975 0.966 0.983 0.940 0.975

Two channel mode 0.972 0.962 0.981 0.944 0.972

S. pombe ( S2)

Default mode 0.731 0.741 0.720 0.461 0.754

Embedding training mode 0.751 0.742 0.760 0.502 0.785

Two channel mode 0.765 0.780 0.750 0.530 0.800

K. lactis ( S3)

Default mode 0.867 0.894 0.840 0.735 0.903

Embedding training mode 0.857 0.872 0.842 0.714 0.891

Two channel mode 0.811 0.824 0.797 0.622 0.852

P. pastoris ( S4)

Default mode 0.933 0.946 0.921 0.866 0.968

Embedding training mode 0.956 0.964 0.948 0.912 0.972

Two channel mode 0.949 0.964 0.933 0.898 0.972
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In the recent publication51 , RFs trained on word2vec-derived encodings show unsatisfactory performance 
on bacterial ORIs. In this study, the word2vec combined with 2D-CNN achieves excellent identification results 
on eukaryotic ORIs. We will explain the contradictory results from a biological perspective.

Under different ecological and geographical conditions, the biological genes of different populations undergo 
genetic variations such as mutations, selections, and random drifts, leading to changes in the population gene 
frequency and genotype frequency. With the continuation of biological evolution, the accumulation of such 
changes will produce new species. Therefore, there might be a difference in evolutionary conservation between 
eukaryotic ORIs and bacterial ORIs. To analyze the general sequence-based evolutionary conservation of eukary-
otic ORIs and bacterial ORIs, we calculate several statistical features in the flanking sequences of eukaryotic 
ORIs and bacterial ORIs. As shown in Fig. 6, there are big differences in terms of mononucleotide composition, 
dinucleotide composition and trinucleotide composition between the flanking sequences of eukaryotic ORIs and 
bacterial ORIs, which may be the reason for the different findings of the recent publication51 and this study. The 
flanking sequences of bacterial ORIs constructed by Sperlea et al.51 can be available in the supplementary file.

Materials and methods
Benchmark datasets.  A reliable, stringent and comprehensive benchmark dataset is significant to the 
development of powerful methods for ORI identification. In this study, the genomic locations of replication 
origins and corresponding gene sequences for Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces 
pombe (S. pombe), Kluyveromyces lactis (K. lactis) and Pichia pastoris (P. pastoris) are derived from DeOri6.052 
and GenBank53, respectively. DeORI6.0 is a database of Eukaryotic ORIs, which contains all the eukaryotic 
ones identified by genome-wide analyses. GeneBank is a gene sequence database, which brings together and 
annotates all publicly available nucleic acid and protein sequences. Each record represents a single, continuous, 
annotated piece of DNA or RNA. The gene sequences with ORIs are taken as positive samples. The negative 

Figure 5.   ROC curves obtained by using different training modes in each dataset based on Skip-TSSS. (a) ROC 
curves of S1 . (b) ROC curves of S2 . (c) ROC curves of S3 . (d) ROC curves of S4.
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samples in each dataset are randomly extracted from the gene sequences of corresponding yeast species without 
ORIs, and have the same length distribution as the positive samples. The DNA fragments with the length less 
than 50 dp are deleted. To remove redundant samples and reduce homologous bias, the CD-HIT software54 is 
used to delete sequences with sequence similarity greater than 80% (the setting of 80% can approach the balance 
to some extent between maintaining the statistical significance of the sequences and avoiding overfitting) to any 
other sequences in each dataset. To avoid the data imbalance, the difference between the number of positive 
samples and negative samples in each dataset are not supposed to be too large. Finally, four benchmark datasets 
are constructed as

Table 3.   The prediction performance of the proposed method under the independent dataset test.

Sequence segmentation Dataset Training mode Acc Sp Sn MCC

Continuous-TSSS

S. cerevisiae ( S1)

Default mode 0.9559 0.9697 0.9429 0.9122

Embedding training mode 0.9412 0.9697 0.9143 0.8840

Two channel mode 0.9559 1.0000 0.9143 0.9155

S. pombe ( S2)

Default mode 0.8116 0.8788 0.7500 0.6315

Embedding training mode 0.7826 0.8182 0.7500 0.5682

Two channel mode 0.8116 0.9091 0.7222 0.6389

K. lactis ( S3)

Default mode 0.9000 0.8462 0.9412 0.7964

Embedding training mode 0.8667 0.8462 0.8824 0.7285

Two channel mode 0.8333 0.8182 0.8421 0.6495

P. pastoris ( S4)

Default mode 0.9500 0.9444 0.9583 0.8971

Embedding training mode 0.9167 0.9167 0.9167 0.8281

Two channel mode 0.9032 0.8947 0.9167 0.8009

Skip-TSSS

S. cerevisiae ( S1)

Default mode 0.9901 0.9794 1.0000 0.9804

Embedding training mode 0.9901 0.9897 0.9906 0.9803

Two channel mode 0.9951 0.9897 1.0000 0.9902

S. pombe ( S2)

Default mode 0.7282 0.7353 0.7212 0.4564

Embedding training mode 0.7379 0.6176 0.8558 0.4880

Two channel mode 0.7573 0.7843 0.7308 0.5157

K. lactis ( S3)

Default mode 0.9213 0.8667 0.9773 0.8482

Embedding training mode 0.9213 0.8667 0.9773 0.8482

Two channel mode 0.8539 0.9111 0.7955 0.7120

P. pastoris ( S4)

Default mode 0.9454 0.9318 0.9579 0.8907

Embedding training mode 0.9727 0.9659 0.9789 0.9453

Two channel mode 0.9617 0.9432 0.9789 0.9238

Table 4.   Comparisons of the proposed method with the latest methods.

Species Method Acc Sp Sn MCC AUC​

S. cerevisiae ( S1)

iRO-3wPseKNC35 0.730 0.752 0.707 0.459 0.808

iRO-PseKGCC​36 0.764 0.781 0.739 0.530 0.813

iORI-PseKNC2.028 0.782 0.802 0.763 0.565 0.831

XGBoosting based method32 0.895 0.938 0.852 0.793 –

The proposed method 0.975 0.966 0.983 0.940 0.975

S. pombe ( S2)
iRO-3wPseKNC35 0.965 0.949 0.979 0.929 0.986

The proposed method 0.765 0.780 0.750 0.530 0.800

K. lactis ( S3)
iRO-3wPseKNC35 0.851 0.845 0.858 0.703 0.901

The proposed method 0.885 0.912 0.858 0.771 0.888

P. pastoris ( S4)

iRO-3wPseKNC35 0.710 0.723 0.699 0.422 0.796

iRO-PseKGCC​36 0.742 0.739 0.745 0.484 0.800

The proposed method 0.967 0.974 0.960 0.934 0.981
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Figure 6.   Nucleotide compositions in the flanking sequences of eukaryotic ORIs and bacterial ORIs. (a) 
Average mononucleotide frequencies in the flanking sequences of eukaryotic ORIs and bacterial ORIs. (b) 
Average dinucleotide frequencies in the flanking sequences of eukaryotic ORIs and bacterial ORIs. (c) Average 
trinucleotide frequencies in the flanking sequences of eukaryotic ORIs and bacterial ORIs.
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where S1 contains 340 ORI sequences and 342 non-ORI sequences. S2 contains 342 ORI sequences and 338 non-
ORI sequences. S3 contains 147 ORI sequences and 147 non-ORI sequences. S4 contains 305 ORI sequences and 
302 non-ORI sequences. The 

⋃

 represents the union symbol in the set theory.

Sequence segmentation.  Continuous‑three slices sequence segmentation.  The process of the gene infor-
mation transmission and gene expression is mainly divided into the sub-processes of transcription, translation, 
and the synthesis of the functional protein. These sub-processes all take ‘three’ as the basic size of an operation 
unit, such as codon, anticodon and the amino acids carried by tRNA. Thus, in order to maintain the integrity of 
the biological basis, the higher grams are not considered. Purely in terms of the sequence segmentation method, 
as for n > 3 , the dimensions of word vectors increase dramatically, and may introduce some redundant informa-
tion. In view of this, a sequence segmentation method called ‘Continuous-Three Slices Sequence Segmentation’ 
(Continuous-TSSS) is utilized in this paper.

A gene sequence is denoted as:

where L represents the length of the gene sequences; Ri represents the ith nucleotide of the gene sequence. Based 
on the window with the size fixed to 3, the trinuleotides inside the parentheses of Eq. (3) can be obtained by 
moving with the stride size set as 1 from the beginning of the gene sequence.

Skip‑three slices sequence segmentation.  As mentioned in “Skip-three slices sequence segmentation” section, 
the Continuous-TSSS, a window with size of 3 moves on a sequence with step size of 1, can not entirely extract 
composition features of several nucleotides in head and tail of sequences compared to other nucleotides. In 
view of this, each nucleotide is needed to be reused to fully extract the characteristic of each nucleotide in 
original sequences. Another sequence segmentation method called ‘Skip-Three Slices Sequence Segmentation’ 
(Skip-TSSS) is developed in this study to split a gene sequence into three sequences, which changes the subse-
quent construction of feature vectors but can remain the original gene sequence order at the same time. Using 
a window of size 3 to move from the beginning of a sequence with a step size of 3, a new sequence is obtained 
without deleting any nucleotide from the original sequence. If the length of the original sequence is divisible by 
3, the new sequence entirely consists of trinucleotides. If the length of the original sequence divided by 3 with 
a remainder of 1, the last component of the new sequence is a mononucleotides. In addition to the above two 
cases, the last unit of the new sequence is a dinucleotide. Similarly, if the window moves on the original sequence 
starting at different positions, more sequences can be obtained as shown in Fig. 7.

If the window keeps moving on the original sequence, the new sequences generated by the Skip-TSSS will 
have a high similarity with the first three sequences. As an example in Fig. 7, the differences between the second 
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Figure 7.   The process of Skip-three slices sequence segmentation (Skip-TSSS).
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and fourth new sequences are only reflected on the first and second component units, which can prove that the 
similarity between these two sequences is extremely high, because of the length of a sequence may reach more 
than 3000 dp even 10,000 dp. To avoid highly repetitive sequences and preserve the biological significance of 
the new sequences, the original sequences are segmented into the first three new sequences without any cuts. 
It is worth noticing that three sequences generated from one original sequence are completely different from 
each other, but they can represent the property of the original sequence. In brief, the new sequences generated 
by the Skip-TSSS is made up of 4 types of mononucleotides, 4× 4 = 16 types of dionucleotides, and 43 = 64 
types of trinucleotides.

Feature vector construction.  As one of the classical word vector training models in the field of NLP, 
the skip-gram model of Word2vec55 based on the negative sampling56 is adopted in this study to construct the 
feature vectors of trinucleotides. Specifically, given a trinucleotide in any position of the gene sequence to be the 
central trinucleotide, the corresponding feature vector can be obtained by maximizing the probability of predict-
ing its surrounding trinucleotides.

Word2vec was created with the goal of extracting strong correlation features that exist within the local interval 
of a text. The main idea is that the adjacent words are strongly related to each other and it is possible to infer from 
the context what the current vacant word is. Therefore, Word2vec can effectively extract advanced features in a 
small interval. Moreover, word2vec is the cornerstone of word vector training, which focuses only on the words 
in the current window, regardless of grammar, language structure, and multiple meanings of words. Objectively, 
biological sequences do not have, or humans have not yet found words, sentences, and grammars that are similar 
to those found in natural languages. Word2vec can avoid too much involvement with the properties of natural 
languages, thereby contributing to the interpretability of word vectors.

Firstly, the length of each trinucleotide is defined as:

where counter(·) represents the frequency of a trinucleotide; D represents a set of all the trinucleotides.
According to Eq. (4), the sum of the distribution length of trinucleotides is 1, thereby a non-uniform interval 

[0, 1] represents the original distribution of trinucleotides. After dividing [0, 1] into M parts equidistantly, a 
negative sample is obtained by randomly selecting mn and mapping it to the original non-uniform distribution 
as the following formula:

where Lk represents the length of word wk ; mn represents the nth part in uniform distribution; Table(n) denotes 
that mn is mapped to the original non-uniform distribution to represent wk.

A negative sampling sample can be derived by mapping the result of random sampling in the uniform dis-
tribution interval to the original non-uniform interval. The process of the negative sampling is terminated until 
the size of negative sampling set is in line with our requirements.

Based on the principles of the employed model, the target function is defined as:

where w represents the central trinucleotide. Context(w) is denoted as the set of context of w. NEG(u) represents 
the set formed by the negative sampling of u. z represents the trinucleotide in the union of NEG(u) and u. p(z|w) 
is defined as the observation probability of each trinucleotide in the Context(w).

Equation 6 indicates that the calculations of probability values require the negative sampling set of each sur-
rounding trinucleotide. To reduce the algorithmic complexity, all the negative samplings are operated on the 
central trinucleotides. Thus, the target function is modified as:

where w̃ represents each trinucleotide in the set of surrounding trinucleotides. NEGw̃(w) represents the set 
formed by the negative sampling of the central trinucleotide w while using w̃ to predict w. u represents the tri-
nucleotide in the union of NEGw̃(w) and w p(z|w̃) , the probability of observing w̃ , is defined as:

where v(w̃) is defined as the vector of trinucleotide w̃ ; θu represents the support vectors to calculate the score 
of binary classification with the same size of v(w̃) ; σ(·) represents the sigmoid fucntion to calculate probability 
limited in range of [0, 1] . Besides, Lw(u) is the label of u as given in following equation. That is to say, the label 
of center trinucleotide w is 1, and the label of any non-central trinucleotide is 0.
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In order to describe the training processes of word vectors in detail, a DNA sequence after word segmentation 
(ACG, CGT, GTC, TCG​, CGT, GTA) is taken as an example. Assuming that the central trinucleotide is TCG 
and the range of context is set to 2, trinucleotides in the context is used to predict the probability of the central 
trinucleotide based on Eq. (7). Meanwhile, the value of M in the negative sampling process is set as 1000. While 
the prediction probability of TCG is calculated using CGT in context, the negative samplings are operated on 
the central trinucleotides TCG to obtain NEGCGT (TCG) , and calculate the prediction probability according to 
Eq. (8). Similarly, when using other contexts to predict TCG, negative sampling of TCG is carried out respectively, 
and the probability is calculated after obtaining the negative sampling set. The error backpropagation, param-
eter update and word vector update are completed by maximizing prediction probability, and then the central 
word is moved to the next position. Generally, if the dimension is set be a small value, the information will be 
compressed or even covered; if the dimension is set to be a large value, much redundant information would be 
contained and the word vector is too sparse to depict the relationship between words. Due to the large range of 
the dimension, it is impractical to search optimal values of the dimension by the method of exhaustion. Thus, 
the proposed method is firstly constructed with the dimension chosen from a wide range, and then the search 
range around the best dimension is narrowed gradually. After many iterations, 300 that yields the best predic-
tion performance is selected as the optimal dimension. Finally, on the basis of Continuous-TSSS, a pre-training 
feature matrix for ORI sequences is constructed with the dimension of 64× 300 after several training iterations 
based on the positive samples while the dimension of the feature matrix is 84× 300 on the basis of Skip-TSSS.

Architecture of convolutional neural network.  In the era of artificial intelligence, the abilities of the 
deep learning algorithm have been widely recognized. The CNN, the most representative deep neural network 
architecture, is widely used in the field of image processing and generally includes input layer, convolutional 
layer, pooling layer and output layer. Taking the pre-training feature matrix as the input, the architecture of CNN 
based on the Continuous-TSSS as shown in Fig. 8 will be explained in the following subsections.

Input layer.  The input layer is constructed by vertically arranging the trinucleotides of the input sequence, 
which aims to treat each trinucleotide in the sequence as the object to be processed rather than the whole 
sequence.

Embedding layer.  Given a sequence x of length L, it can be segmented into a new sequence y of length L− 2 . 
Assuming that the new sequence is composed of N kinds of trinucleotides, the dimension of the one-hot matrix 
O obtained by the one-hot encoding57 will be N × N , and the dimension of the pre-trained trinucleotide feature 
matrix generated by Word2vec will be N × D.

(9)Lw(u) =

{

1, u = w
0, u �= w

Figure 8.   The architecture of the proposed CNN.
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As shown in Fig. 9, on the basis of the word order of the input sequence, pre-training feature vectors will 
be added to the corresponding lines of the embedding layer by matching each word in the input sequence with 
each row index in the embedding matrix.

If the input is the One-hot code of each trinucleotide and the weight matrix is the pre-trained trinucleotide 
feature matrix W obtained by Word2vec, the embedding layer can be regarded as the outputs of the fully con-
nected layer, i.e. the trinucleotide vector of the corresponding position of the ith trinucleotide. As shown in 
Fig. 10, the training of the embedding layer is realized by the Back Propagation (BP) algorithm58.

As only one element of the one-hot vector is 1 and the rest are 0, just one neuron is activated at each input. 
Thus, there are just one group of weights activated to update corresponding row of embedding matrix z. The 
obtained trinucleotide vector has no differences from the trinucleotide vector in W, but the obtained embedding 
matrix is vertically arranged.

According to the aforementioned the embedding layer construction process, there are three modes utilized 
to train the network as described below:

•	 The Default mode:
	   The embedding layer is set as ‘un-trainable’. In this case, the construction of the embedding matrix becomes 

a query operation or a matrix operation, i.e. 

where y represents a DNA sequence with a length of L; Ri represents the index of the ith trinucleotide; D is 
defined as the dimension of feature vectors; z represents the embedding matrix (or embedding layer); W 
represents the pre-trained trinucleotide vectors matrix; z[Ri]{D} = W[y[Ri]]{D} . For example, if Ri = 2 , the 
trinucleotide vector whose index is 2 in W is queried and added to the second row of z. Finally, an embedding 
matrix with a dimension of (L− 2)× D can be formed.

•	 The Embedding Training mode:
	   The embedding layer is set as ‘trainable’. In this case, according to the BP algorithm, the embedding matrix 

is updated with the weight matrix W in the fully connected layer.

(10)z[R1,R2, . . . ,RL−2]{D} = W[y[R1,R2, . . . ,RL−2]]{D}

Figure 9.   The un-trainable embedding layer construction.

Figure 10.   The trainable embedding layer construction.
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•	 The Two Channel mode:
	   The ‘Two Channel’ mode is similar to the RGB channels in the area of Image Processing. In this case, the 

number of channels is set to be 2. As shown in Fig. 11, one embedding layer is set as ‘trainable’ while the 
other one set as ‘un-trainable’ .

Convolutional layer.  Although the output of the embedding layer is a matrix, horizontal convolution on the 
matrix is meaningless, due to the fact that each row of the matrix is the feature vector of the corresponding trinu-
cleotide. For vertical convolution operation to extract the features among several rows, the width of the convolu-
tion kernel is set as the width of the embedding layer, and the height of the convolution kernel is set arbitrarily. 
By using convolution kernels with different sizes to carry out vertical convolution, more perceptive fields can 
be obtained to extract features in a wider range. At the same time, the convolution kernels can be initialized to 
different values, thereby obtaining more feature information in the same region.

According to the ‘Continuous-TSSS’, the sequence after the word segmentation is composed of L− 2 words. 
If the size of the convolution kernel is set to be 2, the feature information between the two words is extracted to 
represent the relationship between the current trinucleotide and the adjacent nucleotide in the original sequence. 
Similarly, if the size of the convolution kernel is set to be 3, the feature information between the three words is 
obtained to characterise the overall and partial relationship between the current trinucleotide and the adjacent 
dinucleotide in the original sequence. Analogously, if the size of the convolution kernel is set to be 4, the feature 
information of four consecutive words is fused, which is equivalent to the feature information between two 
adjacent trinucleotides in the original sequence. The sizes of the convolutional kernel to construct the CNN are 
illustrated in Fig. 12. To obtain more features of the same region, the number of the convolution kernel with each 
size is set as 128. Finally, 128× 3 feature maps are obtained as the input of the pooling layer.

Figure 11.   The two-channel embedding layer construction.

Figure 12.   The sizes of the convolutional kernel employed in the CNN.
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Pooling layer.  In the Pooling layer, the downsampling is performed to reduce the dimensions of feature maps, 
thereby reducing the risk of overfitting and accelerating model training. In this paper, Max-Pooling is respec-
tively employed to extract the maximum value from 128× 3 feature maps, and then concatenate the Max-Pool-
ing results to form a single feature vector with a dimension of 128× 3 = 384.

Fully connected layer.  To integrate feature information output by the Pooling layer, a fully connected layer is 
constructed to perform classification tasks with a size of 384 . In addition, the Softmax function is employed to 
calculate scores for a DNA sequence identified as ORI or non-ORI, and the final identification result is given 
with a higher score.

Based on the Default Mode, the setting of hyper-parameters is listed in Table 5 where Lmax represents the 
longest length of the sequences; Trainable which can be set as ‘True’ of ‘False’ represents the parameter to deter-
mine whether the embedding layer can be trained; The Num_Channels is the parameter to represent the number 
of channels in the embedding layer. Embedding layer can realize the conversions from trinucleotides to corre-
sponding pre-training feature vectors. In convolution blocks with an activation function of ReLu, convolutional 
kernels are set as [2, 3, 4] respectively, and the number of kernels for each size is set to be 128. L2 regularization 
is adopted to avoid over-fitting, which can ensure the availability of the proposed architecture. Adam is chosen 
as the optimizer to compute different and adaptive learning rates for each parameter using a batch size of 64 for 
an initial learning rate of 0.001 with a decay rate of 0.9.

Performance evaluation.  To evaluate the quality of the proposed predictor in a comprehensive and effi-
cient way, it is necessary to set up a complete metrics system. In the area of statistical prediction, five measure 
indexes are widely used to evaluate predictors: the overall accuracy (Acc), the sensitivity (Sn), the specificity (Sp), 
the Matthew’s correlation coefficient (MCC), and the AUC​ (the Area Under the Receiver Operating Character-
istic (ROC)59). Based on the symbols introduced by Chou60, the first four indexes can be defined as following 
formula:

where TP represents the number of ORIs that are correctly predicted. TN represents the number of non-ORIs 
that are correctly predicted. FN denotes the number of ORIs that are incorrectly predicted to be the non-ORIs. 
FP denotes the number of non-ORIs that are falsely predicted to be ORIs. P is defined as the total number of 
ORIs. N is defined as the total number of the non-ORI.

Note that, of the four metrics in Eqs. (11)–(14), the most significant are the Acc and MCC: the former reflects 
the overall accuracy of a predictor, while the latter represents the stability of a predictor in practical applications. 
Both Sn and Sp of the predictor A are higher than those of the predictor B, we can declare A is better than B. To 
make a more meaningful comparison, MCC is utilized to realize simple and convenient comparison.

(11)Sn =
TP

TP + FN
, 0 ≤ Sn ≤ 1

(12)Sp =
TN

TN + FP
, 0 ≤ Sp ≤ 1

(13)Acc =
TP + TN

TP + TN + FP + FN
, 0 ≤ Acc ≤ 1

(14)MCC =
1−

(

FN
TP+FN + FP

TN+FP

)

√

(

1+ FP−FN
P

)(

1+ FN−FP
N

)

, −1 ≤ MCC ≤ 1

Table 5.   The hyper-parameters of the proposed CNN based on the default mode.

Hyper-parameter Value

Input length Lmax

Batch size 64

Embedding layer
Lmax × 300 , Trainable = False,

Num_Channels = 1

Convolution blocks [2, 3, 4] , 128× 3 , ReLu

Pooling blocks Max-pooling

Fully connected layer units 128× 3

Regularization L2

Learning rate 0.001 with decay rate 0.9

Optimizer Adam
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In order to demonstrate the performance of a predictor intuitively, the ROC with 1− Sp as the horizontal 
axis and the Sn as the vertical axis is used to evaluate the performance across the entire range of its decision 
values in this paper. In general, the ROC of a good predictor is above the line y = x . As the x-coordinate increas-
ing, the y-coordinate approaches 1, which means better performance. AUC​ is the area under the ROC curve, 
0 < AUC < 1 . The closer the AUC​ is to 1, the better the performance of the predictor is.

K‑fold cross validation.  With the metrics system to evaluate the quality of a predictor, it is necessary to 
utilize a reasonable validation method to score five measure indexes. The 10-fold cross validation is employed 
in this study that divides the dataset into 10 parts, among which just one part is used as the test set in turn, and 
nine parts are taken as the training set for experiments. Each fold of experiment can obtain the TP, TN, FP, FN, 
and the probability of predicting each sample in the test set. After the experiments, ten sets of such data can be 
obtained, and the corresponding evaluation indexes can be calculated. Meanwhile, the ROC curve can be drawn 
based on the probability of each sample, which can better reduce the experiment errors and randomness.
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