Skip to main content
. 2021 Jan 12;11:844. doi: 10.1038/s41598-020-80670-x

Table 3.

The prediction performance of the proposed method under the independent dataset test.

Sequence segmentation Dataset Training mode Acc Sp Sn MCC
Continuous-TSSS S. cerevisiae (S1) Default mode 0.9559 0.9697 0.9429 0.9122
Embedding training mode 0.9412 0.9697 0.9143 0.8840
Two channel mode 0.9559 1.0000 0.9143 0.9155
S. pombe (S2) Default mode 0.8116 0.8788 0.7500 0.6315
Embedding training mode 0.7826 0.8182 0.7500 0.5682
Two channel mode 0.8116 0.9091 0.7222 0.6389
K. lactis (S3) Default mode 0.9000 0.8462 0.9412 0.7964
Embedding training mode 0.8667 0.8462 0.8824 0.7285
Two channel mode 0.8333 0.8182 0.8421 0.6495
P. pastoris (S4) Default mode 0.9500 0.9444 0.9583 0.8971
Embedding training mode 0.9167 0.9167 0.9167 0.8281
Two channel mode 0.9032 0.8947 0.9167 0.8009
Skip-TSSS S. cerevisiae (S1) Default mode 0.9901 0.9794 1.0000 0.9804
Embedding training mode 0.9901 0.9897 0.9906 0.9803
Two channel mode 0.9951 0.9897 1.0000 0.9902
S. pombe (S2) Default mode 0.7282 0.7353 0.7212 0.4564
Embedding training mode 0.7379 0.6176 0.8558 0.4880
Two channel mode 0.7573 0.7843 0.7308 0.5157
K. lactis (S3) Default mode 0.9213 0.8667 0.9773 0.8482
Embedding training mode 0.9213 0.8667 0.9773 0.8482
Two channel mode 0.8539 0.9111 0.7955 0.7120
P. pastoris (S4) Default mode 0.9454 0.9318 0.9579 0.8907
Embedding training mode 0.9727 0.9659 0.9789 0.9453
Two channel mode 0.9617 0.9432 0.9789 0.9238