
Bioscience Reports (2021) 41 BSR20201541
https://doi.org/10.1042/BSR20201541

Received: 19 May 2020
Revised: 26 November 2020
Accepted: 01 December 2020

Accepted Manuscript online:
03 December 2020
Version of Record published:
12 January 2021

Research Article

C1QTNF6 regulates cell proliferation and apoptosis
of NSCLC in vitro and in vivo
Wei Zhang1 and Ganzhu Feng2

1Department of Respiratory Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; 2Department of Respiratory Medicine, The Second
Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Correspondence: Ganzhu Feng (zhu1635254@163.com)

Objectives: Lung cancer has been reported as the leading cause of cancer-associated
deaths in humans, and its incidence continues to increase in the world. A growing
number of studies have shown that dysregulated genes are associated with the oc-
currence and poor prognosis of a variety of tumors, including non-small cell lung
cancer (NSCLC). C1q/tumor necrosis factor-related protein 6 (C1QTNF6), a member
of the C1q/tumor necrosis factor-related protein (CTRP) family, has been revealed to
play a role in carcinogenesis and cancer progression. Nevertheless, the effects and
mechanisms of C1QTNF6 in NSCLC remain unrevealed. Materials and methods: MTT
(3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide) and colony formation, flow
cytometric and transwell assays were performed to explore the cell function. Real-time PCR
(RT-PCR) and Western blot were used to analyze the mRNA and protein expression. Re-
sults: In the present study, we found that C1QTNF6 significantly promoted the proliferation
of SPCA1 and A549 cells by MTT and colony formation assays. In addition, down-regulation
of C1QTNF6 weakened the tumor growth in vivo. Besides, C1QTNF6 remarkably reduced
apoptosis by flow cytometric analysis and TUNEL assay. Furthermore, the capability of mi-
gration and invasion was obviously enhanced on C1QTNF6 overexpression. Conclusion:
Overall, our results demonstrated that inhibition of C1QTNF6 attenuated cell proliferation,
migration, invasion and promoted apoptosis in vitro and in vivo of NSCLC. Based on the
above results, our study provided us with a new and key perspective in understanding and
treating NSCLC.

Introduction
Lung cancer is reported to be the most common malignant tumor in the world with a 5-year survival rate
of <15% [1–3]. Lung cancer can be roughly divided into two types, small cell lung cancer (SCLC) and
non-small cell lung cancer (NSCLC) by pathological classification [4,5]. Although great progress has been
obtained about disease prevention, diagnosis and therapy improvement, the survival rate still remains at
low level [6]. Therefore, the new effective markers for early stage diagnosis are the key to improve the
cancer survival rates. Further investigations on the molecular mechanisms on NSCLC are essential for
diagnosis and therapeutic strategies [5].

The C1q/tumor necrosis factor-related proteins (CTRPs) are a highly conserved family and have been
found to be composed of 15 members (including CTRP1–CTRP15) [7]. C1qTNF6 [C1qTNF-related pro-
tein 6, also designated as CTRP6 (C1qTNF-related protein-6)] is a glycoprotein composed of 259 amino
acids and has a unique molecular structure, consisting of four domains (signal peptide, short N-terminal
variable region, collagen domain and C-terminal C1q domain) [8,9]. It expresses mainly in adipose tissue,
lung, stomach and so on [10–12]. Growing body of evidences suggest that C1QTNF6 regulates cardiac fi-
brosis, inflammatory reaction, endothelial cell function, fibrogenesis, fatty acid metabolism and carcino-
genesis and so on [13–17]. However, the function and detailed regulatory mechanism of C1QTNF6 in
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lung cancer remains unclear. The aim of the present study was to investigate the effect of C1QTNF6 on the progression
of NSCLC.

Materials and methods
Tissues
Tumor tissues and paired adjacent normal tissues were obtained from 60 NSCLC patients who underwent surgery
at Nanjing Medical University. All the tissue samples were collected and frozen in the liquid nitrogen, then stored at
−80◦C for future use.

Cell culture and grouping
The NSCLC cell lines SPCA1 and A549 were supplied by American Tissue Culture Collection (ATCC; Rockville,
U.S.A.) and cultured in RPMI-1640 medium supplemented with 10% Fetal Bovine Serum (FBS) in a 37◦C, 5% CO2,
and humidified incubator. The cells were divided into five groups: blank control group (Blank Control), si-control
group (si-NC), si-C1QTNF6 transfection group (si-C1QTNF6) for down-regulated C1QTNF6, pcDNA3.1-control
group (pc-NC), pcDNA3.1-C1QTNF6 transfection group (pc-C1QTNF6 group) for overexpressed C1QTNF6.

RNA isolation and quantitative real-time PCR
Total RNA was extracted from cells using TRIzol reagent (Invitrogen, U.S.A.). Equal amounts of RNA were transcribed
into cDNA using the cDNA First-Strand Synthesis kit (Life Technologies, U.S.A.). Total cDNA was used as a starting
material for real-time PCR (RT-PCR) using the Step One Real-Time PCR System (Life Technologies Corp), and each
sample was measured in triplicate. The PCR program was as follows: 95◦C for 3 min followed by 40 cycles of 95◦C
for 10 s, and 60◦C for 30 s. All fold changes were calculated using the 2−��CT comparative method using U6 for
normalization.

Western blot analysis
Each group of cells were lysed to extract total protein using RIPA lysis buffer. The protein concentrations were de-
termined through Bicinchoninic Acid (BCA) Protein Assay Kit (Vazyme, U.S.A.). Equal amounts of protein (30 μg)
were fractionated on a 10% sodium dodecyl sulfate (SDS) polyacrylamide gels, transferred to polyvinylidene difluo-
ride (PVDF) membranes. The membranes were then blocked in 5% skim milk in Tris-buffered saline Tween (TBST)
for 1.5 h. Subsequently, incubated with specific primary antibodies, including anti-P21 (bs55160R, Bioss, Beijing,
China), anti-P27 (26714-1-AP, Proteintech, China), anti-CyclinD1 (bs20596R, Bioss, Beijing, China), anti-caspase-3
(bs0081R, Bioss, Beijing, China), anti-caspase-9 (bs0050R, Bioss, Beijing, China), anti-Bax (bs28034R, Bioss, Beijing,
China), anti-Bcl-2 (bs34012R, Bioss, Beijing, China), anti-MMP-2 (10373-2-AP, Proteintech, China), anti-MMP-9
(10375-2-AP, roteintech, China), anti-GAPDH (10494-1-AP, Proteintech, China), at 4◦C overnight. It was incubated
with Horseradish Peroxidase–conjugated secondary antibody for 1 h at room temperature after washing with TBST.
Protein expressions were detected using an Enhanced Chemiluminescence Detection System (Bio-Rad, CA, U.S.A.).
GAPDH was used as a loading control.

Cell proliferation assay
For 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, transfected cells were seeded
into 96-well plates and incubated for 24, 48, 72 h. MTT assay was applied to measure cell viability by detecting the
solution absorbance at 550 nm wavelength with Microplate Reader (Thermo Fisher Scientific Inc., Waltham, MA,
U.S.A.). For colony formation assay, cells were seeded in a six-well plate at a density of 1000 cells/well for 2 weeks,
after which clones were fixed with methanol and stained with 0.1% Crystal Violet for 4 h at room temperature, and
counted under a light microscope (Olympus, Tokyo, Japan).

Flow cytometry for cell cycle and apoptosis
The effect of C1QTNF6 on cell cycle was detected by Cell Cycle Kit and Cell apoptosis was evaluated by flow cytometry
analysis using FITC-Annexin V/propidium iodide (PI) Apoptosis Detection kit (BD Pharmingen, San Diego, CA,
U.S.A.). After transfection for 24 h, SPCA1 and A549 cells were cultured for 24 h and washed twice with PBS. Then 20
μl of Annexin V and PI were added to each group and incubated for 15 min in the dark. The cell cycle and percentage
of apoptotic cells was detected by FACS Calibur (BD Biosciences, U.S.A.). All analyses were performed in triplicate.
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Wound healing assay
Cells were seeded into six-well plate at 5 × 106 cells/well and cultured at 37◦C. When the cells reached confluence, a
straight line scratched on the cell monolayer and width of the scratch was recorded under a microscope. Afterward,
cells were washed twice with culture medium and cultured for 0, 24, 48 or 72 h. Cells were observed and photographed
under a light microscope (Olympus, Tokyo, Japan).

Transwell assay
Transwell assay was applied to measure cell migration and invasion ability of NSCLC cells. For migration assay, a total
of 4 × 104 cells/well in medium supplemented with 5% FBS were placed in the upper transwell chamber (Corning,
Cambridge, MA), medium containing 20% FBS was added to the lower chambers and cultured at 37◦C, 5% CO2 for
48 h. For invasion assay, cells were added to the upper transwell chambers, which were pre-coated with Matrigel.
Other operations were the same as above. Then cells were fixed with 4% formaldehyde and stained with 0.1% Crystal
Violet. The number of cells was counted under a microscope at 200× magnification.

Tumor xenograft model in nude mice
All laboratory animals were cultivated and worked upon in Laboratory Animal Center, Nanjing Medical University.
Fify microliters of 1 × 106 SPCA1 and A549 cells which transfected si-NC, si-C1QTNF6, pc-NC or pc-C1QTNF6
were injected subcutaneously into the axilla of nude mice. The experimental mice were routinely monitored and killed
on day 35 as per protocols set by the Ethical Committee of the Nanjing Medical University; the tumors were removed
and tumor volume was measured as follows according to the formula: V (cm3) = width2 (cm2) × length (cm)/2. For
Hematoxylin/Eosin (HE) staining, tumor tissues were fixed in 4% paraformaldehyde, and then embedded in paraffin
and serially sectioned. The sections were stained with HE. Slides were visualized under a light microscope and at least
five different sections of tumor tissues were detected for each group. All experimental animals were killed by inhaling
carbon monoxide gas.

Immunohistochemical analysis
Isolated tumor tissues from different groups were immunohistochemically stained for C1QTNF6. In brief, samples
were fixed in 4% neutral formalin for 24 h and cut into 4-μm-thick sections, dried, deparaffinized and dehydrated
in a graded ethanol series, and finally incubated with H2O2. Sections were incubated with primary antibodies at 4◦C
for 12 h. Then, secondary antibodies were applied to slides for 1 h at room temperature. The slides were incubated
with 3,3′-diaminobenzidine (DAB) and counterstained with Hematoxylin. All the slides were visualized under a light
microscope (Olympus, Tokyo, Japan).

Statistical analysis
Statistical analysis was performed using SPSS 19.0 statistical software. Experimental data were expressed as mean +−
SD. Differences between two groups were calculated by Student’s t test and multiple-group comparison were calcu-
lated by one-way analysis of variance (ANOVA) test followed by Tukey’s multiple comparison test of variance. P<0.05
were considered statistically significant.

Results
C1QTNF6 promoted NSCLC cell proliferation
As shown in Figure 1A, RT-qPCR analysis revealed that the RNA expression level of C1QTNF6 was increased in the
NSCLC tissues compared with that in the paired adjacent normal tissues. Consistent with the above results, the RNA
expression level of C1QTNF6 was increased in two NSCLC cell lines (SPCA1 and A549) compared with the normal
lung cell line (16HBE, Figure 1B).

To explore the role of C1QTNF6 in NSCLC cells, si-NC, si-C1QTNF6, pc-NC or pc-C1QTNF6 were transfected
into SPCA1 and A549 cells separately. RT-qPCR assays was employed to measure the expression level of C1QTNF6
in NSCLC cells after infection, si-C1QTNF6 markedly down-regulated C1QTNF6 expression and pc-C1QTNF6
up-regulated C1QTNF6 expression compared with the controls (Figure 1C). Both MTT assay and colony forma-
tion assay were used to evaluate the impact of C1QTNF6 on proliferation of SPCA1 and A549 cells. MTT assay
indicated that the viability of SPCA1 and A549 cells was enhanced in pc-C1QTNF6 group, which was contrast with
si-C1QTNF6 group (Figure 1D,E). The same results were obtained in the colony formation experiment (Figure 1F).
These data indicated that C1QTNF6 promoted NSCLC cell proliferation.
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Figure 1. C1QTNF6 promoted NSCLC cell proliferation

(A–C) RT-PCR showed expression level of C1QTNF6 in NSCLC tissues and cell lines. (D,E) MTT assay was performed to investigate

the role of C1QTNF6 in viability of SPCA1 and A549 cells. (F) Colony formation assay was used to determine the effects of C1QTNF6

on colony formation abilities of SPCA1 and A549 cells. The results were expressed as the mean +− SD of three independent

experiments and each was performed in triplicate. **P<0.01 vs. Non-tumor group, ##P<0.01 vs. 16HBE group, &&P<0.01 vs. si-NC

group, ∧∧P<0.01 vs. pc-NC group.

Effect of C1QTNF6 on cell cycle in NSCLC
Flow cytometric analysis was adopted to test the activity of C1QTNF6 on cell cycle in NSCLC cells. As shown
in Figure 2A, the cells transfected with si-C1QTNF6 had increased cell numbers in the G1 phase. Furthermore,
up-regulated C1QTNF6 exhibited a reduction trend in the cell population in the G1 phase, indicating that knock-
ing down C1QTNF6 could induce cell arrest in G1 phase in both SPCA1 and A549 cells. Besides, to verify this result,
Western blotting assays were performed to detect the expressions of cell cycle-associated proteins. Knocking down of
C1QTNF6 expression could down-regulate the levels of p21 and Cyclin D1, while C1QTNF6 overexpression induced
the protein expressions of p21 and Cyclin D1 when compared with the blank control and si-NC groups (Figure 2B).

C1QTNF6 inhibited NSCLC cell apoptosis
Flow cytometry analysis was used to determine whether C1QTNF6 could aggravate apoptosis of SPCA1 and A549
cells. As expected, the results of cell apoptosis have shown that overexpression of C1QTNF6 remarkably suppressed
apoptosis of SPCA1 and A549 cells. Conversely, down-regulation of C1QTNF6 induced an increase in the propor-
tion of apoptotic cells of SPCA1 and A549 cells compared with control group (Figure 3A). Further, the expression
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Figure 2. Effect of C1QTNF6 on cell cycle in NSCLC

(A) Flow cytometry analysis was performed to evaluate the effects of C1QTNF6 on the cell cycle of SPCA1 and A549 cells. (B)

The expression level of cycle-related proteins were explored in SPCA1 and A549 cell lines in different groups. **P<0.01 vs. si-NC

group, ##P<0.01 vs. pc-NC group.

levels of apoptosis-related proteins were determined by Western blot analysis. Compared with the controls, the ex-
pression levels of Bax, cleaved-caspase-3, and cleaved-caspase-9 were down-regulated when C1QTNF6 up-regulated.
Furthermore, depletion the C1QTNF6 expression caused opposite results (Figure 3B).

C1QTNF6 promoted the migration and invasion of NSCLC cells
To further elucidate how C1QTNF6 influences cell migration and invasion abilities, wound-healing, transwell mi-
gration and invasion assays were applied. As shown in Figure 4A, the wound healing rates in si-C1QTNF6 groups
were significantly depressed compared with that of control group. Furthermore, transwell assay demonstrated that
down-regulation of C1QTNF6 inhibited the migration ability of SPCA1 and A549 cells (Figure 4B). Overexpression
of the C1QTNF6 caused opposite results. As shown in Figure 4C, the cells that transfected with the pc-C1QTNF6
were distinctively more invitatory than control cell. Meanwhile, Western blotting was adapted to detect the MMP-2
and MMP-9 levels. We found that the levels of MMP-2 and MMP-9 dramatically increased in pc-C1QTNF6 group,
while decreased compared with control group (Figure 4D). Overall, these results revealed that a positive effect of
C1QTNF6 in migration and invasion ability of SPCA1 and A549 cells.

C1QTNF6 promoted the development of NSCLC xenografts in vivo
The effects of C1QTNF6 were further confirmed on NSCLC xenografts in vivo. SPCA1 and A549 cells transfected
with blank, control siRNA, si-C1QTNF6 and pc-C1QTNF6 were injected into the axilla of the male Balb/c nude mice.
After the experimental nude mice were killed, the tumors were weighted and volumes were measured. The results
of Figure 5A showed that si-C1QTNF6 could significantly suppress the xenograft tumors growth comparing with
the control group. Furthermore, tumor volumes and weights were also significantly decreased in si-C1QTNF6 group
(Figure 5B,C). However, up-regulation of C1QTNF6 promoted the tumor growth and weight. Additionally, the results
of HE assay indicated that nude mice from pc-C1QTNF6 group had more severe damage in tumor tissues compared
with those in control group (Figure 5D).

The effect of C1QTNF6 on the invasion and apoptosis of NSCLC in vivo
RT-PCR, Western blotting and immunohistochemistry analysis were adapted to evaluate the expressions of C1QTNF6
in tumors. As shown in Figure 6A–C, the expression of C1QTNF6 was significantly suppressed in si-C1QTNF6
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Figure 3. C1QTNF6 inhibited NSCLC cell apoptosis in vitro

(A) Flow cytometry analysis was performed to evaluate the effects of C1QTNF6 on the apoptosis of SPCA1 and A549 cells. (B)

The expression level of apoptosis-related proteins caspase-3, caspase-9, Bcl-2 and BAX in SPCA1 and A549 cell lines in different

groups. **P<0.01 vs. si-NC group, ##P< 0.01 vs. pc-NC group.

group, while obviously increased in pc-C1QTNF6 group compared with control group. At the same time, we ex-
amined the expression levels of migration-related proteins using RT-PCR and Western blotting analysis. We found
that knocking down C1QTNF6 obviously down-regulated MMP-2 and MMP-9 expressions. In addition, the expres-
sion of MMP-2 and MMP-9 were increased in pc-C1QTNF6 group (Figure 7A). As shown in Figure 7B, the arrow
represents TUNEL-positive cells, the results suggested that down-regulated C1QTNF6 expression could significantly
promote tumor cell apoptosis, while C1QTNF6 overexpressed inhibited the tumor cell apoptosis in vivo relative to the
control group. Besides, we observed an increase in the protein expressions of cleaved-caspase-3, cleaved-caspase-9,
MMP-2 and MMP-9 in si-C1QTNF6 group, which was in contrast with pc-C1QTNF6 group compared with control
group (Figure 7C). These data indicated that si-C1QTNF6 exhibited anti-cancer activity in vivo.
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Figure 4. C1QTNF6 promoted the migration and invasion of NSCLC cells

(A) Wound healing assay and (B) Transwell migration analysis were performed to examine the effects of C1QTNF6 on migration

abilities of SPCA1 and A549 cells. (C) Transwell invasion assay was carried out to examine the role of C1QTNF6 in invasion ability

of SPCA1 and A549 cells. (D) Western blotting assay was used to assess the effects of liquiritin on the expressions of MMP-2 and

MMP-9. The band intensity was quantified by ImageJ software. The results were expressed as the mean +− SD of three independent

experiments and each was performed in triplicate. *P <0.05 vs. si-NC group, **P<0.01 vs. si-NC group, ##P<0.01 vs. pc-NC group.

Discussion
In the present study, we found C1QTNF6 was significantly highly expressed in NSCLC tissues and cells. For the
first time, we provided direct evidences that C1QTNF6 acted as an oncogene and promoted NSCLC cell growth and
metastasis.
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Figure 5. C1QTNF6 promoted the development of NSCLC xenografts in vivo

(A) Mice and tumors in the different groups are shown. (B) Tumor volume, (C) tumor weight are recorded. (D) HE assay is presented.

All data are shown as mean +− SD (n=6). **P<0.01 vs. si-NC group, ##P<0.01 vs. pc-NC group.

Lung cancer is reported to be the most common malignancy and leading cause of cancer-related deaths in terms
of both morbidity and mortality worldwide [18–21]. At present, the most effective treatment for NSCLC is obtained,
but it is easy to recur and has poor prognosis [22], the overall 5-year survival rate has not improved significantly
[23,24]. Given these data, it emphasizes an urgent need for new therapeutic targets with high efficiency for NSCLC
diagnosis and treatment. Therefore, more and more studies have focused on exploring new and effective markers for
early diagnosis of recurrence and metastasis, providing potential therapeutic targets for NSCLC [25,26].

Presently, accumulating evidence demonstrated that C1QTNF6 have important roles in human disease progres-
sion and metastasis, including cardiac fibrosis, inflammatory reaction, endothelial cell function, fibrogenesis, fatty
acid metabolism and carcinogenesis, and so on [13–17]. For instance, Chi et al. have reported that C1QTNF6 im-
proves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in
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Figure 6. Expression of C1QTNF6 in different groups

(A–C) RT-PCR, Western blotting and immunohistochemistry analyses were adapted to evaluate the expressions of C1QTNF6 in

tumors. **P<0.01 vs. si-NC group, ##P<0.01 vs. pc-NC group.

spontaneously hypertensive rats; Murayama et al. demonstrated that C1QTNF6 is an endogenous complement regu-
lator that can effectively treat induced arthritis; and in 2019, Han et al. revealed that C1QTNF6 as a novel biomarker
regulates cellular behaviors in A549 cells and exacerbates the outcome of lung adenocarcinoma patients. However, the
expression of C1QTNF6 in NSCLC was still unknown and its function and detailed regulatory mechanism merited
further investigation. In the present study, the experiments suggested that ectopic expression of C1QTNF6 signifi-
cantly promoted cell proliferation of SPCA1 and A549 cells and tumor growth in vivo.

Apoptosis is strictly regulated by many proteins and pathways. Bcl-2 family members play an important role in
regulating apoptosis [27]. The Bcl-2 family consists of pro-apoptotic molecules (Bax, Bim, Bcl-xs, Bak, Bid, Bad, Bik)
and anti-apoptotic (Bcl-2, Bcl-xl, Bcl-w, A1) [28]. Bax proteins allow small molecules such as ions and cytochrome c to
penetrate the mitochondrial membrane into the cytoplasm which leads to cell apoptosis. In our study, compared with
the controls, the levels of Bax, caspase-3, and caspase-9 were down-regulated on C1QTNF6 overexpression. However,
our results detected the decreased Bcl-2 expression in SPCA1 and A549 cells with C1QTNF6 down-expression, while
the C1QTNF6 overexpression showed opposite results in the cells. Additionally, knocking down C1QTNF6 obviously
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Figure 7. C1QTNF6 inhibited NSCLC cell apoptosis in vivo

(A) RT-PCR and Western blotting assay was used to assess the effects of C1QTNF6 on the expressions of MMP-2 and MMP-9.

(B) TUNEL assay was performed to evaluate the effects of C1QTNF6 on the apoptosis of tumors. (C) The expression level of

apoptosis-related proteins caspase-3, caspase-9, Bcl-2 and BAX in different groups. **P<0.01 vs. si-NC group, ##P<0.01 vs.

pc-NC group.

induced the apoptosis of SPCA1 and A549 cells. On the contrary, overexpression of C1QTNF6 showed a decrease in
apoptosis in both cell lines. Moreover, down-regulation of C1QTNF6 could weaken the tumor growth and apoptosis
in vivo. These findings suggested that C1QTNF6 might act as a tumor oncogene and down-regulation of its expression
may contribute to the progression of NSCLC.

Tumor spreading of cancer to bones, lungs and brain largely depends on the ability of tumor cells to invade the
adjacent tissues, which also successfully establishes a metastatic tumor. Tumor metastasis is a complex, efficient and
lethal event, and the main cause of death in cancer patients [29]. Therefore, prevention of cancer cell metastasis is
an effective strategy for successful management of cancers. At the same time, in vivo and in vitro experiments also
demonstrated that C1QTNF6 could substantially promote the ability of migration and invasion of NSCLC cells by
wound healing and transwell assays.

In conclusion, our results suggested that that inhibition of C1QTNF6 attenuated cell proliferation, migration, in-
vasion and promoted apoptosis in vitro and in vivo of NSCLC. It provides us with a new and key perspective in
understanding and treating NSCLC.
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