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Abstract 

Background:  Malaria surveillance is critical for monitoring changes in malaria morbidity over time. National Malaria 
Control Programmes often rely on surrogate measures of malaria incidence, including the test positivity rate (TPR) and 
total laboratory confirmed cases of malaria (TCM), to monitor trends in malaria morbidity. However, there are limited 
data on the accuracy of TPR and TCM for predicting temporal changes in malaria incidence, especially in high burden 
settings.

Methods:  This study leveraged data from 5 malaria reference centres (MRCs) located in high burden settings over 
a 15-month period from November 2018 through January 2020 as part of an enhanced health facility-based surveil-
lance system established in Uganda. Individual level data were collected from all outpatients including demographics, 
laboratory test results, and village of residence. Estimates of malaria incidence were derived from catchment areas 
around the MRCs. Temporal relationships between monthly aggregate measures of TPR and TCM relative to estimates 
of malaria incidence were examined using linear and exponential regression models.

Results:  A total of 149,739 outpatient visits to the 5 MRCs were recorded. Overall, malaria was suspected in 73.4% of 
visits, 99.1% of patients with suspected malaria received a diagnostic test, and 69.7% of those tested for malaria were 
positive. Temporal correlations between monthly measures of TPR and malaria incidence using linear and exponential 
regression models were relatively poor, with small changes in TPR frequently associated with large changes in malaria 
incidence. Linear regression models of temporal changes in TCM provided the most parsimonious and accurate pre-
dictor of changes in malaria incidence, with adjusted R2 values ranging from 0.81 to 0.98 across the 5 MRCs. However, 
the slope of the regression lines indicating the change in malaria incidence per unit change in TCM varied from 0.57 
to 2.13 across the 5 MRCs, and when combining data across all 5 sites, the R2 value reduced to 0.38.

Conclusions:  In high malaria burden areas of Uganda, site-specific temporal changes in TCM had a strong linear 
relationship with malaria incidence and were a more useful metric than TPR. However, caution should be taken when 
comparing changes in TCM across sites.
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Background
Malaria surveillance is considered a core intervention 
and critical for the purposes of monitoring and evalua-
tion [1–3]. However, for many countries in sub-Saharan 
Africa, malaria surveillance systems are limited in their 
ability to accurately monitor trends in malaria morbid-
ity. The most widely available source of routine malaria 
surveillance data come from national health manage-
ment information systems (HMIS). HMIS data typically 
includes aggregate numbers of patients tested for malaria 
and diagnosed with malaria. The “gold standard” metric 
for malaria morbidity is malaria incidence, defined as 
the number of cases of laboratory confirmed malaria per 
unit time divided by the size of the population at risk [4]. 
Although the quality of HMIS data has improved over 
the last decade in most countries in sub-Saharan Africa 
due to expanded diagnostics and a reliance on laboratory 
confirmed cases of malaria, it is not possible to routinely 
estimate malaria incidence because of lack of informa-
tion on where patients reside and undefined catchment 
populations around the health facilities. Therefore, the 
monitoring of temporal and geographic trends in malaria 
morbidity using HMIS data typically relies on surrogate 
measures of malaria incidence such as the test positivity 
rate (TPR) or total laboratory confirmed cases of malaria 
(TCM).

The TPR is defined as the number of laboratory con-
firmed cases of malaria per 100 patients tested for 
malaria. Advantages of the TPR include that it is rela-
tively easy to measure and is not dependent on the 
numbers of patients coming to a health facility or under-
going diagnostic testing, assuming that there is no dif-
ferential bias in who accesses care or undergoes testing 
at the facility. However, temporal trends in the TPR may 
be susceptible to bias due to changes in diagnostic test-
ing, health care-seeking behaviour, and the incidence of 
non-malarial febrile illnesses [5]. In addition, TPR has 
a non-linear relationship with malaria incidence and 
in high endemic settings, small changes in TPR can be 
associated with large changes in malaria incidence [6, 
7]. More still, TPR is a proportion, commonly used as a 
qualitative measure as it is difficult to translate changes 
in TPR into meaningful quantitative measures needed to 
allocate resources and assess impact. TCM simply rep-
resents the numerator of the TPR and is also relatively 
easy to measure [8]. Unlike the TPR, the TCM is not con-
strained between 0 and 100. However, this metric lacks a 
clear denominator and is highly dependent on diagnos-
tic practices at a health facility, changes in the catchment 

area or catchment population, and any factors that may 
impact care-seeking behaviours, such as poor weather, 
drug stock-outs, access to other health facilities, or com-
munity-based programmes [9, 10].

In Uganda, an enhanced health facility-based malaria 
surveillance system was established to provide high qual-
ity data at sentinel sites around the country referred to as 
Malaria Reference Centers (MRCs) [11]. At these MRCs, 
individual patient level data is collected and resources are 
provided to maximize laboratory testing of all patients 
with suspected malaria. More recently, data on village 
of residence has been captured and catchment areas 
around the MRCs identified, allowing for the generation 
of estimates of malaria incidence. In this study, temporal 
relationships between TPR and TCM relative to malaria 
incidence estimates were examined at five MRCs over a 
15-month period in areas where the burden of malaria is 
high.

Methods
Establishment of health‑facility based malaria surveillance 
system
Data for this study come from the Uganda Malaria 
Surveillance Project (UMSP). UMSP in collaboration 
with the Uganda National Malaria Control Division 
(NMCD) established a health facility-based malaria 
surveillance system at several MRCs beginning in 2006. 
MRCs are high volume level III/IV public health facili-
ties that generally see between 1000 and 3000 outpa-
tients per month and have functioning laboratories. 
At each MRC, individual-level data from standardized 
HMIS registers for all patients presenting to the outpa-
tient departments are entered into an Access database 
by on-site data officers. Primary data captured comes 
from the HMIS 031 standardized form (Additional 
file  1: Appendix  1) and includes village of residence, 
age, gender, type of malaria test done (rapid diagnos-
tic test (RDT) or microscopy), and malaria diagnostic 
test results. The research team supports the sites with 
training, site support supervision, and buffer stock of 
laboratory supplies/consumables. Full-time regional 
surveillance assistants are based around the country; 
each supervising 8–10 MRCs. Site support supervision 
is conducted on a regular basis to provide refresher 
training and onsite mentorship on malaria case man-
agement, malaria microscopy, conduct data use meet-
ings and provide feedback on performance, and to 
conduct laboratory external quality control for malaria 
microscopy. Core team members are also responsible 
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for generating periodic reports, communicating with 
Ministry of Health officials and other key stakeholders, 
and conducting data analyses.

This study included data from five MRCs which met 
the following criteria: (1) location in a high malaria 
burden area where indoor residual spraying of insecti-
cide (IRS) is not being implemented, and (2) less than 
5% missing data from November 2018 through Janu-
ary 2020 for each of the following variables; age (all 
patients), village of residence (all patients), and results 
for malaria diagnostic testing (among patients with 
suspected malaria). Suspected malaria was defined as 
all patients referred for malaria laboratory testing plus 
all patients not referred for a malaria laboratory test 
but given a clinical diagnosis of malaria. These facili-
ties include Lobule health centre III in Koboko District, 
Opia health centre III in Arua District, Awach health 
centre IV in Gulu District, Lalogi health centre IV in 

Omoro District, and Lumino health centre III in Busia 
District (Fig. 1).

Malaria metrics
TPR was defined as the proportion of all patients tested 
for malaria who tested positive. TCM was defined as the 
number of all patients who tested positive for malaria 
(numerator of the TPR). To generate estimates of malaria 
incidence, catchment areas were identified around 
the MRCs based on the assumption that the majority 
of patients within the catchment area who developed 
malaria would be captured by the surveillance system. 
Catchments areas included the village where the MRC is 
located and adjacent villages that met all of the follow-
ing criteria: (1) did not contain another public health 
facility, (2) were in the sub-county where the MRC is 
located, (3) had a similar incidence of malaria as the vil-
lage where the MRC is located, and (4) provided an esti-
mated total catchment area population of at least 1400 

Fig. 1  Map of Uganda showing the study districts and malaria reference centres
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persons. Village level population estimates were obtained 
from the AfriPop database and included a fixed popula-
tion growth function [12]. Catchment areas around each 
MRC included between 1 and 5 villages (Additional file 2: 
Appendix 2). Estimates of malaria incidence were defined 
as the total number of laboratory confirmed cases of 
malaria from patients residing within the catchment area 
(adjusted for missing data on malaria test results and vil-
lage of residence) per unit time divided by the population 
of the catchment area.

Statistical analysis
Data were analysed using Stata version 14.1 (College Sta-
tion, TX). Cumulative data for the characteristics of the 
study populations were summarized over the 15-month 
observation period (November 2018 to January 2020). 
Data were aggregated by monthly intervals for all analy-
ses of longitudinal trends. The maximal fold changes were 
defined as the ratio of maximum monthly value divided 
by the minimum monthly value for each metric, and used 
to describe the within site variation in TPR, TCM and 
malaria incidence during the observation period. Tem-
poral correlations between TPR and malaria incidence as 
well as between TCM and malaria incidence stratified by 
MRC were made using linear and exponential terms with 
goodness-of-fit between models compared using Akaike 
Information Criteria (AIC). Final models of temporal 
correlations between TCM and malaria incidence strati-
fied by MRC were made using standard linear regression 
with model characteristics summarized as the slope (95% 
CI) and adjusted R-squared value. Temporal correlations 
between TCM and malaria incidence for all 5 sites com-
bined were estimated using a linear regression model 
with a random effect for study site. Selected analyses 
were also restricted to only patients under 5 years of age.

Results
Characteristics of the study population
Over the 15  month study period there were a total of 
149,739 outpatient visits, ranging from 20,671 to 40,445 
visits across the five MRCs. Malaria was suspected in 
73.4% of all outpatient visits, ranging from 58.7 to 91.9% 
across the five MRCs. Among patients with suspected 
malaria, 99.1% had a diagnostic test done and 96.6% 
of these were tested using a RDT (the remainder being 
tested using microscopy). Overall, 69.7% of those tested 
for malaria were positive, with TPRs ranging from 59.8 
to 77.3% across the five MRCs (Table 1). Overall, 50.7% 
of all patients presenting to the outpatient departments 
of these five MRCs had a laboratory confirmed diagnosis 
of malaria, highlighting the predominant role of malaria 
on the burden of disease at these facilities. When consid-
ering only children less than 5 years of age, testing rates 
and use of RDTs were similar, however, the proportion of 
patients with suspected malaria and TPRs were slightly 
higher across all five MRCs.

Summary data on longitudinal measures of malaria 
morbidity
Descriptive statistics of monthly aggregate measures 
of malaria morbidity for each MRC are presented 
in Table  2. Between sites, median monthly TPR val-
ues ranged from 59.4% in Lumino to 76.4% in Lobule. 
Results were similar when median monthly TPR val-
ues were restricted to only patients from the catch-
ment areas. Within sites, monthly TPR values varied 
from a maximal 1.3-fold change in Lobule to a 2.4-fold 
change in Opia. Compared to TPR values, there was 
greater variation in monthly TCM values and esti-
mates of malaria incidence, both between and within 
sites. Between sites, median monthly TCM values 
ranged from 700 in Opia to 1131 in Lobule. Within 

Table 1  Characteristics of the study population from November 2018 through January 2020

Age group Characteristic MRC

Awach Lalogi Opia Lumino Lobule

All ages Total visits to outpatient departments 40,445 38,549 20,671 26,343 23,731

Visits with malaria suspected (% total visits) 23,739 (58.7) 24,273 (63.0) 17,432 (84.3) 22,669 (86.1) 21,819 (91.9)

RDT or microscopy done (% suspected) 22,828 (96.2) 24,246 (99.9) 17,420 (99.9) 22,577 (99.6) 21,818 (100)

Tested using RDT (% tested) 21,815 (95.6) 23,458 (96.7) 17,407 (99.9) 21,829 (96.7) 20,694 (94.8)

Positive malaria test (% tested) 16,872 (73.9) 16,521 (68.1) 12,170 (69.9) 13,510 (59.8) 16,867 (77.3)

Age < 5 years Total visits to outpatient departments 7561 8140 3717 5917 5300

Visits with malaria suspected (% total visits) 5222 (69.1) 5778 (71.0) 3214 (86.5) 5503 (93.0) 5090 (96.0)

RDT or microscopy done (% suspected) 5002 (95.8) 5772 (99.9) 3214 (100.0) 5476 (99.5) 5089 (100)

Tested using RDT (% tested) 4777 (95.5) 5510 (95.5) 3212 (99.9) 5133 (93.7) 4339 (85.3)

Positive malaria test (% tested) 3858 (77.1) 4428 (76.7) 2265 (70.5) 4058 (74.1) 4263 (83.8)
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site monthly TCM values varied from a maximal 3.0-
fold change in Lumino to a 7.8-fold change in Opia. 
Between sites, median monthly estimates of malaria 
incidence ranged from 744 cases per 1000 person years 
from the catchment area around Lalogi to 1689 cases 
per 1000 person years from the catchment area around 
Opia. Within site monthly estimates of malaria inci-
dence varied from a maximal 2.9-fold change in Lob-
ule to an 8.1-fold change in Opia. Similar findings were 

seen when data were restricted to only children under 
5 years of age.

Temporal trends and correlations between measures 
of malaria morbidity
Temporal changes in monthly measures of malaria 
morbidity over the 15-month observation period for 
each MRC are presented in Fig.  2. A consistent tem-
poral pattern was seen in the three metrics of malaria 

Table 2  Summary data on longitudinal measures of malaria morbidity

*  cases per 1000 person years

Age group Monthly metrics, median 
(range)

MRC

Awach Lalogi Opia Lumino Lobule

All ages Test positivity rate (TPR) all 
patients

69.2% (60.5–87.0%) 67.0% (40.8–83.2%) 63.0% (35.6–85.9%) 59.4% (51.9–70.7%) 76.4% (67.1–84.1%)

Test positivity rate (TPR) from 
catchment area

73.3% (61.3–86.9%) 69.1% (40.7–86.4%) 68.4% (40.8–87.9%) 62.0% (50.2–73.2%) 76.3% (71.1–88.1%)

Total laboratory confirmed 
cases of malaria (TCM)

994 (612–1951) 1,030 (349–2465) 700 (210–1633) 776 (570–1724) 1,131 (534–1695)

Estimated cases of malaria from 
catchment area

594 (398–1194) 370 (118–913) 307 (90–711) 124 (90–353) 178 (111–327)

Proportion of TCM from catch-
ment area

63.4% (56.2–70.9%) 39.2% (30.4–44.5%) 43.2% (34.3–52.5%) 16.0% (12.9–20.5%) 18.0% (13.2–20.8%)

Estimated population of catch-
ment area

5239 (5134–5347) 5919 (5801–6041) 2170 (2126–2214) 1487 (1457–1517) 2871 (2814–2930)

Malaria incidence (MI) from 
catchment area*

1357 (921–2726) 744 (244–1846) 1689 (489–3946) 1010 (721–2879) 761 (473–1351)

Maximal fold change in TPR (all 
patients)

1.4 2.0 2.4 1.4 1.3

Maximal fold change in TCM (all 
patients)

3.2 7.1 7.8 3.0 3.2

Maximal fold change in MI 
(catchment area only)

3.0 7.6 8.1 4.0 2.9

 < 5 years Test positivity rate (TPR) all 
patients

72.0% (57.6–90.7%) 75.1% (43.8–89.9%) 65.5% (32.4–91.3%) 72.2% (62.7–85.9%) 83.1% (70.7–89.3%)

Test positivity rate (TPR) from 
catchment area

74.0% (55.3–88.2%) 77.6% (40.0–90.9%) 69.5% (26.5–90.0%) 67.9% (54.5–83.8%) 83.7% (67.2–91.1%)

Total laboratory confirmed 
cases of malaria (TCM)

230 (129–449) 254 (98–730) 129 (39–332) 256 (156–544) 284 (159–422)

Estimated cases of malaria from 
catchment area

139 (80–291) 97 (31–270) 64 (13–156) 34 (19–108) 51 (29–74)

Proportion of TCM from catch-
ment area

61.1% (47.6–65.4%) 42.9% (30.8–51.0%) 45.1% (32.5–60.6%) 13.6% (10.2–19.8%) 19.8% (13.8–24.6%)

Estimated population of catch-
ment area

975 (956–995) 1102 (1,080–1124) 404 (396–412) 277 (271–283) 535 (524–546)

Malaria incidence (MI) from 
catchment area*

1681 (976–3559) 1047 (340–2931) 1905 (390–4660) 1448 (838–4718) 1161 (659–1642)

Maximal fold change in TPR (all 
patients)

1.6 2.1 2.8 1.4 1.3

Maximal fold change in TCM (all 
patients)

3.5 7.4 8.5 3.5 2.7

Maximal fold change in MI 
(catchment area only)

3.6 8.6 11.9 5.6 2.5
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burden at each MRC, with peaks between April and 
August 2019 following the annual long rainy season 
that occurs in most of the country. Smaller peaks were 
seen at some sites following the shorter rainy season 
that occurs between November and January, with the 
exception of Lumino which had a large peak in TCM 
and malaria incidence in February 2019. Qualitatively 
all three metrics tracked relatively well together over 
time at all the sites, although monthly changes in TCM 
tracked better with malaria incidence compared to 
monthly changes in TPR.

The assessment of temporal relationships between 
routinely available metrics of malaria morbidity, includ-
ing TPR and TCM, with estimates of malaria incidence 
in the catchment areas around the MRCs are provided 
in Fig.  3. Linear correlations between TPR and malaria 
incidence were relatively poor, especially in Lumino and 
Lobule. Indeed, small changes in TPR were frequently 
associated with large changes in malaria incidence. The 
use of an exponential model improved model fit at 4 of 
the 5 sites, but only marginally. In contrast, linear corre-
lations between TCM and malaria incidence were much 
stronger with improved model fit at all the sites when 
compared to either linear or exponential correlations 
between TPR and malaria incidence. Compared to linear 
correlations, exponential correlations between TCM and 
malaria inidence worsened model fit for 3 of the sites and 
was associated with only modest improved fit at 2 of the 
sites. In summary, linear regression models of temporal 
changes in TCM provided the most parsimonious and 
accurate predictor of changes in malaria incidence across 
the 5 high burden sites included in this study.

To further quantify the relationships between tem-
poral changes in TCM and malaria incidence, the slope 
and adjusted R2 values for linear regression models for 
each site and all sites combined are presented in Table 3. 
Overall, TCM was an excellent predictor of malaria inci-
dence for the individual sites with adjusted R2 values 
ranging from 0.81 to 0.98. Findings were similar when 
restricting the analysis to only children less than 5 years 
of age, although at one site (Lobule) the adjusted R2 value 
was only 0.68. In contrast, when combining data across 
all 5 sites, the R2 value reduced to 0.38 when consider-
ing all patients and 0.35 when only considering children 
less than 5  years of age (Table  3, Fig.  4). Furthermore, 
the slope of the regression lines indicating the change 
in malaria incidence per unit change in TCM varied 
across the sites. For example in Lobule a doubling in 
TCM was indicative of a 57% increase in malaria inci-
dence (slope = 0.57), while in Opia and doubling in TCM 
was indicative of a 213% increase in malaria incidence 
(slope = 2.13). When considering only children under 
5 years of age, the relative changes in malaria incidence 

Fig. 2  Temporal changes in monthly measures of malaria morbidity 
over the 15 month observation period for each MRC: TPR (green line), 
TCM (blue line), and malaria incidence (red line)
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incidence for each MRC. Blue dots represent observed values. AIC = Akaike Information Criteria
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per unit change in TCM were even greater with slopes 
ranging from 2.78 to 13.4 across the 5 sites.

Discussion
This study used data routinely collected at health facili-
ties to generate two common metrics of malaria morbid-
ity, TPR and TCM, and compared temporal relationships 

between these metrics with direct estimates of malaria 
incidence in 5 high burden areas of Uganda. In this set-
ting, changes in TPR were poor predictors of changes 
in malaria incidence, with small changes in TPR often 
associated with large changes in malaria incidence. In 
contrast, site specific changes in TCM exhibited a strong 
linear relationship with changes in malaria incidence, 
suggesting this metric could provide a useful indicator 
of relative changes in malaria morbidity over time within 
sites. However, relationships between absolute changes 
in TCM and absolute changes in malaria incidence varied 
from site to site, limiting the ability to directly translate 
changes in TCM to changes in malaria incidence.

Malaria surveillance is essential to monitor trends over 
time and space and evaluate the impact of control inter-
ventions. In settings in which transmission remains rela-
tively high, surveillance activities focused on measures 
of malaria morbidity provide the most useful data for 
analysis of trends, stratification, and planning of resource 
allocation [2, 13, 14]. In most high endemic countries, 
routine health information systems involving health 
facilities provide the only practical, continuous, and sys-
tematic source of data on malaria morbidity. However, 
the utility of routine data from health facilities may be 
limited by incomplete or inaccurate reporting, lack of 
diagnostic testing in patients with suspected malaria, and 
poor quality laboratory diagnostics. Despite these chal-
lenges, an increased emphasis on laboratory-based con-
firmation of malaria and widespread availability of RDTs 
has improved the quality and utility of routine health 
facility-based data [11, 15–17].

A strength of the current study was the use of high 
quality data from an enhanced malaria surveillance sys-
tem at sentinel sites with a strong emphasis placed on 
complete reporting and laboratory confirmation for the 
diagnosis of malaria. Indeed, the fact that over 99% of 
patients with suspected malaria underwent diagnostic 
testing and over 96% of those tested had an RDT greatly 

Table 3  Linear regression models of Total laboratory confirmed cases of malaria as predictors of malaria incidence

a   Change in incidence of malaria per 1000 person years / change in total laboratory confirmed cases of malaria
b   Random effects model (R2 unadjusted in models using random effects)

MRC All ages Age < 5 years

Slope (95% CI)a Adjusted R2 Slope (95% CI)a Adjusted R2

Awach 1.29 (1.19–1.39) 0.98 7.03 (6.17–7.88) 0.96

Lalogi 0.75 (0.68–0.82) 0.98 3.99 (3.45–4.52) 0.95

Opia 2.13 (1.86–2.39) 0.95 13.4 (11.9–14.8) 0.97

Lumino 1.68 (1.32–2.04) 0.88 9.41 (7.89–10.9) 0.93

Lobule 0.57 (0.41–0.73) 0.81 2.78 (1.71–3.86) 0.68

All sites combinedb 1.27 (0.78–1.75) 0.38 5.27 (3.42–7.13) 0.35
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Fig. 4  Linear (red line) model of the relationship between TCM and 
malaria incidence for all 5 MRCs combined stratified by a patients of 
all ages, and b only patients < 5 years of age. Colored dots represent 
observed values stratified by MRC
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reduced the potential for bias due to variations in these 
factors. Another strength of this study was the availability 
of estimates of malaria incidence from catchment areas 
around the health facilities. Malaria incidence provides 
the most direct measure of malaria burden and allows 
one to quantify cases over time relative to the size of the 
population at risk. The most accurate method of esti-
mating malaria incidence involves prospective cohort 
studies, where all cases of malaria are captured from a 
defined study population [5, 18–20]. However, cohort 
studies require considerable resources and are rarely 
undertaken as part of routine surveillance programmes. 
In this study, a practical and low-cost method was used 
to estimate malaria incidence by improving the capture 
of routine data on the village of residence among patients 
presenting to the health facilities, mapping catchment 
areas around the facilities, and estimating the population 
of these catchment areas. Indeed, although village of resi-
dence is included on the HMIS 031 standardized form, 
under routine circumstances this is rarely filled out and 
when it is filled out, fraught with inaccuracies and no way 
of linking this information to any meaningful popula-
tion level data. Indeed, one of the key (and pain-staking) 
aspects of the “enhanced” surveillance system used in this 
study was training the staff at the MRCs to accurately fill 
out the village of residence, creating a novel coding sys-
tem for entering this into an electronic database, and cre-
ating maps and shapefiles that would allow the linking of 
malaria cases to catchment areas and estimating the pop-
ulations of these catchment areas. Generating direct esti-
mates of malaria incidence provided a means of assessing 
the accuracy of surrogate measures of malaria morbid-
ity, including TPR and TCM, in predicting changes over 
time.

TPR, defined as the number of laboratory confirmed 
cases per 100 suspected cases examined, has been used 
to define levels of endemicity, identify high burden areas, 
and evaluate the impact of control interventions [21–25]. 
However, TPR is subject to bias due to changes in the 
incidence of non-malaria fevers and has a complex, non-
linear relationship with malaria incidence [5, 7]. In addi-
tion, given that this metric is expressed as a proportion, it 
is commonly used as a qualitative measure as it is difficult 
to translate changes in TPR into meaningful quantitative 
measures needed to allocate resources and assess impact. 
In this study from 5 highly endemic areas of Uganda, 
temporal changes in TPR correlated poorly with changes 
in malaria incidence, with small changes associated with 
large changes in incidence. This is not surprising as when 
the burden of malaria is very high, TPRs can become 
nearly “saturated” well before malaria incidence has 
peaked. In a study from 15 villages in Western Uganda, 
the relationship between village level estimates of TPR 

and malaria incidence was best represented by an expo-
nential model [6]. In this study, the correlation between 
TPR and malaria incidence was poor at low transmission 
levels, with large changes in TPR associated with minimal 
changes in malaria incidence. The correlation improved 
among villages with higher transmission intensity where 
the TPRs ranged from 10–50%. However, this study did 
not address the other end of the spectrum when trans-
mission intensity becomes very high and TPRs exceed 
50%, as was observed in a majority of the time points for 
all 5 sites included in this report. Taken together, these 
data suggest that in Uganda TPR and malaria incidence 
have a non-linear relationship and correlate poorly when 
transmission is either relatively low or relatively high. 
In contrast to these data from Uganda, in a study from 
Yunnan Province of China annual estimates of TPR and 
malaria incidence had a strong linear relationship with 
an adjusted R2 value of 0.85 [26]. In this study, malaria 
burden changed dramatically with annual TPRs declining 
from a high of 13% to less than 1% and malaria incidence 
declining from a high of 648 to 23 cases per 100,000 per-
son years.

TCM, defined as the total laboratory confirmed cases 
of malaria per unit time, has also been used as a surrogate 
measure of malaria incidence. TCM is simple to meas-
ure, and unlike TPR, is quantitatively easy to interpret 
and not constrained by an upper limit. However, TCM 
is directly dependent on access to care and diagnositc 
testing and therefore highly susceptible to bias by these 
factors. For example, in a study from the Democratic 
Republic of the Congo evaluating trends in reported 
malaria cases between 2005 and 2014, a sharp increase 
in confirmed cases after 2010 was presumed to be due 
to the introduction and scale up in RDTs rather than a 
true increase in the incidence of malaria [27]. The study 
presented in this report benefited from an enhanced sur-
veillance system where almost all patients with suspected 
malaria underwent diagnostic testing using an RDT. 
Indeed, in this study with limited potential source of bias 
acruing from access to care and diagnositc testing, tem-
poral changes in TCM tracked much better with changes 
in malaria incidence compared to temporal changes in 
TPR. In addition, site-specific temporal changes in TCM 
had a strong linear relationship with malaria incidence, 
meaning that within an individual health facility relative 
changes in TCM and malaria incidence were proportion-
ate (e.g. a 75% increase in TCM would be associated with 
3 times the increase in malaria incidence compared to a 
25% increase in TCM). However, because the slopes of 
the linear relationships between TCM and malaria inci-
dence varied from site to site, changes in TCM could not 
be directly translated into changes in malaria incidence 
(i.e. a 50% in TCM did not necessarily correspond with a 
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50% increase in malaria incidence). This is not surprising 
given that TCM is highly dependent on the number of 
patients who access a health facility, which can vary from 
site to site.

This study had several limitations. First, estimates of 
malaria incidence came from catchment areas around 
each MRC and could have been associated with inaccu-
racies in the numerator (cases of malaria per unit time) 
and/or the denominator (population at risk). It was 
assumed that all cases of malaria within the catchment 
areas were captured at their respective health facilities, 
which could have led to an underestimation of the true 
incidence of malaria. Population denominators came 
from publicly available datasets which utilized available 
census data and satellite imagery for mapping settlements 
[28]. Errors in population estimates could have led to 
either an overestimation or underestimation of the true 
incidence of malaria. However, it is likely that potential 
bias in estimating malaria incidence was non-differen-
tial with respect to calendar time and, therefore, should 
not have had a significant impact on the analyses per-
formed. Second, measurements of TPR and TCM were 
derived from all patients who presented to the MRCs 
while estimates of malaria incidence were derived only 
from the subset of patients who resided in the catchment 
areas around the MRCs. Differences between patients 
who did and did not reside in the catchment areas could 
have influenced the study findings, although in a previ-
ous study from Uganda adjustment for area of residence 
did not influence temporal trends in TPR [29]. Third, 
this study was conducted at health facilities that were 
part of an enhanced malaria surveillance network where 
support was provided to maximize the use of laboratory 
testing and prevent stock-outs of essential commodities. 
Thus, care should be taken when generalizing results to 
other settings were the reporting of laboratory confirmed 
malaria may be affected by poor malaria case manage-
ment. Finally, this study only included data from areas of 
Uganda with high transmission intensity and should not 
be generalized to lower transmission settings.

Conclusion
Conducting high quality malaria surveillance in high 
transmission settings is critical, as these areas dispropor-
tionately contribute to malaria morbidity and should be 
prioritized for control interventions. High burden areas 
represent a unique challege as large changes in disease 
incidence may go unnoticed or underappreciated. In 
this study, a relatively novel approach was used to esti-
mate malaria incidence using routinely collected data 
and identifying catchment areas around health facili-
ties. Temporal changes in TPR correlated poorly with 
changes in malaria incidence and did not provide a very 

useful metric for monitoring trends in disease burden. In 
contrast, TCM in a setting where laboratory testing for 
malaria was almost universal was strongly predictive of 
relative changes in malaria incidence over time at indi-
vidual health facilities. However, TCM alone cannot be 
used to estimate malaria incidence or quantify changes in 
malaria incidence. There should be a continued emphasis 
on improving the quality of health facility-based malaria 
surveillance and maximizing the utility of these data 
through improved metrics and an understanding of their 
characteristics.
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