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Abstract

Background: Proteolysis regulation allows gut microbes to respond rapidly to dynamic intestinal environments by
fast degradation of misfolded proteins and activation of regulatory proteins. However, alterations of gut microbial
proteolytic signatures under complex disease status such as inflammatory bowel disease (IBD, including Crohn’s
disease (CD) and ulcerative colitis (UC)), have not been investigated. Metaproteomics holds the potential to
investigate gut microbial proteolysis because semi-tryptic peptides mainly derive from endogenous proteolysis.

Results: We have developed a semi-tryptic peptide centric metaproteomic mining approach to obtain a snapshot
of human gut microbial proteolysis signatures. This approach employed a comprehensive meta-database, two-step
multiengine database search, and datasets with high-resolution fragmentation spectra to increase the confidence of
semi-tryptic peptide identification. The approach was validated by discovering altered proteolysis signatures of
Escherichia coli heat shock response. Utilizing two published large-scale metaproteomics datasets containing 623
metaproteomes from 447 fecal and 176 mucosal luminal interface (MLI) samples from IBD patients and healthy
individuals, we obtain potential signatures of altered gut microbial proteolysis at taxonomic, functional, and
cleavage site motif levels. The functional alterations mainly involved microbial carbohydrate transport and
metabolism, oxidative stress, cell motility, protein synthesis, and maturation. Altered microbial proteolysis signatures
of CD and UC mainly occurred in terminal ileum and descending colon, respectively. Microbial proteolysis patterns
exhibited low correlations with β-diversity and moderate correlations with microbial protease and chaperones
levels, respectively. Human protease inhibitors and immunoglobulins were mainly negatively associated with
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microbial proteolysis patterns, probably because of the inhibitory effects of these host factors on gut microbial
proteolysis events.

Conclusions: This semi-tryptic peptide centric mining strategy offers a label-free approach to discover signatures of
in vivo gut microbial proteolysis events if experimental conditions are well controlled. It can also capture in vitro
proteolysis signatures to facilitate the evaluation and optimization of experimental conditions. Our findings
highlight the complex and diverse proteolytic events of gut microbiome, providing a unique layer of information
beyond taxonomic and proteomic abundance.
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Introduction
Gut microbiota lives in a dynamic environment, facing pro-
teotoxic and metabolic stresses from drugs, diet, microbial
competitors, and host endogenous chemical components.
Regulated proteolysis allows microbes to respond to stress
conditions rapidly by fast and specific proteolytic degrad-
ation of misfolded or damaged proteins, activation of regu-
latory proteins, and production of signals [1–3]. For
instance, proteolytic cleavage of a C-terminal prosequence
activates leucine aminopeptidase from Pseudomonas aeru-
ginosa by inducing intramolecular autocatalytic removal of
a propeptide at the N terminus [4]. Proteolysis is especially
important under conditions, where damaged and/or mis-
folded proteins are likely to accumulate, for example, at ele-
vated temperatures or in oxidizing environments. Proteases
also play an important role in multidrug tolerance with pro-
teolytic queues at ClpXP increasing antibiotic tolerance ∼80
and ∼60 fold in an Escherichia coli (E. coli) population
treated with ampicillin and ciprofloxacin, respectively [5].
In addition, it has been shown that proteolysis is essential
to regulate flagellar biosynthesis [6] and remove improperly
assembled spore envelopes [7] in Bacillus subtilis. While
many studies have investigated the degradation of certain
substrates in single bacterial species under simple environ-
ment stressors [3–9], no study has been performed to
explore alterations of gut microbial proteolytic signatures
under complex disease status.
Inflammatory bowel disease (IBD), mainly consisted

of Crohn’s diseas (CD) and ulcerative colitis (UC), is
a chronic inflammatory disease influenced by genetic
and environmental factors. Reports have confirmed
that IBD is associated with a gut microbial dysbiosis.
Metagenomics and 16S rRNA gene sequencing repre-
sented the vast majority in gut microbiome researches
in IBD [10–12]. However, metatranscriptomics and/or
metaproteomics approaches are needed to pinpoint
functional and metabolic activities by direct measur-
ing RNAs and proteins, respectively [13–15]. Further-
more, there are important additional regulations at
protein level such as controlled proteolysis that are
not captured in RNA measurements but could be
monitored using metaproteomics.

In a routine metaproteomics data analysis [16–19], it
is necessary to select the most representative peptides to
reliably quantify proteins. Usually semi-tryptic peptides
are not considered because the expended search space
will increase database search time and detection of semi-
tryptic peptides is less consistent than that of fully
tryptic peptides. In general, semi-tryptic peptides are
mainly derived from endogenous proteolysis while the
impacts of other factors such as in-source fragmentation
and sample degradation are negligible [20, 21]. With
these concepts in mind, we have developed a semi-
tryptic peptide centric metaproteomic mining approach
utilizing two large-scale metaproteome datasets [11, 19]
and shown its potential utility in capturing signatures of
altered gut proteolysis.

Methods
Datasets
We analyzed two published datasets of healthy and IBD
gut metaproteomes. Dataset 1 (PXD008675) was com-
prised of 447 fecal metaproteomes from 89 subjects aged
6–58 with a median of 22.8 years, including 24 non-IBD
controls, 39 individuals with CD, and 26 with UC [11].
Of these, 272 and 184 samples have matched metagen-
omes and metatranscriptomes, respectively. Dataset 2
(PXD007819) came from 176 mucosal luminal interface
(MLI) aspirate metaproteomes collected from the
ascending colon (AsC), descending colon (DeC), or
terminal ileum (TI) from 71 pediatric patients (< 18
years old) including 25 CD, 22 UC, and 24 non-IBD
controls [19]. We also analyzed one proteomic dataset
(PXD000498) to characterize the effects of thermal stress
(42 °C versus 37 °C, biological triplicates) on the prote-
olysis regulation of E. coli K-12 [22].

Sequence database
A comprehensive human gut microbial protein data-
base was generated by combining the following parts:
(1) the integrated gene catalog (IGC) of human gut
microbiome based on 1267 gut metagenomes from
1070 individuals (760 European, 368 Chinese, and 139
American samples) [23]; (2) the sequence data of 215
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bacteria isolates cultured from healthy adult human
feces [24]; (3) the Culturable Genome Reference
(CGR) of 1520 nonredundant, high-quality draft
genomes generated from > 6000 bacteria cultivated
from fecal samples of healthy humans [25]; and (4)
all Archaea, Bacteria, and Fungi sequences in
UniProtKB (Release 2017_06) and NCBI RefSeq
(Release 90). The microbial sequence database was
appended by a UniProt human reference proteome
(downloaded on 2017_06), a food database of dietary
organisms Triticum aestivum (wheat), Oryza sativa
subsp. japonica (rice), Glycine max (soybean), Zea
mays (Maize), Arachis hypogaea (Peanut), Solanum
tuberosum (Potato), Solanum lycopersicum (Tomato),
Sus scrofa (pig), Bos taurus (Bovine), Gallus gallus
(chicken), Ovis aries (sheep), Salmo salar and Onco-
rhynchus mykiss (fish), Artemia sp., and Litopenaeus
vannamei (shrimp), and a common contaminants
database (http://maxquant.org/contaminants.zip). Pro-
teins were dereplicated at 100% amino acid identity
using USEARCH v11.0.667 (–fastx_uniques) [26],
resulting in a total number of 130,975,891 non-
redundant sequences.

Database searching
The database searching pipeline generally included two
major steps: (1) de novo sequencing and initial large
database semi-tryptic search using PEAKS and (2) multi-
engine refined semi-tryptic search using reduced data-
base. To handle the increased search space and time in
metaproteomic semi-tryptic peptide identification,
search was first performed using PEAKS DB (version X)
[27] on a local 156-core cluster configured with Intel(R)
Xeon(R) CPU @ 3.00GHz and 1.5 TB 2666MHz RAM.
The software first performed de novo sequencing
followed by database search using the following parame-
ters. Mass tolerance was set to 10 ppm for the precursor
ion and 0.02 Da for the fragment ion. Carbamidomethyl-
ation of Cys was set as a fixed modification. The max-
imum number of variable posttranslational modifications
per peptide was three, including acetylation of protein
N-terminus, oxidation of Met, deamidation of Asn, and
Gln as well as Pyro-glu from Gln. For database search,
enzyme was trypsin, digest mode was semispecific, and
max missed cleavages were three. The two-step strategy
[19] was employed to increase the sensitivity of metapro-
teomics database searching. Proteins identified by at
least one peptide (1% false discovery rate (FDR) using
the decoy fusion approach) in the first step search were
reserved for the second round multiengine database
search using PEAKS DB, MaxQuant (version 1.6.2) [28],
and pFind (version 3.1.5) [29].
MaxQuant (version 1.6.2.10) was performed using the

Andromeda search engine [30]. Mass tolerance was set

to 20 ppm for the first and 4.5 ppm for the main search.
Enzyme was trypsin, digest mode was semispecific, and
max missed cleavages were two. Carbamidomethylation
of Cys was set as a fixed modification. The maximum
number of variable posttranslational modifications per
peptide was five, including acetylation of protein N-
terminus, oxidation of Met, deamidation of Asn and
Gln, and Pyro-glu from Gln. Peptide-to-spectrum
matches, peptide, and site FDR were set to 0.01 based
on the target-decoy strategy. Second peptides option was
enabled to search for co-fragmented peptides in the MS/
MS spectra. The “match between runs” option was
enabled (without matching unidentified features) using a
match time window of 0.7 min with an alignment win-
dow of 20 min. For protein quantification, a separate
database searching was performed with digest mode set
to specific. Protein and peptide quantification was per-
formed using the label-free quantification (LFQ) algo-
rithm with a minimum ratio count of 1, and minimum
and average number of neighbors of 3 and 6, respect-
ively. Reverse decoy and common contaminants matches
were removed from the identification list. Peptides with
local FDR (posterior error probability (PEP)) < 0.05 were
kept for further analysis.
Database search using pFind was performed using a

mass tolerance of 10 ppm for the precursor ion and 20
ppm for the fragment ion, respectively. Enzyme was
trypsin, digest mode was semispecific, and max missed
cleavages were three. The open search function [29] was
selected and a 1% global FDR based on the target-decoy
strategy was applied. Only peptides identified by all three
searching engines were kept for further analysis.

Semi-tryptic peptide mining
Peptides that do not have R or K (excluding protein N-
terminal peptides, ~ 0.6% in our cases) in the amino acid
before identified sequences were selected as semi-tryptic
N-term peptides. Semi-tryptic C-term peptides were
selected if the last amino acid of identified sequences
lacks an R or K (excluding C terminus of the protein, ~
2.2% in our cases). The in-source fragments were distin-
guished from proteolytic-derived semi-tryptic peptides
based on elution time as previously reported [20]. The
majority of in-source fragments showed different reten-
tion time as compared to their theoretical retention time
(predicted using SSRCalc [31]) and gave the same reten-
tion time of their fully tryptic parental peptides. In
addition, in-source fragments exhibit lower charge states
than their corresponding parental peptides because the
charge of the parental peptide is divided between
fragments. Microbial semi-tryptic peptides were distin-
guished from human and food peptides based on the
corresponding accession numbers from fasta sequence
entries.
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Taxonomy and functional analysis of peptides
Analysis was performed with UniPept (version 4.3.5) [32, 33]
using UniProt 2020.01 based on the lowest common ances-
tor (LCA) algorithm. Semi-tryptic peptides were converted
to their closest fully tryptic peptides based on sequences in
N-term cleavage and C-term cleavage window. All peptides
were analyzed using the following parameters: equate I and
L, filter duplicate peptides, and advanced missing cleavage
handling. The taxonomy information was visualized using a
sunburst view provided by UniPept. Functional peptide an-
notations were performed using Gene Ontology (GO) terms
and Enzyme Commission (EC) numbers.

Combining semi-tryptic and fully tryptic peptide data to
quantify the degree of proteolysis
We determined alterations in the degree of proteolysis
based on the normalized relative abundance of semi-
tryptic peptides (NRASP) by normalizing semi-tryptic
peptide-based relative abundance to fully tryptic
peptide-based relative abundance. The logic is similar to
that employed in other post-translational modification
(PTM) studies, where PTM occupancy determination is
achieved by measuring the abundances of both PTM
and non-PTM peptides.

Nomenclature and sequence motif of cleavage sites
According to the nomenclature of Schechter and Berger
[34], amino acids around the cleavage sites were num-
bered as P6-P5-P4-P3-P2-P1 ↓ P1′-P2′-P3′-P4′-P5′-P6′,
with the downward-pointing arrow indicating the
cleaved peptide bonds between the P1 and P1′ sites. We
retrieved amino acids in P6-P6′ of each semi-tryptic
peptide from MaxQuant outputs (N-term cleavage win-
dow and C-term cleavage window of the peptides.txt
file) using Microsoft Excel formulas and functions. The
relative frequency of each amino acid at P6-P6′ was cal-
culated to determine the inter-group differences. To
visualize conserved and frequently occurring amino
acids at positions flanking the cleavage site, sequence
motif logos were generated using Weblogo [35]. Each
logo consists of stacks of symbols; one stack for each
position in the sequence. The height of symbols within
the stack indicates the relative frequency of each amino
acid at that position.

Statistical analysis
Multivariate analyses of the amino acid frequencies
around the cleavage sites were performed using principal
component analysis (PCA) and partial least squares dis-
criminant analysis (PLS-DA) with missing value imputed
by Bayesian PCA (BPCA) [36]. Dunn-Bonferroni post
hoc procedure following Kruskal-Wallis test with a
threshold of adjusted P value < 0.05 was employed to
detect significantly different variables (present in at least

75% of samples) among groups using R (vesion 3.5.3)
and RStudio (version 1.1.383). Beta-diversity of multi-
omics data were determined using principal coordinate
analysis (PCoA) using the Bray-Curtis distance [37]. The
correlation between microbial semi-tryptic peptide
intensity and multi-omics data was evaluated by
Spearman rank correlation of their top three PCos
(PCo1-PCo3).

Results
A pipeline for metaproteomic semi-tryptic peptide
characterization
High-confidence identification of semi-tryptic peptides
Using two large-scale published datasets including
447 fecal (PXD008675, [11]) and 176 MLI metapro-
teomes (PXD007819, [19]), we have developed a
pipeline (Fig. 1a) for efficient and high-confident
metaproteomic characterization of semi-tryptic
peptides which represented potential proteolytic sig-
natures of gut microbiome. Both datasets were gen-
erated using high-resolution MS/MS, which allowed
searching a large sequence space with a low FDR for
semi-tryptic peptide identification.
The first critical step in metaproteome mining is the

database construction. Several metaproteomics studies
have employed costly and time-consuming sample-
specific protein database by metagenomic sequencing of
each sample [11, 17]. Metagenome-matched database
may also suffer from technical issues in DNA extraction
and bioinformatics issues, making cross-study compari-
sons difficult [38]. Furthermore, sample aliquots used in
metagenomic sequencing may not be exactly the same
as those used in metaproteomics due to sample hetero-
geneity. Therefore, we assembled microbial sequences
from public repository including a variety of culture-
dependent sources such as UniProtKB, NCBI, CGR [25],
and culture-independent sources such as IGC [23] to
increase microbial taxonomic coverage and facilitate
cross-study comparisons. The combination of microbial
sequences with human sequence and a comprehensive
food database of most common dietary organisms re-
sulted in a total number of 130,975,891 non-redundant
sequences. Using the MLI dataset, we compared differ-
ent commercial software (Proteome Discoverer, PEAKS,
ProteinPilot, and Byonic) and open-source packages
(MaxQuant, MSFragger, and pFind) in their perform-
ance of large database semi-tryptic search on several 36-
core servers (192G RAM installed). Proteome Discov-
erer, Byonic, MaxQuant, pFind, and ProteinPilot (stuck
on the “progroup” step for more than 2 weeks) did not
complete the search in 1 month, and MSFragger crashed
with an out of memory error. Only PEAKS completed
the analysis in 1 month and was selected for further
high-throughput analysis using a 156-core cluster which
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Fig. 1 Workflow and validation of semi-tryptic peptide centric metaproteomic mining approach. The approach was applied to analyze the fecal
and MLI metapeoteomes and validated using the E. coli heat-shock-induced proteome (a). Alerted proteolysis signatures of different biological
processes induced by heat stress in E. coli proteome (b, adjusted P < 0.05)
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completed database search in 2 weeks. Other ultrafast
metaproteomics search engines such as ComPIL [39]
and ProteoStorm [40] may also be used in the first step
large database search.
A total number of 12,828,005, 3,133,023, 2,948,562,

and 2,757,990 MS/MS spectra were searched for the
feces, ascending colon (AsC), descending colon (DeC),
and terminal ileum (TI) MLI metaproteomes, respect-
ively, from which 3,804,903 (29.66%), 2,035,847
(64.98%), 1,917,761 (65.04%), and 1,808,732 (65.58%)
peptide-spectrum matches (PSMs) were identified using
PEAKS (1% FDR) in the first-step large database search.
To increase the sensitivity of large sequence space-based
metaproteomic analysis, we employed the two-step data-
base searching strategy [18]. This facilitated the semi-
tryptic-based metaproteomics search by reducing the
size of database to that of conventional proteomics ana-
lysis (99,011 sequences for feca metaprotelome, 136,746
for AsC, 146,198 for DeC, and 157,403 for TI MLI meta-
proteomes, respectively). Furthermore, we applied strin-
gent criteria to increase the peptide identification
confidence by combing three commonly used software
packages. Proteins identified with at least one peptide in
the first step were reserved for the second round search
using MaxQuant, PEAKS, and pFind. We only consid-
ered peptides that were simultaneously identified by
MaxQuant (5% local FDR), PEAKS DB (1% global FDR),
and pFind (1% global FDR). These packages use different
algorisms to do peak detection, cofragmented peptide
identification, and FDR calculation (MaxQuant and
pFind using the target-decoy strategy while PEASK DB
using the decoy fusion approach), thus significantly in-
creasing the confidence of peptide identifications. Specif-
ically, we selected PEAKS, pFind, and MaxQuant, to
increase the confidence of semi-tryptic peptide identifi-
cation because these engines are featured with de novo
sequencing, open-search, and match-between-runs func-
tions, respectively. De novo sequencing was employed to
reduce false positive identifications because peptides ab-
sent in sequence database can be misassigned to a
sequence present in the database. Open-search was used
to reduce false positive identifications because modified
peptides can be misassigned to wrong sequences when
modifications are not considered in conventional data-
base search [41]. Finally, a cross-assignment procedure
(known as “match between runs” in MaxQuant) was
applied to recover MS1 signals missed by MS/MS.
Only peptides identified by all three software were kept

for further analysis, resulting in 125,494, 103,170, 106,243,
and 92,784 peptides identified in the fecal, AsC, DeC, and
TI metaproteomes, respectively (Additional file 1: Tables
S1-S16), among which 108,784 (86.68%), 76,325 (73.97%),
77,341 (72.79 %), and 65,002 (70.06%) peptides were
assigned as microbial unique peptides (not shared by

human or food sequences, Fig. 1a). Using UniPept, a total
of 85,126 (78.25%), 67,288 (88.16%), 70492 (91.14%), and
57955 (89.16%) microbial peptides could get taxonomic
and/or functional annotations in the fecal, AsC, DeC, and
TI metaproteomes, respectively. Despite of the compre-
hensiveness of IGC, which was frequently employed in
previous metaproteomics studies, 11,540 (10.61%), 9025
(11.82%), 9129 (11.80%), and 7308 (11.24% TI) microbial
peptides were only captured by UniProt/NCBI/CGR in
the fecal, AsC, DeC, and TI metaproteomes, respectively.
This was probably because the UniProt/NCBI/CGR data-
base is largely based on the translation of a completely
sequenced single microorganism genome, the depth, and
assembly quality of which are significantly increased com-
pared with that of gut microbial metagenomes. Among all
identified microbial peptides, 28,525 (26.22%), 10,650
(13.95%), 9357 (12.10%), and 10,614 (16.33%) peptides
were semi-tryptic in the fecal, AsC, DeC, and TI metapro-
teomes, respectively (Additional file 1: Tables S1 and S3-
S5). Although we used the “match between runs” of
option MaxQaunt to increase transferred identification
between separate LC-MS runs, the percentage of semi-
tryptic peptides identified in more than 75% of samples
was less than 0.05%. We did not considered peptides non-
tryptic peptides because our initial non-enzymatic search
revealed that they generally accounted for less than 0.2%
of total identified peptides. However, a non-enzymatic
search significantly increased the search time by several
times compared with a semi-tryptic search for MaxQuant.
We identified 7969 (6.35%), 14,869 (19.48%), 15,128

(14.24%), and 15,360 (16.55%) human-specific peptides
in the fecal, AsC, DeC, and TI metaproteomes, respect-
ively, among which 5104 (64.05%), 5724 (38.50%), 5254
(34.73%), and 6825 (44.43%) peptides were semi-tryptic
(Additional file 1: Tables S2 and S6-S8). Gene ontology
(GO) analysis revealed that 84.13%, 79.97%, 81.74%, and
80.18% of human semi-tryptic peptides were derived
from potential extracellular proteins while only 1.16%,
0.80%, 0.73%, and 0.76% of microbial semi-tryptic pep-
tides were assigned to potential extracellular proteins in
the fecal, AsC, DeC, and TI metaproteomes, respectively.
The higher percentage of extracellular proteins, which
are more susceptible to the gut luminal and mucosal
proteases, contributed to the higher proportion of semi-
tryptic peptides for human proteins.
Because many food resource such as pig, bovine, and

other mammals share a large number of sequences with
humans, the number of food unique semi-tryptic pep-
tides was negligible, generally below 50 per sample after
excluding peptides shared by humans (thus was not con-
sidered for further analysis). In addition, food proteins
could be extensively hydrolyzed by gastric pepsin, pan-
creatic proteases, and small intestinal exopeptidases
before they reach the large intestine (colon). So food-
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derived semi-tryptic peptides represent complex proteo-
lytic events across the entire digestive system.

Relative abundance and distribution of semi-tryptic
peptides
We first calculated the normalized relative abundance of
semi-tryptic peptides (NRASP) of different microbial
and functional groups by normalizing semi-tryptic
peptide-based relative abundance to fully tryptic
peptide-based relative abundance to determine the rela-
tive degree of proteolysis. This normalization step is im-
portant because if the abundance of semi-tryptic
peptides and fully tryptic peptides changed proportion-
ally, it generally indicates no change in the degree of
proteolysis. In such cases, however, if only semi-tryptic
peptides were compared, there will be inter-group
difference.
Figure 2 illustrated the overall NRASP distribution of

20 major taxonomic sub-groups, 35 major biological
processes, and 32 enzyme sub-classes (Additional file 1:
Tables S17-S19) identified in at least 75% of the 447
fecal metaproteomes. The median values of NRASP of
two dominant phyla Firmicutes and Bacteroidetes, two
dominant classes Bacteroidia and Clostridia, two major
orders Bacteroidales and Clostridiales, family Bacteroi-
daceae, and genus Bacteroides were around 1 with a very
low individual variation, suggesting the relative abun-
dance of the corresponding semi-tryptic peptides was
comparable to that of fully tryptic peptides (Fig. 2a).
However, the median of NRASP increased to approxi-
mately 1.25 for families Lachnospiraceae and Rumino-
coccaceae, and 1.5 for genera Roseburia and Prevotella
as well as two abundant species Faecalibacterium praus-
nitzii and Prevotella copri, respectively. In contrast, the
median of NRASP reduced to approximately 0.5 for
phylum Actinobacteria and order Bifidobacteriales
(including its single family member, Bifidobacteriaceae).
The median of NRASP of most biological processes

also fluctuated around 1 (Fig. 2b). However, these values
increased to 1.75–2 for isoleucine biosynthetic process,
valine biosynthetic processes, bacterial-type flagellum-
dependent cell motility, protein transport, carboxylic
acid metabolic process, fucose metabolic process, and
glucose metabolic process and further increased to 2.5
for fatty acid metabolic process and L-threonine cata-
bolic process to glycine, but reduced to approximately
0.75 for polysaccharide catabolic process, carbohydrate
transport, and transmembrane transport and further
reduced to 0.3 for metabolic process, respectively.
At enzyme level, 3-hydroxybutyryl-CoA dehydrogen-

ase, which is involved in butyrate metabolism, showed
the highest NRASP (median value > 3), followed by 3-
hydroxyacyl-CoA dehydrogenase involved in fatty acid
beta-oxidation, glycine C-acetyltransferase involved in L-

threonine degradation, phosphoenolpyruvate carboxyki-
nase (ATP) involved in gluconeogenesis, ketol-acid
reductoisomerase (NADP(+)) involved in the biosyn-
thesis of branched-chain amino acids (BCAA), and
superoxide dismutase involved in tolerance to oxidant
stress (median NRASP of 2–3, Fig. 2c).

Protease cleavage motif
We further investigated the microbial proteolytic cleav-
age site motif by calculating the amino acid frequencies
at P6-P6′ position based on semi-tryptic peptides of 447
fecal metaproteomes (Fig. 3). Generally, alanine and val-
ine were the most abundant amino acids at P1 position
in different samples (Fig. 3a). Alanine, valine, isoleucine,
and cysteine were significantly enriched at P1; serine
was enriched at P1′; and leucine was enriched at P2 and
P2′. Glycine was significantly reduced at P1, and proline
was reduced at P1, P3, P1′, and P2′ (Fig. 3b). Two acidic
amino acids (aspartic acid and glutamic acid), which
were enriched in P3′-P6′, exhibited similar distribution
pattern across P6-P6′. The pattern of two basic amino
acids (lysine and arginine) also resembled each other
with a higher frequency at P5 and P6.

Validation of the approach by analyzing proteolysis
signatures in E. coli heat-shock response
We validated our approach by analyzing the heat-shock-
induced proteolysis signatures using a published prote-
omic dataset of E. coli K12 [22], for which proteolytic
regulation rules have been increasingly reported. Com-
bining three search engines, we identified 9937 peptides
using the large database and 14111 peptides using
UniProt E. coli K12 reference database, respectively
(Additional file 1: Tables S20 and S21). The 29.6%
decrease in identified peptides between two methods
reflects an expected sensitivity loss since the large data-
base produces more than 10,000-fold more sequences
than conventional reference sequence. Among 4783 pep-
tides only identified by E. coli reference database, 60.3%
have a PEP value below 0.01 and 39.5% have a PEP value
below 0.001. In contrast, among all 14111 peptides iden-
tified using E. coli reference database, 83.7% have a PEP
value below 0.01, and 61.6% have a PEP value below
0.001. The fact that peptides only identified by E. coli
reference database have higher PEP values demonstrates
that lower quality PSMs are more susceptible to the sen-
sitivity reduction using large database search. Mean-
while, it should be noted that the single microorganism
proteome is significantly different from gut metapro-
teome. A recent study has shown that large public data-
base and sample-matched reference database generated
comparable results for gut metaproteomics research
[18]. So our approach should not suffer from high sensi-
tivity loss in gut metaproteome analysis. Importantly,
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Fig. 2 Normalized relative abundance of semi-tryptic peptides (NRASP, semi-tryptic peptide abundance/fully tryptic peptide abundance) derived
from major microbial groups and biological processes in 447 fecal metaproteomics samples. Features are ranked in ascending order for different
groups of bacteria (a), biological processes (b), and enzymes (c). Box plots represent the median (the line in the middle of the box), 25th and
75th percentiles, whiskers represent 1.5 times the interquartile range (IQR), and outliers are shown as dots
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Fig. 3 Amino acid conservation and frequency at P6-P6′ position of cleaved microbial proteins in 447 fecal metaproteomics samples. a A
representative WebLogo of microbial proteolytic cleavage motif (P6-P6′) in a fecal metaproteome. The height of symbols within the stack
indicates the relative frequency of each amino acid at that position. b Amino acid frequency at P6-P6′ position
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9328 (93.4% of 9937) peptides were identified by both
methods (Fig. 1a). Manual inspection of 609 peptides
that were only identified by the large database revealed
that the majority of these peptides were identified with
high confidence (e.g., well-annotated MS/MS spectra
with high-peptide sequence coverage) and thus should
not be incorrect identifications. These peptides could be
assigned to E. coli closely related bacteria species such as
Escherichia albertii or E. coli sequences deposited in
NCBI (absent in UniProt). It is not surprising that the
UniProt E. coli K12 reference database did not contain
all the sequences of proteins present in the samples due
to the high mutation frequency and genetic polymorph-
ism of bacteria. Taken together, these results indicate
the high-peptide identification accuracy of our approach.
To validate the biological findings of our approach, we

compared the NRASP (as an indicator of proteolysis
regulation) of 185 biological processes detected in all
samples and found NRASP of 20 (10.8%) biological pro-
cesses was significantly different between control and
heat stress groups (FDR adjusted P value < 0.05, Fig. 1b
and Additional file 1: Tables S22). Heat stress perturbs
protein folding, leading to the accumulation of misfolded
proteins which need to be refolded into the correct con-
formation. Accordingly, we found NRASP of protein
refolding increased while that of protein folding reduced
under heat stress. We observed NRASP of methylation
increased in response to heat stress, which was in
accordance with the recent finding that certain adeno-
sines within the 5′UTR of newly transcribed mRNAs are
preferentially methylated under heat shock condition
[42]. Additionally, NRASP of biosynthetic processes of
glutamine, methionine, and lysine also increased in heat
stress group. It has been demonstrated that glutamine
synthesis could maximize heat shock protein expression
in Drosophila Kc cells [43]. Interestingly, we found
NRASP of acetyl-CoA biosynthetic process from acetate
increased but that of L-lysine catabolic process to acetyl-
CoA via saccharopine increased under heat stress. Over-
all, our approach confirms previous findings and could
provide new insights into microbial proteolysis
regulation.

Semi-tryptic peptide association with microbial
composition, proteases, and chaperones
To explore the potential relevance of gut microbial com-
munity structure to semi-tryptic peptide patterns, we as-
sociated the top three principal coordinates (PCo1-
PCo3) of fecal microbial semi-tryptic peptide LFQ inten-
sity and the top three microbiome β-diversity principal
coordinates (PCo1-PCo3, Fig. 4a) computed using Bray-
Curtis distance. We found low correlations between
semi-tryptic peptide LFQ intensity (PCo1) and β-
diversity (PCo2 and PCo3) at different taxonomic levels

(-0.40 < Spearman’s rank correlation coefficient (R) <
0.42, P < 5.6e−9 for all pairwise associations, n = 272,
Fig. 4c). To investigate the association with microbial
proteases, we resorted to the transcriptional abundance
of microbial protease/peptidase (Fig. 4b) because
protein-level abundance was inaccessible due to the lim-
ited sensitivity of current metaproteomics methodology.
The microbial protease/peptidase transcriptome at fea-
ture (PCo3), species (PCo1), genus (PCo2), and family
(PCo2) levels showed moderate correlations with semi-
tryptic peptide LFQ intensity (PCo1), stronger than
those of β-diversity (Fig. 4d, − 0.55 < R < 0.54, P < 2.6e
−11, n = 184). However, there were only low correlations
at higher taxonomic levels (order, class, and phylum). In
regulating cellular processes, chaperones and proteases
both respond to protein misfolding and play important
roles in protein homeostasis. The protein levels of chap-
erones could be directly measured by metaproteomics
because of their high abundance. We observed that the
LFQ intensities of chaperones DnaK, GroEL, ClpB, and
HtpG of Bacteroides (the dominant species of phylum
Bacteroidetes in human gut microbiome) as well as
DnaK and GroEL of Faecalibacterium (the dominant
species of phylum Firmicutes in human gut microbiome)
were moderately correlated with the PCo1 of semi-
tryptic peptide LFQ patterns (0.58 < R < 0.69, P < 5.0e
−10, n = 447).

Semi-tryptic peptide association with host protease
inhibitors and immunoglobulins
In addition to microbial variables, we also investigated
the involvement of host factors. Human endogenous
protease inhibitors are particularly present in the intes-
tinal tract. Four human protease inhibitors (serpin A1,
A3, B1, and B6) were identified in fecal metaproteomes.
Serpin A1, A3, and B6 exhibited negative correlations (−
0.41 < R < − 0.25, P < 7.9e−8, n = 447) with the semi-
tryptic peptide LFQ intensity (PCo1 and PCo2). To fur-
ther investigate the effect of host factors on gut micro-
bial proteolysis, we also analyzed the correlations
between gut microbial proteolysis pattern and host
immunoglobulins. IgG1, IgG4, and IgM were negatively
correlated with PCo1 (− 0.44 < R < − 0.25, P < 8.4e−8, n
= 447), and IgA was positively correlated with PCo2 (R
= 0.33, P < 8.4e−13, n = 447) of semi tryptic peptide
LFQ intensity, respectively.

Semi-tryptic peptide analysis reveals potential signatures
of altered microbial proteolysis
Using NRASP as an index of relative degree of proteoly-
sis, we found significant inter-group differences in terms
of the taxonomic and functional distributions as well as
the cleavage motif in both the fecal (Fig. 5) and MLI
(Figs. 6 and 7) metaproteomes. In the 447 fecal
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metaproteomes (including 204 CD, 123 UC, and 120
control samples), four out of 20 major taxonomic sub-
groups exhibited significant inter-group difference
(Kruskal-Wallis and Dunn-Bonferroni test, P < 0.05)
(Additional file 1: Tables S17): family Ruminococcaceae
and species Prevotella copri in CD have increased
NRASP compared with the control group; genus Faeca-
libacterium and species Faecalibacterium prausnitzii in
UC have reduced NRASP compared with the CD group
(Fig. 5a). Six out of 35 major biological processes exhib-
ited significant inter-group difference (P < 0.05)
(Additional file 1: Tables S18): bacterial-type flagellum-
dependent cell motility, polysaccharide catabolic process,
anaerobic cobalamin biosynthetic process, and fruc-
tose 1,6-bisphosphate metabolic process in CD have
increased NRASP compared with the control group;
translation and glycolytic process in UC have reduced
NRASP compared with the control and CD group
(Fig. 5b). Four out of 32 major enzyme sub-classes
exhibited inter-group difference (Additional file 1:
Table S19): superoxide dismutase in UC, protein-
synthesizing GTPase in CD, and short-chain acyl-CoA
dehydrogenase in both CD and UC have increased
NRASP compared with the control group (Fig. 5c).
In contrast, using full tryptic peptide-based relative abun-

dance as performed in conventional metaproteomics work-
flow, we identified 81 major taxonomic sub-groups, 153

major biological processes, and 195 major enzymes (present
in at least 75% of the samples), 4-6-fold higher than their
semi-tryptic peptide counterparts. This highlights that a large
number of proteolysis signatures were obscured because of
the limited sensitivity of current analytical platform and bio-
informatics workflow of metaproteomics. Using full-tryptic
peptide-based analysis, 34 taxonomical groups, 63 biological
processes, and 87 enzyme groups exhibited significant
inter-group differences (Kruskal-Wallis and Dunn-
Bonferroni test, P < 0.05) (Additional file 1: Tables S23-
S25). In most cases, the taxonomic and functional alter-
ations revealed by full tryptic peptides did not overlap
with those calculated by NRASP. For instance, the rela-
tive abundance of phylum Firmicutes and genera Rumi-
nococcus and Alistipes significantly decreased in IBD
but their NRASP did not differ between groups (Add-
itional file 1: Fig. S1a). The relative abundance of proteins
involved in glucuronate catabolic process and glutamate
metabolic process increased in IBD while those involved
in nitrogen compound metabolic process and anaerobic
respiration decreased in IBD (Additional file 1: Fig. S1b).
However, none of these biological processes exhibited sig-
nificant inter-group differences in the NRASP. NRASP of
superoxide dismutase significantly increased in UC (Fig.
5c), but the relative abundance of this enzyme did not dif-
fer between groups (Additional file 1: Fig. S1c). We also
observed that some taxonomic and functional alterations

Fig 4 Correlation analysis between gut microbial proteolysis pattern, composition, and protease expression. Principal coordinates analysis (PCoA)
of metagenome (a) and microbial protease/peptidase transcriptome (b) is based on Bray-Curtis distance. Correlations between microbial
proteolytic signatures (PCo1-PCo3 of semi-tryptic peptide LFQ), microbiome composition (n = 272, c), and protease/peptidase expression (n =
184, d) were calculated using Spearman’s rank correlation based on PCo1-PCo3 of metagenome and metatranscriptome, respectively. Only
significant correlations with coefficient > 0.2 or < −0.2 (P < 0.05) are shown in c and d. The P value for each correlated pair is in parentheses
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were identified by both NRASP and full-tryptic peptide-
based comparison, such as taxonomic groups of family
Ruminococcaceae and species Prevotella copri, biological
processes of bacterial-type flagellum-dependent cell motil-
ity and polysaccharide catabolic process, as well as enzyme
short-chain acyl-CoA dehydrogenase (Fig. 5a–c and Add-
itional file 1: Fig. S1). Taken together, the semi-tryptic

peptide centric mining approach captures a different layer
of information obscured in conventional metaproteomics
workflow.
The fecal metaproteome also revealed a global alter-

ation of microbial proteolytic motif (Fig. 5d and
Additional file 1: Table S26). In the unsupervised hier-
archical clustering, CD and UC clustered together

Fig. 5 Signatures of altered microbial proteolysis at different levels in the fecal metaproteome of IBD. Normalized relative abundance of semi-
tryptic peptides (NRASP) reveals altered microbial proteolysis at different taxonomic levels (a) as well as in different biological processes (b) and
enzyme sub-classes (c). d Hierarchical clustering analysis of altered amino acid frequencies around the cleavage sites of microbial proteins in IBD.
Partial least squares discriminant analysis (PLS-DA, e) of amino acid frequencies around the cleavage sites. Dunn-Bonferroni post hoc analysis
following Kruskal-Wallis test was employed to detect significant difference among three groups (CD, Ctrl, and UC). *P < 0.05 versus Ctrl; **P < 0.01
versus Ctrl; ***P < 0.001 versus Ctrl; #P < 0.05 (CD versus UC); ##P < 0.01 (CD versus UC); ###P < 0.001 (CD versus UC)
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Fig. 6 (See legend on next page.)
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(separated from control), sharing many alterations such
as increased frequencies of leucine (P5 and P5′) and
tryptophan (P3 and P4′) as well as decreased frequencies
of alanine (P1′), methionine (P1′ and P2′), aspartic acid
(P3), and serine (P4). However, the large inter-individual
variation did not allow for clear separation between

groups in the partial least squares discriminant analysis
(PLS-DA, Fig. 5e) of cleavage motif. We also performed
principal coordinate analysis (PCoA) of semi-tryptic pep-
tide LFQ abundance using Bray-Curtis distance or
Jaccard-based dissimilarity but did not result in clear
group separation either (Additional file 1: Fig. S2).

Fig. 7 Location-specific alterations of gut microbial proteolytic motif in the MLI metaproteome of IBD. a and d ascending colon, b and e
descending colon, and c and f terminal ileum. Hierarchical clustering analysis (a–c) and partial least squares discriminant analysis (PLS-DA, d–f) of
altered amino acid frequencies around the cleavage site in IBD. Group averages are shown in the heatmap. Dunn-Bonferroni post hoc analysis
following Kruskal-Wallis test was employed to detect significant difference among three groups (CD, Ctrl, and UC). *P < 0.05 versus Ctrl; **P < 0.01
versus Ctrl; ***P < 0.001 versus Ctrl; #P < 0.05 (CD versus UC); ##P < 0.01 (CD versus UC); ###P < 0.001 (CD versus UC)

(See figure on previous page.)
Fig. 6 Signatures of altered microbial proteolysis at different intestinal locations in the mucosa-luminal interface metaproteome of IBD based on
normalized relative abundance of semi-tryptic peptides (NRASP). a Ascending colon, b descending colon, and c terminal ileum. Dunn-Bonferroni
post hoc analysis following Kruskal-Wallis test was employed to detect significant difference among three groups (CD, Ctrl, and UC). *P < 0.05
versus Ctrl; **P < 0.01 versus Ctrl; ***P < 0.001 versus Ctrl; #P < 0.05 (CD versus UC); ##P < 0.01 (CD versus UC); ###P < 0.001 (CD versus UC)
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Altered cleavage motifs of human proteins were also
observed (Additional file 1: Fig. S3 and Table S27). Simi-
lar to microbial cleavage motif, CD and UC clustered
together and separated from control for human protein
cleavage motif. Microbial proteins and human proteins
can exhibit similar or reversed alteration trends in cer-
tain motif positions around the cleavage site in IBD
(Additional file 1: Fig. S4). For instance, frequencies of
glutamic acid, histidine, and three aromatic amino acids
(phenylalanine, tryptophan, and tyrosine) were increased
in P5′ in IBD for both microbial and human proteins.
A total of 57, 58, and 51 biological processes were

identified in at least 75% of samples in AsC, DeC, and
TI MLI metaproteome, respectively, among which 7
(12.28%), 10 (17.86%), and 10 (19.61%) biological pro-
cesses exhibited significant inter-group difference in
their NRASP (Additional file 1: Tables S28-S30). In the
AsC metaproteomes, NRASP of regulation of translation,
carbohydrate transport, DNA repair, protein secretion,
generation of precursor metabolites and energy, and car-
boxylic acid metabolic process significantly increased in
CD and/or UC (Fig. 6a). In the DeC metaproteomes,
most alterations occurred in UC, including increased
NRASP of ribosome biogenesis, terpenoid biosynthetic
process, “de novo” UMP biosynthetic process, cell div-
ision, and translational termination, as well as reduced
NRASP of gluconeogenesis (Fig. 6b). In contrast, in the
TI metaproteomes, most alterations occurred in CD, in-
cluding increased NRASP of carbohydrate transport, L-
fucose catabolic process, translational termination, and
ATP synthesis-coupled proton transport as well as
reduced NRASP of transcription, translation, protein
folding, and carbohydrate metabolic process (Fig. 6c).
The microbial cleavage motif also revealed remarkable
location-specific alterations in MLI metaproteomes
(Fig. 7a–c). Similar to NRASP, microbial cleavage
motif differed more in DeC and TI than AsC, where
41, 57, and 32 amino acid frequencies at a specific
site exhibited significant inter-group differences,
respectively (P < 0.05, Additional file 1: Tables S31-
S33). In the unsupervised hierarchical clustering, CD
and UC clustered together, separated from control in
the ascending colon (Fig. 7a), whereas UC and control
clustered together and separated from CD in the ter-
minal ileum (Fig. 7c). The supervised PLS-DA also
revealed that, on PC1 axis, UC partially separated
from CD and control in the descending colon and
CD clearly separated from the other two groups in
the terminal ileum (Fig. 7d–f). Altered cleavage motif
of human proteins was also observed in the MLI
metaproteomes (Additional file 1: Fig. S5 and Tables
S34-S36). Similar to cleavage motif of microbial pro-
teins, cleavage motif of human proteins in CD sepa-
rated from the other two groups in the terminal

ileum. Microbial proteins and human proteins can
exhibit similar or reversed alteration trends in certain
motif positions in IBD (Additional file 1: Fig. S6). For
instance, increased frequencies of valine and leucine
(P1) and reduced frequencies of two aromatic amino
acid phenylalanine and tyrosine (P1) in IBD were
observed in both microbial and human motif in MLI
metaproteomes from different locations.

Discussion
Our approach incorporates two-step search, de novo
sequencing, open-search, and match between runs to
perform large-scale semi-tryptic peptide centric meta-
proteomic mining. These strategies could reduce false
positive identifications derived from incomplete database
and peptide modifications. A preliminary study has per-
formed semi-tryptic search of several metaproteomics
samples using datasets generated by low-resolution MS/
MS [44], which inevitably increased the search space and
reduced the identification confidence. In their study,
only 80.2% of identified peptides were annotated as
Pyrococcus furiosus sequence when searching the P.
furiosus proteome against a large database (containing 6,
162,582 sequences). In contrast, our study combined
results from multiengine database searching of high-
resolution fragmentation spectra. Using our approach,
93.4% of peptides identified by a significantly larger data-
base (130,975,891 sequences) matched with those identi-
fied by conventional reference database when analyzing
the E. coli proteome.
Our study represents the first effort to discover gut

microbial proteolytic signatures from public datasets,
providing a different layer of information beyond taxo-
nomic and protein abundances. The analysis was based
on the hypothesis that similar degree of proteolysis
should lead to similar relative abundance of semi-tryptic
peptides. Using NRASP as an indicator, we observed that
microbial semi-tryptic peptides in 447 fecal metapro-
teomes were enriched in several biological processes in-
cluding fatty acid, carboxylic acid, glucose, and fucose
metabolic processes, BCAA biosynthesis process, protein
transport, and bacterial-type flagellum-dependent cell
motility, suggesting they underwent more extensive pro-
teolytic regulation. BCAAs (isoleucine, leucine, and val-
ine) are important nutrients in bacterial physiology, and
BCAA biosynthesis pathway is essential for optimal
growth of many bacteria [45–47]. In this study, we found
that NRASP of BCAA biosynthesis process (1.75–2) is
higher than that of non-BCAA (~ 1) in fecal metapro-
teomes. The higher NRASP may offer bacteria more
adaptive flexibility in BCAA biosynthesis by proteolysis
regulation.
The fecal microbiome serves as a proxy for the gut

luminal microbiota but is not fully representative of the
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mucosa-associated microbiota at the site of disease.
Important complementary knowledge could be acquired
by systematically characterizing the MLI metaproteomes
from different sites, which revealed remarkable location-
specific alterations of microbial proteolysis signatures.
Interestingly, our findings are consistent with clinical
symptoms of IBD within the gastrointestinal tract, where
CD mainly occurs in terminal ileum [48] and UC mainly
localizes in descending colon and rectum [49]. Accord-
ingly, our results revealed that CD differed from UC and
control in terminal ileum and UC differed from the
other two groups in descending colon in terms of micro-
bial proteolysis motif and NRASP of biological pro-
cesses. In terminal ileum, NRASP of transcription,
translation, and protein folding decreased in CD while
NRASP of translational termination increased. Similarly,
decreased NRASP of translation and increased NRASP
of translation termination were observed in UC in de-
scending colon. These results potentially indicated the
dysregulations of microbial protein synthesis and matur-
ation in IBD.
While we observed several inter-group differences

when separately comparing the proteolysis signatures of
major taxonomic or functional groups, we could not
combine specific taxonomy and function (as what can
be performed in metagenomics research) for differential
analysis of proteolysis features. This is because of the
relatively low proportions (accounted for 15–20% of
the total identified peptides) and the high missing
values of semi-tryptic peptides across different samples
(Additional file 1: Table S1 and Table S3). Currently,
the analytical depth of LC-MS-based metaproteomics is
still very low compared with metagenomics. Ultra-deep
metaproteomics profiling employing on-line or off-line
fractionation can provide more in-depth insight into
gut microbial proteolysis and may offer the opportunity
to combine taxonomy and function in analyzing prote-
olysis features.
In terms of host factors, we focused on human prote-

ase inhibitors and immunoglobulins. Generally, intestinal
protease activity increases in IBD and protease inhibition
has been proposed as new therapeutic strategy for IBD
[50–52]. In our analysis, we found human endogenous
protease inhibitors such as Serpins A1 significantly in-
creased in IBD (particularly CD) fecal and MLI samples
(Additional file 1: Fig. S7a), probably because the
increased protease activity triggers the production of a
higher level of protease inhibitors in order to control the
destructive nature of protease. There are many host
mechanisms that have evolved to regulate host-
microbiota interactions, and among these, one of the
most widely studied is immunoglobulin A (IgA) [53, 54].
In addition, a recent study has reported that IgG select-
ively identifies pathobionts in pediatric IBD [55]. Altered

microbial composition and metabolic products can trigger
mucosal immune responses that mediate IBD [56, 57]. In
our study, we did observe different immunoglobulins
significantly increased in IBD (Additional file 1: Fig. S7b).
Interestingly, microbial proteolysis exhibited negative
associations with IgG and IgM but positive associations
with IgA. In most cases, we found human immunoglobu-
lins and protease inhibitors were negatively associated
with the microbial proteolytic signatures, suggesting the
inhibitory effects of these host factors on gut microbial
proteolysis events.
Although large-scale data mining of published metage-

nomics datasets has revealed many new biological
insights, this paradigm lags behind in metaproteomics
research. Our semi-tryptic peptide centric mining strat-
egy offers a label-free approach to discover signatures of
in vivo microbial proteolysis events if experimental con-
ditions are well controlled (e.g., fast sample storage and
enzyme inactivation). While results from individual stud-
ies can be inconsistent, meta-analysis of multiple pub-
lished datasets using this approach can increase the
confidence of results. On the other hand, abnormally
high proportions of semi-tryptic peptides may indicate
in vitro proteolysis during sample preparation. Thus, this
approach could be used to evaluate and control experi-
ment conditions (e.g., enrichment of microbial cells by
differential centrifugation). In addition to gut microbial
proteolysis signatures, the approach should also work to
explore proteolysis regulations in plant and environmen-
tal microbiome if appropriate public or sample-matched
sequence database are available.

Conclusions
Proteolysis regulation is an important strategy for gut
microbial adaptation to the fluctuating intestinal envir-
onment. Alterations of the gut microbial proteolytic sig-
natures in inflammatory bowel disease are highly diverse
and divergent, thus highlighting the need for broader in-
vestigations to elucidate their functions. Our data also
supports metaproteomics as a valuable approach to in-
vestigate the deeper regulation rules of the gut micro-
biota and host-microbial interactions.
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tides and the cleavage sites in the descending colon (DeC) MLI metapro-
teomes. Table S5. Microbial semi-tryptic peptides and the cleavage sites
in the terminal ileum (TI) MLI metaproteomes. Table S6. Human semi-
tryptic peptides and the cleavage sites in the ascending colon (AsC) MLI
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metaproteomes. Table S7. Human semi-tryptic peptides and the cleav-
age sites in the descending colon (DeC) MLI metaproteomes. Table S8.
Human semi-tryptic peptides and the cleavage sites in the terminal ileum
(TI) MLI metaproteomes. Table S9-S10. Human full tryptic peptides in
fecal metaproteomes. Table S11. Microbial full tryptic peptides in the as-
cending colon (AC) MLI metaproteomes. Table S12. Human full tryptic
peptides in the ascending colon (AsC) MLI metaproteomes. Table S13.
Microbial full tryptic peptides in the descending colon (DeC) MLI meta-
proteomes. Table S14. Human full tryptic peptides in the descending
colon (DeC) MLI metaproteomes. Table 15. Microbial full tryptic peptides
in the terminal ileum (TI) MLI metaproteomes. Table 16. Human full
tryptic peptides in the terminal ileum (TI) MLI metaproteomes. Table
S17. NRASP of 20 major taxonomic sub-groups identified in fecal meta-
proteomes. Table S18. NRASP of 35 major biological processes identified
in fecal metaproteomes. Table S19. NRASP of 32 major enzyme sub-
classes identified in fecal metaproteomes. Table S20. Peptides and al-
tered NRASP. Table S21. Peptides identified in the Escherichia coli
proteome using reference database and one-step database searching.
Table S22. NRASP of biological processes identified in Escherichia coli
proteome. Table S23. Relative abundance of 81 major taxonomic sub-
groups identified in fecal metaproteomes. Table S24. NRASP of 156
major biological processes identified in fecal metaproteomes. Table S25.
NRASP of 195 major enzyme sub-subclasses identified in fecal metapro-
teomes. Table S26. Alterations of amino acid frequencies around the
cleavage sites in the fecal microbial proteins. Table S27. Alterations of
amino acid frequencies around the cleavage sites in the fecal human pro-
teins. Table S28. NRASP of 57 major biological processes identified in
AsC metaproteomes. Table S29. NRASP of 56 major biological processes
identified in DeC metaproteomes. Table S30. NRASP of 51 major bio-
logical processes identified in TI metaproteomes. Table S31. Alterations
of amino acid frequencies around the cleavage sites in the ascending
colon (AsC) MLI microbial proteins. Table S32. Alterations of amino acid
frequencies around the cleavage sites in the decending colon (DeC) MLI
microbial proteins. Table S33. Alterations of amino acid frequencies
around the cleavage sites in the terminal ileum (TI) MLI microbial pro-
teins. Table S34. Alterations of amino acid frequencies around the cleav-
age sites in the ascending colon (AsC) MLI human proteins. Table S35.
Alterations of amino acid frequencies around the cleavage sites in the
decending colon (DeC) MLI human proteins. Table S36 Alterations of
amino acid frequencies around the cleavage sites in the terminal ileum
(TI) MLI human proteins. Table S36 Alterations of amino acid frequencies
around the cleavage sites in the terminal ileum (TI) MLI human proteins.
Fig. S1. Altered fecal metaproteomes of IBD at different levels revealed
by full tryptic peptide based normalized relative abundance. Representa-
tive alterations are illustated at different taxonomic levels (a) as well as in
different biological processes (b) and enzyme sub-classes (c). Dunn-
Bonferroni post-hoc analysis following Kruskal-Wallis test was employed
to detect significant difference among three groups (CD, Ctrl, and UC). *P
< 0.05 versus Ctrl; **P < 0.01 versus Ctrl; ***P < 0.001 versus Ctrl; # P <
0.05 (CD versus UC); ##P < 0.01 (CD versus UC); ### P < 0.001 (CD versus
UC). Fig. S2. Principal coordinates analysis (PCoA) based on Bray–Curtis
index of semi-tryptic peptide intensity in the fecal metaproteomes. Fig.
S3. Altered amino acid frequencies around the cleavage sites of human
proteins in fecal metaproteomes of IBD. Fig. S4. Microbial proteins and
human proteins in fecal samples can exhibit similar or reversed alteration
trends in certain positions around the cleavage site in IBD. Dunn-
Bonferroni post-hoc analysis following Kruskal-Wallis test was employed
to detect significant group difference. *P < 0.05 versus Ctrl; **P < 0.01 ver-
sus Ctrl; ***P < 0.001 versus Ctrl. Fig. S5 Hierarchical clustering analysis of
altered amino acid frequencies around the cleavage sites of human pro-
teins in MLI metaproteome of IBD. a ascending colon, b descending
colon, c terminal ileum. Fig. S6. Microbial proteins and human proteins
in MLI samples can exhibit similar or reversed alteration trends in certain
positions around the cleavage site in IBD. a ascending colon, b descend-
ing colon, c terminal ileum. Dunn-Bonferroni post-hoc analysis following
Kruskal-Wallis test was employed to detect significant group difference.
*P < 0.05 versus Ctrl; **P < 0.01 versus Ctrl; ***P < 0.001 versus Ctrl. Fig
S7. Increased human protease inhibitors (a) and immunoglobulins (b) in
IBD revealed by the label-free quantification (LFQ) intensity

Abbreviations
BCAA: Branched-chain amino acids; CD: Crohn’s disease; CGR: Culturable
Genome Reference; IBD: Inflammatory bowel disease; IGC: Integrated gene
catalog; LFQ: Label-free quantification; MLI: Mucosal luminal interface;
NRASP: Normalized relative abundance of semi-tryptic peptides;
PCA: Principle component analysis; PCoA: Principal coordinate analysis;
PEP: Posterior error probability; UC: Ulcerative colitis

Acknowledgements
Not applicable.

Authors’ contributions
ZY conceived and designed the study, performed the data analysis, and
drafted the manuscript. XL, LL, and HZ offered guidance on IBD disease
subtyping. FX and RY helped to interpret the results. LC and FH downloaded
the raw data. RY, HS, HH, DL, and YW helped in computing resources. ZY, HS,
and XL edited the manuscript. The authors read and approved the final
version of the manuscript.

Funding
This work was supported by the National Natural Science Foundation of
China (31900070, ZX Yan), Guangdong Basic and Applied Basic Research
Foundation (2019A1515011771, ZX Yan), Southern Marine Science and
Engineering Guangdong Laboratory (Zhuhai, SML2020SP003), Science and
Technology Development Fund of Macau SAR (0098/2019/A2, R Yan), and
the National Natural Science Foundation of China (81473281, R Yan).

Availability of data and materials
The mass spectrometry proteomics data are available in the
ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD008675, PXD007819, and PXD000498.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Guangdong Provincial Key Laboratory of Biomedical Imaging and
Guangdong Provincial Engineering Research Center of Molecular Imaging,
The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000,
Guangdong Province, China. 2Department of Endocrinology and Metabolism,
The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000,
Guangdong Province, China. 3Department of Gastroenterology, The Fifth
Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong
Province, China. 4State Key Laboratory of Quality Research in Chinese
Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa,
Macao, China. 5Center for Interventional Medicine, The Fifth Affiliated
Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China.

Received: 24 September 2020 Accepted: 6 December 2020

References
1. Mahmoud SA, Chien P. Regulated proteolysis in bacteria. Annu Rev

Biochem. 2018;87:677–96.
2. Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in

bacterial development. FEMS Microbiol Rev. 2014;38(3):493–522.
3. Deng CY, Zhang H, Wu Y, Ding LL, Pan Y, Sun ST, et al. Proteolysis of

histidine kinase VgrS inhibits its autophosphorylation and promotes
osmostress resistance in Xanthomonas campestris. Nat Commun. 2018;
9(1):4791.

4. Sarnovsky R, Rea J, Makowski M, Hertle R, Kelly C, Antignani A, et al.
Proteolytic cleavage of a C-terminal prosequence, leading to
autoprocessing at the N terminus, activates leucine aminopeptidase from
Pseudomonas aeruginosa. J Biol Chem. 2009;284(15):10243–53.

Yan et al. Microbiome            (2021) 9:12 Page 17 of 19



5. Deter HS, Abualrahi AH, Jadhav P, Schweer EK, Ogle CT, Butzin NC.
Proteolytic queues at ClpXP increase antibiotic tolerance. ACS Synth Biol.
2020;9(1):95–103.

6. Mukherjee S, Bree AC, Liu J, Patrick JE, Chien P, Kearns DB. Adaptor-
mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation. Proc
Natl Acad Sci U S A. 2014;112(1):1–6.

7. Tan IS, Weiss CA, Popham DL, Ramamurthi KS. A quality-control mechanism
removes unfit cells from a population of sporulating bacteria. Dev Cell.
2015;34(6):682–93.

8. Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, et al. Role of
inorganic polyphosphate in promoting ribosomal protein degradation by
the Lon protease in E. coli. Science. 2001;293(5530):705–8.

9. Christensen SK, Pedersen K, Hansen FG, Gerdes K. Toxin-antitoxin loci as
stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs
and are counteracted by tmRNA. J Mol Biol. 2003;332(4):809–19.

10. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S,
et al. Gut microbiome structure and metabolic activity in inflammatory
bowel disease. Nat Microbiol. 2019;4(2):293–305.

11. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J,
Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory
bowel diseases. Nature. 2019;569(7758):655–62.

12. Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA,
Bramer LM, et al. Dynamics of the human gut microbiome in inflammatory
bowel disease. Nat Microbiol. 2017;2:17004.

13. Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW,
et al. Dynamics of metatranscription in the inflammatory bowel disease gut
microbiome. Nat Microbiol. 2018;3(3):337–46.

14. Li F, Hitch TCA, Chen Y, Creevey CJ, Guan LL. Comparative metagenomic
and metatranscriptomic analyses reveal the breed effect on the rumen
microbiome and its associations with feed efficiency in beef cattle.
Microbiome. 2019;7(1):6.

15. Hettich RL, Pan C, Chourey K, Giannone RJ. Metaproteomics: harnessing the
power of high performance mass spectrometry to identify the suite of
proteins that control metabolic activities in microbial communities. Anal
Chem. 2013;85(9):4203–14.

16. Blakeley-Ruiz JA, Erickson AR, Cantarel BL, Xiong W, Adams R, Jansson JK,
et al. Metaproteomics reveals persistent and phylum-redundant metabolic
functional stability in adult human gut microbiomes of Crohn’s remission
patients despite temporal variations in microbial taxa, genomes, and
proteomes. Microbiome. 2019;7(1):18.

17. Xiong W, Brown CT, Morowitz MJ, Banfield JF, Hettich RL. Genome-resolved
metaproteomic characterization of preterm infant gut microbiota
development reveals species-specific metabolic shifts and variabilities
during early life. Microbiome. 2017;5(1):72.

18. Zhang X, Ning Z, Mayne J, Moore JI, Li J, Butcher J, et al. MetaPro-IQ: a
universal metaproteomic approach to studying human and mouse gut
microbiota. Microbiome. 2016;4(1):31.

19. Zhang X, Deeke SA, Ning Z, Starr AE, Butcher J, Li J, et al. Metaproteomics
reveals associations between microbiome and intestinal extracellular vesicle proteins
in pediatric inflammatory bowel disease. Nat Commun. 2018;9(1):2873.

20. Kim JS, Monroe ME, Camp DG, Smith RD, Qian WJ. In-source fragmentation
and the sources of partially tryptic peptides in shotgun proteomics. J
Proteome Res. 2013;12(2):910–6.

21. Shao W, Guo T, Toussaint NC, Xue P, Wagner U, Li L, et al. Comparative
analysis of mRNA and protein degradation in prostate tissues indicates high
stability of proteins. Nat Commun. 2019;10(1):2524.

22. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, et al.
Heinemann M. the quantitative and condition-dependent Escherichia coli
proteome. Nat Biotechnol. 2016;34(1):104–10.

23. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog
of reference genes in the human gut microbiome. Nat Biotechnol. 2014;
32(8):834–41.

24. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al.
Culturing of “unculturable” human microbiota reveals novel taxa and
extensive sporulation. Nature. 2016;533(7604):543–6.

25. Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, et al. 1,520 reference genomes
from cultivated human gut bacteria enable functional microbiome analyses.
Nat Biotechnol. 2019;37(2):179–85.

26. Edgar RC. (2010) search and clustering orders of magnitude faster than
BLAST. Bioinformatics. 2010;26(19):2460–1.

27. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, et al. PEAKS DB: De novo
sequencing assisted database search for sensitive and accurate peptide
identification. Mol Cell Proteomics. 2012;11(4):M111.010587.

28. Cox J, Mann M. MaxQuant enables high peptide identification rates,
individualized p.p.b.-range mass accuracies and proteome-wide protein
quantification. Nat Biotechnol. 2008;26(12):1367–72.

29. Chi H, Liu C, Yang H, Zeng WF, Wu L, Zhou WJ, et al. Comprehensive
identification of peptides in tandem mass spectra using an efficient open
search engine. Nat Biotechnol. 2018;36:1059–61.

30. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. J
Proteome Res. 2011;10(4):1794–805.

31. Krokhin OV, Spicer V. Peptide retention standards and hydrophobicity
indexes in reversed-phase high-performance liquid chromatography of
peptides. Anal Chem. 2009;81(22):9522–30.

32. Mesuere B, Devreese B, Debyser G, Aerts M, Vandamme P, Dawyndt P.
Unipept: tryptic peptide-based biodiversity analysis of metaproteome
samples. J Proteome Res. 2012;11(12):5773–80.

33. Gurdeep Singh R, Tanca A, Palomba A, Van der Jeugt F, Verschaffelt P,
Uzzau S, et al. Unipept 4.0: functional analysis of metaproteome data. J
Proteome Res. 2019;18(2):606–15.

34. Schechter I, Berger A. On the size of the active site in proteases. I Papain
Biochem Biophys Res Commun. 1967;27:157–62.

35. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo
generator. Genome Res. 2004;14(6):1188–90.

36. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0:
towards more transparent and integrative metabolomics analysis. Nucleic
Acids Res. 2018;46(W1):W486–94.

37. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst:
a web-based tool for comprehensive statistical, visual and meta-analysis of
microbiome data. Nucleic Acids Res. 2017;45(W1):W180–8.

38. Cantarel BL, Erickson AR, VerBerkmoes NC, Erickson BK, Carey PA, Pan C,
et al. Strategies for metagenomic-guided whole-community proteomics of
complex microbial environments. Plos One. 2011;6(11):e27173.

39. Chatterjee S, Stupp GS, Park SK, Ducom JC, Yates JR 3rd, Su AI, et al. A
comprehensive and scalable database search system for metaproteomics.
BMC Genomics. 2016;17(1):642.

40. Beyter D, Lin MS, Yu Y, Pieper R, Bafna V. ProteoStorm: an ultrafast
metaproteomics database search framework. Cell Syst. 2018;7(4):463–7.

41. Bogdanow B, Zauber H, Selbach M. Systematic errors in peptide and protein
identification and quantification by modified peptides. Mol Cell Proteomics.
2016;15(8):2791–801.

42. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)a mRNA
methylation directs translational control of heat shock response. Nature.
2015;526(7574):591–4.

43. Sanders MM, Kon C. Glutamine and glutamate metabolism in normal and
heat shock conditions in drosophila kc cells: conditions supporting
glutamine synthesis maximize heat shock polypeptide expression. J Cell
Physiol. 1992;150(3):620–31.

44. Muth T, Kolmeder CA, Salojärvi J, Keskitalo S, Varjosalo M, Verdam FJ, et al.
Navigating through metaproteomics data: a logbook of database searching.
Proteomics. 2015;15(20):3439–53.

45. Garault P, Letort C, Juillard V, Monnet V. Branched-chain amino acid
biosynthesis is essential for optimal growth of Streptococcus thermophilus in
milk. Appl Environ Microbiol. 2000;66(12):5128–33.

46. Nichols DS, Presser KA, Olley J, Ross T, McMeekin TA. Variation of branched-
chain fatty acids marks the normal physiological range for growth in Listeria
monocytogenes. Appl Environ Microbiol. 2000;68:2809–13.

47. Santiago B, MacGilvray M, Faustoferri RC, Quivey RG Jr. The branched-chain
amino acid aminotransferase encoded by ilvE is involved in acid tolerance
in Streptococcus mutans. J Bacteriol. 2012;194(8):2010–9.

48. Caprilli R. Why does Crohn’s disease usually occur in terminal ileum? J
Crohns Colitis. 2008;2(4):352–6.

49. Ungaro R, Mehandru S, Allen PB, PeyrinBiroulet L, Colombel JF. Ulcerative
colitis. Lancet. 2017;389(10080):1756–70.

50. Vergnolle N. Protease inhibition as new therapeutic strategy for GI diseases.
Gut. 2016;65(7):1215–24.

51. Steck N, Mueller K, Schemann M, Haller D. Bacterial proteases in IBD and IBS.
Gut. 2012;61:1610–8.

52. Midtvedt T, Zabarovsky E, Norin E, Bark J, Gizatullin R, Kashuba V, et al.
Increase of faecal tryptic activity relates to changes in the intestinal

Yan et al. Microbiome            (2021) 9:12 Page 18 of 19



microbiome: analysis of Crohn’s disease with a multidisciplinary platform.
PLoS One. 2013;8(6):e66074.

53. Petersen C, Bell R, Klag KA, Lee SH, Soto R, Ghazaryan A, et al. T cell-
mediated regulation of the microbiota protects against obesity. Science.
2019;365(6451):eaat9351.

54. Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC, Meisel M, et al. Natural
polyreactive IgA antibodies coat the intestinal microbiota. Science. 2017;
358(6361):eaan6619.

55. Armstrong H, Alipour M, Valcheva R, Bording-Jorgensen M, Jovel J, Zaidi D,
et al. Host immunoglobulin G selectively identifies pathobionts in pediatric
inflammatory bowel diseases. Microbiome. 2019;7(1):1.

56. van der Post S, Jabbar KS, Birchenough G, Arike L, Akhtar N, Sjovall H, et al.
Structural weakening of the colonic mucus barrier is an early event in
ulcerative colitis pathogenesis. Gut. 2019;68:2142–51.

57. Viladomiu M, Kivolowitz C, Abdulhamid A, Dogan B, Victorio D, Castellanos
JG, et al. Sci Transl Med. 2017;9(376):eaaf9655.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Yan et al. Microbiome            (2021) 9:12 Page 19 of 19


	Abstract
	Background
	Results
	Conclusions

	Introduction
	Methods
	Datasets
	Sequence database
	Database searching
	Semi-tryptic peptide mining
	Taxonomy and functional analysis of peptides
	Combining semi-tryptic and fully tryptic peptide data to quantify the degree of proteolysis
	Nomenclature and sequence motif of cleavage sites
	Statistical analysis

	Results
	A pipeline for metaproteomic semi-tryptic peptide characterization
	High-confidence identification of semi-tryptic peptides
	Relative abundance and distribution of semi-tryptic peptides
	Protease cleavage motif

	Validation of the approach by analyzing proteolysis signatures in E. coli heat-shock response
	Semi-tryptic peptide association with microbial composition, proteases, and chaperones
	Semi-tryptic peptide association with host protease inhibitors and immunoglobulins
	Semi-tryptic peptide analysis reveals potential signatures of altered microbial proteolysis

	Discussion
	Conclusions
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

