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Abstract

Use of soluble factors is the most common strategy to induce osteogenic differentiation of 

mesenchymal stem cells (MSCs) in vitro, but it may raise potential side effects in vivo. The 

topographies of the substrate surfaces affect cell behavior, and this could be a promising approach 

to guide stem cell differentiation. Micropillars have been reported to modulate cellular and 

subcellular shape, and it is particularly interesting to investigate whether these changes in cell 

morphology can modulate gene expression and lineage commitment without chemical induction. 

In this study, poly(methyl methacrylate) (PMMA) films were decorated with square prism 

micropillars with different lateral dimensions (4, 8 and 16 μm), and the surface wettability of the 

substrates was altered by oxygen plasma treatment. Both pattern dimensions and hydrophilicity 

were found to affect the attachment, proliferation, and most importantly, gene expression of 

human dental pulp mesenchymal stem cells (DPSCs). Decreasing the pillar width and interpillar 
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spacing enhanced cell attachment, cell elongation, and nuclear deformation of nuclei, but reduced 

early proliferation rate. Surfaces with 4 or 8 μm wide pillars/gaps upregulated the expression of 

early bone-marker genes and mineralization over 28 days of culture. Exposure to oxygen plasma 

increased wettability and promoted cell attachment and proliferation but delayed osteogenesis. Our 

findings showed that surface topography and chemistry are very useful tools in controlling cell 

behavior on substrates and they can even help create better implants. The most important finding is 

that hydrophobic micropillars on polymeric substrate surfaces can be exploited in inducing 

osteogenic differentiation of MSCs without any differentiation supplements.
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Introduction

Tissue engineering strategies have emerged as alternatives to auto- or allografts and implants 

in the regeneration of defected tissues in cases of massive bone losses or fractions[1–3]. 

MSCs have been of great interest in bone tissue engineering because of their high self-

renewal and osteogenic capacity[4]. Human dental pulp has been identified as an easily 

accessible source of MSCs for clinical applications and dental pulp stem cells (DPSCs) have 

been shown to exhibit a high osteogenic/odontogenic capacity[5, 6]. Effective and safe 

induction of osteogenesis, however, has been an issue for the researchers. It is difficult to 

deliver soluble differentiation supplements such as bone morphogenetic proteins (BMPs) 

and dexamethasone in a spatially and temporally controlled manner to obtain satisfactory 

effects[7]. Moreover, their use raises safety concerns including the potential side effects and 

the risk of tumorigenicity in supraphysiological doses[8]. Besides biochemical factors, the 

fate of stem cells is also modulated by the topography of basement membranes, which 

regulate adhesion, distribution and organization of cytoskeletal elements, migration, 

survival, growth, and differentiation of adherent cells[9–11]. For example, changes in the 

morphology of BMSCs upon spreading on micro- and nanoscale topography of the collagen 

fibrils and hydroxyapatite crystals of the bone matrix contribute to their differentiation into 

osteoblasts[12, 13]. Then further differentiation into mechanosensitive osteocytes is triggered 

upon entrapment in bone lacunae of 10–30 μm diameters distorts the cuboid shape of 
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osteoblasts into a highly-branched morphology with numerous cytoplasmic extensions 

running along the narrow channels called canaliculi[14]. The mechanism by which these 

physical features modulate the cell fate has been explained with the mechanotransduction of 

local cytoskeletal tensions created by the changes in size and shape of the cells[11, 15]. These 

tensions or signals are transmitted from focal adhesion complexes to cell nucleus either 

indirectly, chemically, through the signaling cascades that modulate the activity of 

transcription factors[16], or directly through the linker proteins between the cytoskeletal 

filaments and nuclear lamina, resulting in a repositioning of chromatin and alteration of gene 

expression[17–20]. The modulation of cell morphology through surface topography may 

therefore be a safer alternative to soluble factors for guiding lineage commitment of stem 

cells.

The advances in lithographic micro- and nanostructure fabrication methods in silicon 

microelectronics industry have enabled researchers in biology and biomedicine to design 

surface structures to study the responses of cells to the surface topography[21, 22]. A variety 

of micro- and nanoscale 3D surface features including ridges and grooves, randomly or 

evenly distributed pits, pillars/posts, or wells[23, 24] have been shown to influence the 

attachment[25, 26], migration[27, 28], morphology[29, 30], proliferation[31–33], and 

differentiation of the cells[34–38]. Cells were reported to align themselves along the ridges of 

surface patterns through a phenomenon called contact guidance[39] and exhibit 

morphological changes in cell body[25, 40–44]. In addition to causing alterations of cell shape, 

micropillar-decorated surfaces with low micron sized cues were shown to trigger severe 

deformations in cell nuclei[33, 38, 45–50]. We also reported that DPSCs cultured on PMMA 

surfaces decorated with square prism micropillars displayed distinctive changes in cellular 

and nuclear shapes, the type and extent of which depended on the lateral dimensions and 

hydrophilicity of the pillars[51].

In a more recent study, we showed that micropillars improve osteogenic activity of human 

osteoblast-like cells on PMMA surfaces by promoting cell attachment, alkaline phosphatase 

(ALP) expression and mineralization[52]. Our findings address a fundamental question: 

besides improving osteogenic activity, could these micropillar decorated surfaces also induce 

osteogenic differentiation of mesenchymal stem cells without biochemical supplements? 

Changes in cellular[37, 53, 54] or nuclear[38] morphologies on patterned surfaces have been 

demonstrated to improve osteogenic differentiation of MSCs induced by differentiation 

media. Studies on the induction of stem cell differentiation on 3D topographical features 

without soluble factors, however, are limited. Examples of induction of osteogenesis by 

surface topography without chemical supplements include the culture of mesenchymal stem 

cells on artificial ECM[55], silk fibroin[56] and polyurethane[57] substrates but these 

substrates were decorated with submicron ridges and grooves, on PMMA surfaces decorated 

with randomly distributed nanopillars[34] and on tantalum coated microarrays with shallow 

(2.4 μm high) pillars[26]. In none of these studies, however, cytoskeletal and nuclear 

deformations were extensively induced, emphasized or correlated with osteogenesis.

Here we hypothesize that the osteogenic differentiation of DPSCs can be induced by 

micropillars through the modulation of cytoskeletal and nuclear morphologies and no 

differentiation supplements. We planned to assess the influence of induced morphological 
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changes on the fate of DPSCs by performing proliferation, osteogenic gene expression, bone 

matrix deposition and mineralization tests. For this purpose, a series of PMMA micropillar 

arrays with pillar widths and spacings in the size range of bone lacunae (4, 8 and 16 μm) 

were designed. The hydrophilicity of the substrates was improved by oxygen plasma 

treatment, which we had previously shown to induce morphological changes in a shorter 

time and to a higher extent[51]. Findings of this present study will lead to more defined 

topographical parameters for use in the design of tissue engineering scaffolds and bone 

implants with better osteoinduction and osseointegration capacities.

Materials and Methods

Fabrication and characterization of PMMA micropillar arrays

Poly(methyl methacrylate) (PMMA; Mw = 996kDa) was purchased from Sigma-Aldrich 

(USA). The production of silicon microarrays by typical photolithography, and the 

preparation of polymeric micropillar arrays by solvent casting on silicon array templates or 

wafers have been previously reported[45, 51, 52]. Three types of silicon wafers were decorated 

with 8 μm tall square prism pillars: P4G4, P8G8 and P16G16, where P is the lateral 

dimension of square prism pillars and G is the interpillar gap in μm. Poly(dimethyl siloxane) 

(PDMS) (Sylgard 184, Dow Corning Company, UK) negatives of the wafers were produced 

and PMMA replicates of the original wafers were fabricated by solvent casting of 20% (w/v) 

PMMA solution in chloroform (Avantor J.T. Baker, USA) on the PDMS molds. All films 

had a surface area of 0.64 cm2. PMMA replicas were Au-Pd coated under vacuum and 

visualized using SEM (400 F Field Emission SEM, USA). Surface wettability of the 

substrates was improved by oxygen plasma treatment using a Femto 40 kHz Plasma System 

(Diener Electronic, Germany). The pressure in the plasma chamber was maintained at 20 

mbar and the substrates were exposed to oxygen plasma at 100 W for 10 min. Samples were 

then immediately used in contact angle measurements and in vitro tests.

Cell isolation, culture and seeding protocol

Human dental pulp stem cells were isolated from a third molar teeth via an enzymatic 

degradation method as reported before[51, 58]. Human dental pulp extracts from impacted 

third molars were obtained from 3 patients (2 female, 1 male), aged 18–22 years, with 

informed written consent at the Middle East Technical University Medical Center with the 

approval of the METU Human Subjects Ethics Committee of, Ankara, Turkey (No: 

28620816/505–69). Briefly, pulp tissue fragments were minced into small pieces and 

digested with collagenase type I and dispase II (Sigma-Aldrich, USA). Cells from 3 patients 

were filtered, pooled and expanded in DMEM:F12 1:1 (Lonza, Switzerland) supplemented 

with fetal bovine serum (FBS, 10%, v/v) (Biowest, France), penicillin and streptomycin 

(Pen-Strep, 100 U.mL−1) and L-glutamine (5 mM) (Lonza, Switzerland). Passages 2–5 were 

used in the in vitro studies. Cells in the chemical induction group (control) were cultured on 

TCPS (n=3) in an expansion media supplemented with 100 nM dexamethasone, 10 mM β-

glycerophosphate and 50 μM L-ascorbic acid (Sigma-Aldrich, USA).

Cells were seeded onto the substrates as described previously[45, 51]. Briefly, PMMA films 

were sterilized by exposing both sides to UV for 15 min and placed into 12-well plates. 
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Cells were detached from the tissue culture flasks, counted using Nucleocounter 

(Chemometec, Denmark), and seeded onto the patterned surfaces at a density of 104 cells.cm
−2. The number of seeded cells were found to be too high for a morphology analysis of 

individual cells even at early time points. It was, however, too low for the determination of 

cell numbers on Day 1 by Alamar Blue assay or for the extraction of enough mRNA on Day 

7 for gene expression analysis. Cell seeding density was, therefore, optimized as 3×103 

cells.cm−2 for microscopy, 104 cells.cm−2 for proliferation and immunofluorescence, and 

3×104 cells.cm−2 for cell attachment and gene expression analyses. After 2 h of seeding, 2 

mL of expansion medium was gently added to each well. Plates were incubated at 37°C and 

5% CO2 incubator, and the medium was changed every 2 days.

Flow cytometry

Isolated cells were characterized for the MSC negative and positive surface antigens by flow 

cytometry (BD Accuri C6, USA). Trypsinized cells were washed with FACS buffer (1:1000 

sodium azide (Sigma-Aldrich) and 1:100 BSA (Sigma-Aldrich) in PBS) and fixed in 4% 

paraformaldehyde (Sigma-Aldrich) solution for 15 min. Fixed cells were stained with mouse 

IgG1 anti-human monoclonal antibodies (Biolegend, USA) against CD31 (#303110), CD45 

(#304017), CD90 (#328116) and CD105 (#323212) and 105 cells were counted per sample.

Cell attachment and proliferation

Numbers of cells on the substrates were determined using the Alamar Blue® cell viability 

assay (Thermo Fisher Scientific, USA) 16 h after seeding and on Days 3, 7, 14 and 21. 

Substrates were washed twice with PBS and incubated in 500 μL Alamar blue solution (10% 

in DMEM High Glucose colorless (Lonza) supplemented with 100 U.mL−1 Pen-Strep) for 2 

h at 37°C and 5% CO2. Absorbance was measured twice for each sample (n=3) at 570 nm 

(reduced) and 595 nm (oxidized) using a plate reader (Multiscan Spectrum, Thermo 

Scientific). Dye reduction (%) was calculated as described in the assay guide, and it was 

converted to cell numbers using a calibration curve (Fig. S1). The specific growth rate of the 

DPSCs during the exponential growth phase were calculated by using the cell numbers and 

the Equation 2 which was derived from Equation 1[59]:

Nt = N0eμt (1)

μ = ln Nt
N0

/t (2)

where Nt is the cell numbers at a specific time point within the exponential growth phase, N0 

the initial cell numbers on Day 3, t the time (d) and μ the specific growth rate (d−1).

Scanning electron microscopy (SEM) imaging

Samples were rinsed with PBS, fixed in 4% paraformaldehyde, washed with PIPES 

(piperazine-N,N’-bis(ethanesulfonic acid)) buffer (Sigma-Aldrich, USA) and incubated in 

1% osmium tetroxide (OsO4) (Polysciences, USA) in PIPES buffer at RT for 1 h. Then, the 

samples were washed again with PIPES buffer and dehydrated by incubating in a series of 
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50, 70 and 100% (v/v) ethanol solutions at RT for 5 min each. Samples were Au-Pd coated 

under vacuum and examined by SEM.

Confocal scanning laser microscopy (CSLM) imaging

Samples were washed with PBS and fixed by immersing the samples in 4% (w/v) 

paraformaldehyde solution for 15 min at RT. Cells were permeabilized with Triton X-100 

(PanReac Applichem, Germany) solution (0.1%, v/v, in PBS) for 5 min at RT. After washing 

with PBS, samples were incubated in BSA blocking solution (1%, w/v, in PBS) at 37°C for 

30 min. Samples were incubated in Alexa Fluor 488 conjugated phalloidin (Thermo Fisher 

Scientific, USA) solution (1:50 in 0.1% BSA) at 37°C for 1 h and in DRAQ5 (ab108410, 

Abcam, UK) solution (1:1000 in 0.1% BSA) at RT for 1 h to label actin cytoskeleton and 

nuclei, respectively. Then, the samples were washed twice with PBS and analyzed by using 

Leica SPE confocal laser scanning microscope (Germany).

qRT-PCR

The total RNA was collected from 12-well culture plates (n=4) for the chemical induction 

group or n=4 samples (each repeat consisted of a pool of 5 separate PMMA replicas) on 

Days 7, 14, and 28 using Masterpure RNA Purification Kit (Epicentre, USA) according to 

the manufacturer’s instructions. First-strand cDNAs were reverse transcribed using 

RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific) from each sample 

using a thermal cycler (iCycler, BIORAD, USA). qRT-PCR reactions were performed using 

GoTaq® qPCR Mastermix (Promega, USA) with Rotor-Gene Q real-time PCR cycler 

(Qiagen, Germany) using forward and reverse primers specific for glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), Osterix (OSX), alkaline phosphatase (ALP) and 

osteocalcin (OC) listed in Supplementary Table 1. PCR conditions were: an initial 

denaturation at 95°C (2 min) and 35 cycles of denaturation at 95°C (15 s), and annealing/

extension at 60°C (60 s). The Ct values for OSX, ALP and OC were normalized to that of 

the housekeeping gene GAPDH. Relative expression of the genes was calculated by the 

ΔΔCt method as described elsewhere[60]. Briefly, the fold changes in gene expression 

(2−ΔΔCt) by chemically induced cells on TCPS and by the cells cultured on micropatterned 

surfaces were calculated by normalization to expression levels in growth medium without 

osteogenic supplements and to expression levels on unpatterned control surfaces, 

respectively.

Immunofluorescence

Cells attached on the samples were fixed with paraformaldehyde solution. They were then 

incubated at 37°C for 1 h in blocking solution (5% v/v goat serum, 1% v/v Tween 20, 0.1% 

w/v BSA, 0.1% w/v sodium azide in 0.01 M PBS). For the immunostaining of collagen type 

I and osteopontin, samples were incubated within primary antibody (Rabbit anti-

osteopontin, ab91655; mouse anti-collagen type I, ab23446, Abca, UK) for 1 h and in 

secondary antibody (Goat anti-Rabbit IgG Alexa Fluor 488, A-11008; Goat anti-Mouse IgG 

Alexa Fluor 532, A-11002, Invitrogen, USA) for 30 min. Cell nuclei were stained with 

DRAQ5 for 15 min at RT. After preparation, specimens were kept in the dark, humidified 

containers until microscopic examination. CLSM images were collected using Leica SPE 
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and the laser power was kept constant for each channel. Signal intensity for each marker was 

normalized to the signal intensity of nuclei to normalize matrix deposition to cell numbers.

Mineralization

Mineralization (calcium deposition) to evaluate the degree of osteogenesis on the samples 

was determined by Alizarin red staining. Samples were fixed in 4% paraformaldehyde 

solution for 15 min, rinsed with 0.01M PBS, stained with Alizarin Red S (Cyagen, USA) for 

5 min and rinsed with 0.01M PBS before imaging. Images were collected with Olympus 

IX70 inverted light microscope (Japan) with a 20x objective.

Statistical Analysis

All quantitative data in this study (n≥3) are expressed as mean ± standard deviation. One-

way analysis of variance (One-way ANOVA) with Tukey’s pairwise comparison test was 

performed to analyze the results between the groups. p-values less than 0.05 were 

considered statistically significant. Pearson product moment correlation test was performed 

to calculate the correlation coefficients (r) between two variables. Variables with |r| values 

larger than 0.5 and 0.85 were considered correlated and strongly correlated, respectively.

Results and Discussion

Characterization of micropillar decorated PMMA surfaces

The topographical features of the ECM are known to regulate the responses of MSCs. 

Therefore, engineering of substrate topography has been widely investigated in the last 

decade with the aim of guiding lineage commitment of stem cells[9, 23]. We prepared 

micropillar arrays on PMMA surfaces that we previously reported to generate distinct 

morphological changes in DPSCs[51]. Three types of PMMA surfaces with micropillars of 8 

μm height and varying lateral dimensions (P4G4, P8G8 and P16G16 in Fig.1A, P and G 

represent the width of square pillars and interpillar gaps in μm, respectively) were prepared 

(Fig.1B). Unpatterned PMMA substrates were used as negative control surfaces. We 

previously showed that the Young’s moduli (E: 1300 MPa) and ultimate tensile strength 

(UTS: 41 MPa) (Fig.S2) of solvent cast PMMA films were in the range of natural bone 

tissue (E: 100–30000 MPa, UTS: 5–150 MPa)[52], indicating that the mechanical properties 

of our substrates were suitable for osteogenesis. Wettability of polymeric surfaces modulates 

the type, amount, and conformation of the adsorbed proteins, which in turn influences 

adhesion, proliferation, and differentiation of mammalian cells[61]. O2 plasma treatment 

introduces oxygen rich polar groups on substrate surfaces and modulate surface wettability,
[62, 63], which is known to affect behavior of adherent cells[64]. A set of substrates were 

therefore exposed to oxygen plasma prior to cell seeding (Fig.1C) to investigate the 

influence of improved wettability of micropillar arrays and earlier and more robust 

alterations in cell morphology[51] on the fate of DPSCs. AFM analysis (Fig.S3) showed that 

oxygen plasma treatment slightly increased the nanoscale roughness of unpatterned surfaces, 

bringing RMS deviation from 6.4 to 15.9 nm and average height from 33.1 to 54.6 nm 

(Supplementary table 2).
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Characterization of isolated cells

Cells isolated from dental pulps had MSC-like well spread, broad, and flattened shapes on 

TCPS (Fig.S4A) which is consistent with literature[58, 65]. Cells at passage 2 were found to 

be positive (>50%) for MSC surface markers CD90 (100%) and CD105 (73.6%) and 

negative for hematopoietic stem cell surface markers CD31 (0.3%) and CD45 (0.4%) 

(Fig.4A). The relatively lower expression of CD105 at low passages was consistent with 

other studies[66, 67], and it was increased significantly at passage 5 (99.6%, Fig.S4B) 

probably because of a gradual decrease in the proportion of CD105 negative 

ectomesenchymal stem cells that share a common origin with neural crest cells[67, 68].

DPSCs cultured on TCPS in osteogenic induction media displayed a significant increase in 

the expressions of OSX, ALP, and OC over 28 days of culture (Fig.2B), confirming the 

osteogenic capacity of the isolated cells. OSX expression was slightly upregulated on Day 7, 

followed by a 10-fold increase on Day 14, and a sharp decrease back to the baseline on Day 

28. A similar observation was reported by Igarashi et al., who observed an initial increase of 

OSX expression with differentiating calvarial cells for the first 15 days and a gradual 

decrease afterwards[69]. Peak OSX levels on Day 14 was accompanied by significant 

upregulation of ALP and OC expressions on Days 14 and 28. This was expected, because 

OSX is an early osteogenic transcription factor that lies downstream of runt-related 

transcription factor 2 (Runx2) and stimulates bone matrix deposition and mineralization 

through elevated levels of collagen type I, ALP and OC[70].

Attachment of DPSCs on the substrates

Cell numbers on the substrates 16 h after seeding given in Fig.3A showed a lower number of 

cells attached on the substrates than the TCPS control. Meanwhile, a significantly higher 

number of cells attached on the patterned surfaces compared to the unpatterned control in 

the untreated group indicated a positive effect of micropillars on cell attachment. Enhanced 

cell attachment by micropillars was reported earlier for astrocytes[71], cardiomyocytes[72], 

and MSCs[26, 73], which can be attributed to larger contact area[73] and better formation and 

maturation of focal adhesions[74] assisted by 3D patterns. Despite the decrease in wettability 

with a decrease in pillar and gap length, cell attachment was higher on P4G4 than on P8G8 

and P16G16. This observation cannot be explained with increased contact as all patterned 

surfaces used in this study had geometrically the same total surface area. Higher cell 

attachment on P4G4 was probably a result of the highest number of pillars per unit area that 

a cell can interact, considering that the edges of pillar tops were shown to be where focal 

contacts were mainly concentrated on[75].

Oxygen plasma treatment dramatically increased cell attachment on all surfaces but P4G4. 

Cell attachment on the plasma treated surfaces increased with increasing pillar and gap 

width, from P4G4 towards P16G16, possibly because of the larger interpillar gaps being able 

to accommodate more cells. The increase in cell attachment upon plasma treatment can be 

attributed to the change of profile and conformation of adsorbed proteins with an increase in 

hydrophilicity as well as the nano-roughening of the surfaces due to plasma etching[64]. A 

positive effect of oxygen plasma treatment on cell attachment was also reported before by 

others[76, 77]. In those studies, WCA were in the range 40°−70°, which is generally accepted 
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to be optimum for mammalian cell adhesion on polymeric surfaces[78]. The range of WCA 

of the plasma treated surfaces used in this study, however, was much lower (between 10–

20°)[51] and cell attachment was still very high compared to untreated counterparts. Similar 

observations of significantly improved cell attachment on extremely wettable surfaces were 

also reported with nerve cells and osteoblasts on oxygen plasma treated poly(l-lactic acid) 

(PLLA)[79] and hexamethyldisiloxane surfaces[80], respectively. Our findings and those of 

others indicate that the optimal wettability for cell attachment is not a fixed value but rather 

vary with the material and cell type, and treatment conditions.

Positioning and morphology of DPSCs on the substrates

Lateral dimensions and hydrophilicity of the micropillars determined the relative positions 

and morphology of DPSCs as can be seen in SEM micrographs given in Fig.3B (lower 

magnification in Fig.S5). Cells on the untreated smooth surfaces (Fig.3B-i) did not spread 

well while the cells on the O2 plasma treated counterparts (Fig.3B-v) did with numerous 

extensions. On the untreated P4G4 and P8G8 surfaces, most of the cell bulk was located on 

pillar tops (Fig.3B-ii, iii), forming bridges over the interpillar spaces and extending their 

filopodia downward to the substrate floor. On the plasma treated counterparts (Fig.3B-vi, 

vii), on the other hand, cells were localized on the substrate floor with their filopodia 

extended towards and stretched over the pillar tops. Cells on both the untreated and the 

plasma treated P16G16 surfaces (Fig.3B-iv, viii) were spread in the interpillar gaps.

Confocal microscopy images of the cells presented in Fig.4A shows the distinct changes in 

cell and nucleus morphology. Cells were squeezed between the pillars and conformed their 

cytoplasm to the interpillar spaces, constraining their typical spread morphology seen on the 

unpatterned surface. Cells were extremely elongated on P4G4 but highly branched on P8G8 

and P16G16 surfaces. Same trends in cell morphology were also observed on the plasma 

treated surfaces. Cells were localized more in the interpillar spaces and surround the pillars 

on plasma treated P8G8 and P16G16 substrates. Together with cell bodies, nuclei were also 

inserted between the pillars and distorted on patterned surfaces, particularly on P4G4 (Fig. 

4B). Interestingly, cells that were located in between the pillars of untreated P4G4 and P8G8 

(Fig.S6) surfaces on Day 7 crawled back on top of the pillars on Day 14 and showed no 

significant nuclear deformation. On the oxygen plasma treated counterparts, however, 

majority of the cells were still squeezed in between the pillars and had deformed nuclei on 

Day 14.

Cell proliferation on the substrates

Both micropatterns and plasma modification had a profound effect on cell proliferation on 

the substrates (Fig.5A). Cell numbers (Fig.S7) on untreated P8G8 and P16G16 surfaces 

were comparable with that on the unpatterned control, while there were significantly lower 

number of cells on P4G4 surface at all time points. Cell numbers on oxygen plasma treated 

substrates were significantly higher than those on untreated counterparts throughout 21 days 

of culture, but P4G4 surface still had less cells than unpatterned or P8G8 and P16G16 

surfaces on Days 3 and 7. Oxygen plasma treatment and larger pillar/gap widths were found 

to increase proliferation rate on the substrates between days 3 and 7. The positive effect of 

oxygen plasma modification on cell division was also reported by others[81, 82] and it can be 
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attributed to the introduction of oxygen-rich groups such as hydroxyl and carboxylic acid, 

which were shown to modulate protein adsorption and subsequent transmission of 

proliferative signals mediated by integrin-ligand interactions[83]. After Day 7, specific 

growth rates on plasma treated surfaces decreased compared to the earlier time intervals and 

became lower than those on the untreated substrates (Supplementary Table 3), probably 

because of contact inhibition[84] after reaching confluency.

Considering the increase in nuclear deformations and decrease in proliferation rates with a 

decrease in pillar and gap size from P16G16 towards P4G4, a negative effect of nuclear 

deformations on cell proliferation can be suggested, particularly at early time points. Mitosis 

is a highly organized process that involves precise and predetermined rearrangements of 

genetic material in the nucleus; therefore, severe deformations in the nuclei might interrupt 

cell division by obstructing the access of the replication machinery to DNA[85]. Indeed, a 

negative correlation was found between the specific growth rates and the average nuclear 

deformation values on the substrates during Days 3–7 (Fig.5B). Nagayama et al. also 

reported inhibition of the proliferation of vascular smooth muscle cells on micropillar 

decorated surfaces, which they explained by the condensation of the chromatin in the 

deformed nuclei[33]. Specific growth rates between days 7 and 14 on untreated P4G4 and 

P8G8 surfaces leveled with those on the unpatterned and P16G16 surfaces (Supplementary 

Table 3), probably because of the gradual disappearance of nuclear deformations on P4G4 

and P8G8 as the cells crawled onto the pillar tops at later time points.

Expression of osteogenic marker genes on the substrates

Micropillar arrays on which distinct changes were observed in cytoskeletal and nuclear 

morphologies led to alterations in gene expression (Fig. 6A–C) as expected. On Day 7, OSX 

expression was 2-fold higher on the untreated P4G4 and P8G8 but not on P16G16. However, 

the relative expression of OSX on P4G4 and P8G8 surfaces levelled down to the baseline on 

Days 14 and 28. The early upregulation of OSX on P4G4 and P8G8 surfaces was followed 

by approximately 4-fold and 6-fold increases in ALP expression on Days 14 and 28, 

respectively. The ALP levels on untreated P4G4 and P8G8 on Day 14 were higher than that 

was obtained with chemical induction (Fig.2B), suggesting that the commitment to 

osteogenic lineage was triggered by surface patterns earlier than with soluble factors. Unlike 

chemical induction, however, the expression of OC on untreated micropillar arrays did not 

change significantly over 28 days of culture. OC is a relatively late osteogenic marker[86] 

and was shown before to be expressed later than ALP during osteogenesis[87, 88], indicating 

that micropillar arrays might have induced osteogenesis earlier than by chemicals but did not 

lead to a mature osteoblastic phenotype over the 4 weeks of culture. Gene expression at later 

time points should be analyzed to investigate whether a fully mature osteoblast phenotype 

can be achieved on the patterned surfaces. In this case, the time that cells spend in between 

the micropillar features could be increased by delaying confluency by decreasing the initial 

number of cells seeded.

Interestingly, no significant change was observed in the expression of osteogenic marker 

genes on the oxygen plasma treated substrates during the first 2 weeks of culture (Fig.6A–C, 

hatched columns). The only significant change was the upregulation of OSX on P4G4 and 
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P8G8 surfaces on Day 28, suggesting a much later commitment to osteogenesis on the 

plasma treated substrates. Our hypothesis was that cytoskeletal tensions due to the 

micropillar mediated morphological changes and nuclear deformations could trigger 

osteogenesis. Considering earlier and more robust morphological changes we reported 

before on the oxygen plasma treated micropillar arrays[51], we were expecting the cells on 

such surfaces to differentiate earlier. An explanation to this situation could be the initial high 

proliferation rates on the plasma treated surfaces as summarized in Supplementary Table 4. 

Cell cycle withdrawal and differentiation are coupled processes; differentiating cells need a 

longer cell cycle to respond to external signals and to accumulate differentiation-inducing 

transcription factors, resulting in a decrease in proliferation rate[89, 90]. For example, pre-

osteoblastic cells differentiated by forced upregulation of Runx2 and OSX were shown to 

suspend cell cycle, resulting in a transition from active cell growth to quiescence[91]. 

Significantly higher initial proliferation rates we recorded on plasma treated surfaces point 

out to shorter cell cycles, which might have prevented cells from getting into a 

differentiation state. The influence of cellular shape on the expression of osteogenic genes 

was investigated by correlation test. Surface topography-induced elongation of MSCs was 

reported by others to enhance osteogenesis by chemical induction[37, 92, 93]. This was later 

explained with the upregulation of OSX via reorganization of cytoskeletal elements and 

following signaling cascades on patterned surfaces[95–97]. Here, on the untreated surfaces, 

we found no correlation between cell elongation (observed on P4G4) or branching (observed 

on P8G8 and P16G16) and OSX expression (Supplementary Table 5, Fig.S8A). This finding 

suggests that cytoskeletal tension resulting from changes in cell morphology in the forms of 

elongation or branching modulates osteogenesis on patterned substrates.

It is noteworthy that OSX and ALP were upregulated on P4G4 and P8G8 but not on 

P16G16, implying an effect of nuclear deformation on osteogenesis. Deviations from the 

elliptical shape of cell nucleus was proposed as one of the factors altering structure and 

organization of chromatin and therefore modulating gene expression[98]. Osteogenic genes 

including OSX, ALP and OC were shown to be located within the telomeric regions of large 

chromosomes, which were predisposed to repositioning upon intranuclear reorganization[18]. 

Indeed, we found a positive correlation between OSX and ALP expressions and the extent of 

nuclear deformations (Supplementary Table 6, Fig.S8B). Liu et al. reported earlier that 

nuclear deformations on micropillars significantly enhanced the expressions of Runx2 and 

ALP by MSCs cultured in a cocktail of osteogenic and adipogenic supplements[38]. Here we 

report a similar observation but without chemical induction.

Bone extracellular matrix deposition and mineralization

Immunofluorescence was used to detect deposition of bone ECM proteins, collagen type I 

(COL I) and osteopontin (OP), in response to physical cues (Fig. 7A). Cells on untreated 

substrates, particularly those on micropillar decorated surfaces, were found to aggregate into 

osteogenic nodule-like structures rich in COL I and OP. Cells on the plasma treated surfaces, 

however, were well spread and did not form aggregates. A few large aggregates were 

observed on P4G4 while there were multiple, denser aggregates on P8G8 and P16G16. 

Human MSCs undergoing osteogenic differentiation are known to form multilayered 

nodular structures in vitro[99, 100], and hydrophobic substrates were shown before to force 
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stem cells to aggregate and enhance osteogenesis[101]. Contrary to a previous report of 

aggregate formation on nano but not on micropillars[102], our substrates triggered formation 

of bone nodule-like aggregations.

The deposition of COL I and OP were semi-quantified in Fig.7B and Fig.7C, respectively, 

by normalization of fluorescence intensities to nuclear signal. Plasma modification was 

found to increase COL I and OP deposition on unpatterned surfaces. Moreover, normalized 

intensities of COL I and OP were lower on both untreated and plasma treated micropillar 

arrays compared to the unpatterned control surfaces. These observations suggest that bone 

matrix deposition increase with increasing cell spreading. We previously showed that 

oxygen plasma modification increases cell spread area on unpatterned surfaces. It can also 

clearly be seen that cell spreading is significantly restricted on micropillar decorated 

surfaces, particularly on untreated hydrophobic substrates. Indeed, synthesis and deposition 

of COL I were shown to increase with increasing cell spreading even if the levels of pro-

α1(I) collagen mRNA were the same[103]. COL I deposition was higher on the untreated 

micropillar arrays except P8G8 than their plasma treated counterparts, while OP deposition 

was higher on plasma treated substrates (except P16G16). Surface hydrophilicity was shown 

to enhance deposition of OP both in vitro[104] and in vivo[105] because of higher BMP 

signaling on hydrophilic surfaces.

The nodular aggregates on untreated P4G4 and P8G8 surfaces were found to be positive for 

calcium deposits by Alizarin red staining (Fig. 8, shown with yellow arrows), indicating 

mineralization. Only a low basal staining was observed on the plasma treated counterparts, 

indicating no significant mineralization over 28 days of culture. Higher deposition of COL-I 

and OP on plasma treated surfaces but lack of mineralization may look contradictory 

considering that bone matrix proteins promote mineralization. However, it should be noted 

that mineralization was observed on untreated P4G4 and P8G8 surfaces, where cell bone 

nodule-like aggregates were positive for both COL-I and OP, and the expression of ALP was 

significantly upregulated on days 14 and 28 following the early upregulation of OSX on Day 

7. On plasma treated P4G4 and P8G8 surfaces, on the other hand, no significant change was 

observed in ALP levels compared to the unpatterned control over 28 days of culture. 

Upregulation of ALP is essential for bone mineralization since it promotes calcium 

phosphate deposition by increasing the local concentrations of inorganic phosphate and 

decreasing the levels of extracellular pyrophosphate, which is known to inhibit 

mineralization[107].

Overall, our findings indicate that square prism micropillars cause significant alterations in 

cytoskeletal and nuclear morphology and induce upregulation of early osteogenic genes and 

mineralization on hydrophobic PMMA surfaces. We propose that sharp edges of the square 

prism pillars and narrow interpillar gaps on P4G4 and P8G8 substrates generated high 

degrees of cytoskeletal tension and induced differentiation of multipotent DPSCs towards 

bone lineage rather than soft tissue cells such as adipocytes. It was previously shown that 

MSCs grown on adhesive microislands with sharp corners and curvature in the shape of 

rectangles or stars induced osteogenesis while the cells on smoother patterns like round 

islands or flowers underwent adipogenic differentiation[92]. Besides the nature of 

morphological changes, high stiffness of the solvent-cast PMMA films probably favored 
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differentiation towards osteogenesis rather than adipogenesis or myogenesis. Considering 

the influence of matrix stiffness on lineage commitment of MSCs[108], the elastic modulus 

of our solvent cast PMMA films (~1.3 GPa[52]) was far too high for adipogenic (1–5 kPa) or 

myogenic (10–20 kPa) differentiation but favors osteogenesis (>25 kPa)[109].

Conclusions

In this study, PMMA micropillar arrays with varying lateral dimensions were fabricated and 

their wettability was improved by treating with oxygen plasma. These micropillar structures 

were shown to affect morphologies of cell body and nucleus, and modulate attachment, 

proliferation and osteogenic differentiation of DPSCs. Hydrophobic micropillar arrays with 

lateral dimensions of 4 (P4G4) and 8 μm (P8G8) induced the expression of early osteogenic 

genes and mineralization in bone nodule-like cell aggregates without any differentiation 

supplements in the growth media. In conclusion we propose that hydrophobic square prism 

micropillars bring osteoinduction to PMMA surfaces without biochemical supplements. Our 

approach is more advantageous over other methods employing nanoscale patterns that 

require more complicated and costly methods for fabrication[9] or using materials such as 

genetically engineered proteins[55] or decellularized bone matrices[106] that are harder to 

process. Hence, P4G4 and P8G8 surfaces have significant potential for use of biomaterial 

topographies as a safer alternative to soluble factors in inducing the osteogenic 

differentiation of mesenchymal stem cells and as a result for more effective bone implants. 

Future studies will focus on the expression of bone marker genes at later time points to 

determine whether osteogenesis is fully induced also on the plasma treated surfaces and 

whether a fully mature osteoblast phenotype can be achieved on the untreated hydrophobic 

substrates without chemical induction. Besides potential applications on the surface of bone 

biomaterials, our strategy to induce cell differentiation by modulation of cellular 

morphology on micropillar decorated surfaces can also be employed in tissue engineering 

applications with biodegradable polymers such as poly(L-lactic acid) (PLLA) or poly(lactic-

co-glycolic acid) (PLGA) using the same approach [45]. Multilayered 3D scaffolds can also 

be constructed by stacking individual micropillar decorated films on top of each other[110]. 

Moreover, the strategy can be expanded to investigate myogenic differentiation due to the 

extensive cell elongation observed on P4G4 surfaces but by using softer materials such as 

collagen[46].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Micropillars increased cell attachment but reduced proliferation rate at early 

time points.

• Oxygen plasma treatment enhanced both cell attachment and proliferation 

rate on all substrates.

• Untreated hydrophobic arrays induced osteogenic differentiation of DPSCs 

without chemical induction over 28 days of culture.

• The expression levels of osteogenic genes were positively correlated with the 

degree of nuclear deformations.
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Figure 1. 
Design and surface modification of PMMA films. (A) Designed dimensions of three PMMA 

surfaces decorated with square prism micropillars. (B) SEM micrographs of the 

micropatterned PMMA films. Scale bars: 10 μm. (C) Representative SEM micrographs of 

DPSCs on untreated (UT) and plasma treated (PT) P8G8 surfaces on Day 7.
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Figure 2. 
Characterization of the cells isolated from dental pulp tissues. (A) Flow cytometry 

histograms of passage 2 cells gated on the forward and side scatter of analyzed particles for 

the expression of MSC positive CD90 and CD105 (red), and negative CD31 and CD45 

(green) surface markers. Black curves: Unstained control. (B) Relative expression of the 

osteogenic marker genes osterix (OSX), alkaline phosphatase (ALP), and osteocalcin (OC) 

by the cells chemically induced with dexamethasone. Expression levels in the chemical 

induction group were normalized to the corresponding levels in the maintenance media 

without osteogenic supplements.
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Figure 3. 
Cell attachment on the substrates. (A) The number of DPSC on PMMA films 16 h after cell 

seeding. (Seeding density: 3×104 cells.cm−2). Hatched columns represent oxygen plasma 

treated substrates. Data represent mean ± SD of three replicates, *p < 0.05, **p < 0.01 and 

***p < 0.001. Asterisks above the bars represent significance compared to the unpatterned 

control. n.s.: not significant. (B) SEM micrographs of DPSCs on (i-iv) untreated and (v-viii) 

oxygen plasma treated substrates on Day 1 (Scale bars: 20 μm, UC: unpatterned control).
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Figure 4. 
Nuclear and cytoskeletal morphology of DPSCs on the substrates. (A) Confocal micrographs 

of the DPSCs on PMMA films on Day 7 (Scale bars: 50 μm). (B) Z-stack images of the cells 

on P4G4 surface on Days 1, 7 and 14 (Scale bars: 30 μm). Red: Actin cytoskeleton (Alexa 

Fluor 488-conjugated Phalloidin), green: nucleus (DRAQ5).
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Figure 5. 
Proliferation of DPSCs on PMMA substrates. (A) Cell numbers on the substrates determined 

by Alamar blue assay on days 3, 7, 14, and 21 (Seeding density: 104 cells.cm−2). Dashed 

lines represent proliferation on the oxygen plasma treated substrates. (B) Analysis of 

correlation between average nuclear deformations and specific growth rates (μ, day−1) on 

untreated and oxygen plasma treated substrates between Days 3 and 7.
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Figure 6. 
Relative expression of the osteogenic marker genes (A) Osterix (OSX), (B) Alkaline 

phosphatase (ALP), and (C) Osteocalcin (OC) The gene expressions on micropillar 

decorated films were normalized to the mean values on the unpatterned control films. 

Hatched columns represent oxygen plasma treated substrates. Data represents mean ± SD for 

four samples, *p < 0.05, **p < 0.01 and ***p < 0.001. *, # and + above the bars represent 

significance compared to smooth, P4G4 and P8G8 surfaces, respectively. n.s: not significant.
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Figure 7. 
Bone matrix deposition by DPSCs on PMMA films. (A) Immunohistochemical staining of 

collagen type I (COLI) and osteopontin (OP) on Day 28. Green: COLI, purple: OP, cyan: 

nucleus (DRAQ5). Scale bars: 200 μm. Semiquantitative analysis of the relative fluorescence 

intensities of (A) COLI and (B) OP on the substrates normalized to DNA signal. Relative 

intensities on patterned surfaces were normalized to unpatterned controls. Hatched columns 

represent oxygen plasma treated surfaces. Data represents mean ± SD, *p < 0.05, **p < 

0.01, ***p < 0.001, and ****p<0.0001.
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Figure 8. 
Alizarin red staining of DPSCs on PMMA films on Day 28. Yellow arrows point dark red 

accumulations depicting calcific deposition by the cells. Scale bars: 200 μm.
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